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Comment on
“Generic Universal Switch Blocks”

Hongbing Fan, Yu-Liang Wu, Member, IEEE, and
Yao-Wen Chang, Member, IEEE

Abstract—In the paper [5], the authors defined the well-structured symmetric
switch block My - and showed that My - is universal for any pair of positive
integers N and W. However, we find that this result is partially correct. Here, we
show that, when N > 7, My y is not universal for odd Ws (> 3) and it is universal
for any even W.

Index Terms—Field programmable gate array, universal switch block design,
FPGA routing.

*
1 NONUNIVERSAL My 'S

THIS paper concerns the design of generic switch blocks, which can
be used in the two or higher dimensional FPGA architectures.

An N-sided switch block with W terminals on each side
(denoted by (N, W)-SB) is said to be universal if every set of (2-pin)
nets satisfying the dimension constraint (i.e., the number of nets
routed through each side cannot exceed W) is simultaneously
routable through the switch block. Experiments show that using
universal switch blocks (USB) in an FPGA architecture results in
higher routing capacity. Therefore, it is desirable, in general, to
design an (N, W)-USB for each pair of positive integers N > 2 and
W > 1. This problem was first proposed and solved for N =4 in
[3], then extended to k <6 in [2], and, finally, is claimed to be
solved in [5] by showing that the proposed symmetric switch block
My w is universal for any pair of N and W.

However, we find that My y is not universal when N > 7and W
is odd (> 3). We will show this by presenting unroutable routing
requirement (counter examples) for such cases. For example, Fig. 1a
shows such a routing requirement for (7, 3)-SB, with routing
requirement vector (RRV) Vi nig =1,n9 =119 =1,n34 =
2,%15 = 17”56 = 177’L57 = 1,7L(57 =2 and others Ni; = 0. % is not
routable in M7 3 because My 3 is isomorphic to the disjoint union of
My 5 and M7, (see Fig. 2), but Vj cannot be decomposed into two
RRVs that are routable in M7, and M7,. Moreover, we find that
My w is universal if and only if N < 6 or W is even.

In order to give a simple proof and to employ some known
graph theory results, we use graph models to represent routing
requirements and switch blocks.

We label the sides of an (N, W)-SB by 1,2,..., N and let t;;
denote the jth terminal on side i, ¢ =1,...,N,j=1,...,W. With
these notations, a 2-pin net through the SB can be represented by a
2-sized subset of {1,2,..., N}. For example, a net spanning sides 1
and 2 corresponds to {1,2}. A routing requirement for the SB can
be represented by a collection (multiset) of 2-sized subsets of
{1,..., N}, which is called an N-way global routing with density d
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((N, d)-GR for short), where d is the maximum number of
occurrence of an element of {1,..., N} in the collection. Clearly,
an RRV can be transformed to an N-way global routing by
changing each component n;; in the RRV to n;; copies of {7, j} and
vice versa. An (N, d)-GR can be viewed as a multiple graph by
taking its 2-sized subsets as edges. Fig. 1b shows the graph
representation of the routing requirement given in Fig. la. An
(N, W)-SB can also be viewed as a graph with ¢; ;s as vertices and
switches as edges. Then, a detailed routing of a net in the SB
corresponds to an edge in the graph of (N, W)-SB. A detailed
routing of a global routing corresponds to a set of independent
edges. Under these models, the switch block design problem
becomes a graph design problem.

For the sake of regularity, we add some singletons (sets of size 1)
to an (N, d)-GR such that the number of sets containing each ¢ €
{1,..., N} is equal to d. We refer to such a collection as a balanced
global routing ((N, d)-BGR).

An (N, d)-BGR is said to be a minimal BGR (MBGR) if it does not
contain a subglobal routing (N, d')-BGR with d' < d. An (N, d)-BGR
is said to be a primitive BGR (PBGR) if it does not contain two
unequal singletons. If a BGR, say R, is not primitive, then we can
connect two unequal singletons in R and obtain a BGR with a
smaller number of unequal singletons. Continuing this process, we
will finally derive a PBGR, say R'. Any detailed routing of R’
induces a detailed routing of R by simply deleting the edges
representing the 2-sized sets in R’ which were obtained by
combining the unequal singletons in R. An (N, d)-PBGR with d <
W can also be converted into an (N, W)-PBGR by adding singletons
and connecting unequal singletons. Therefore, in the designing of a
universal (N, W)-SB, we can only consider the routability for all
(N, W)-PBGRs.

The BGR representation has two advantages. First, an
(N, d)-BGR GR corresponds to a regular hypergraph with vertex
set {1,...,N} and edge set GR. Here, by regular we mean the
degrees of all vertices are equal; the degree of a vertex is defined to
be the number of edges incident with it. We refer to such a
hypergraph as a 2-graph. Note that 2-graphs allow singletons.
Second, the regularity of BGR leads to a precise decomposition
theorem [4], which says that, for any given N, there is a finite
number of N-way MBGRs and an (N, d)-BGR can be decomposed
into a collection of N-way MBGRs.

The symmetric switch blocks My are defined by the
following algorithm in [5]:

Algorithm: Symmetric-Switch-Block(N, W)
Input: N—number of sides of the polygonal switch block;
W—number of terminals on each side of the switch block.
Output: My (T, S)—the N-sided symmetric switch block of
size W; T set of terminals; S: set of switches.
Te—t;i=12..Nj=12..W;
S —;
for k=1to || do
fori=1to N do
for j=1to N do
ifij
S — SU{(tigtjw—rs1)};
if W is odd
fori=1to N do
10 for j=1to N do
11 ifi;j

O W 3 N Ul b WIN =
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(b) (c)

Fig. 2. M7 3 and its decomposition.

2r+3

21+ 3

Fig. 3. (7, 2t + 3)-PMBGR, (N, 2t + 3)-PMBGR for N > 8, t =0,1,.... (a) (7, 2t + 3)-BGR GRy1. (b) (N, 2t + 3)-BGR GRy,.

12 S = SU{(tipu ty )}
13 Output My w (7T, S);

My w has a very nice decomposable property. When W is even,
My w is isomorphic to a disjoint union of M /2 copies of My ;
when W is odd, My,y is isomorphic to a disjoint union of
copies of My, and an My (Lemma 1 of [5]). Fig. 2 shows M7 3 and
its decomposition.

Next, we show that My y is not universal when N > 7 and W is
odd (> 3). Let N and W be such a pair of integers. Since My is
isomorphic to the disjoint union of ”T‘l My 2s and one My, it is
sufficient to show the existence of (N, W)-BGRs which do not
contain (N, 1)-BGRs as subglobal routings.

Fig. 1b shows the (7, 3)-GR graph corresponding to routing
requirement 1, and Fig. 1c, the 2-graph of the corresponding
(7, 3)-BGR (called GRy;). Now, we show by contradiction that
GRy does not contain a (7, 1)-BGR. Suppose GR; contains a
(7, 1)-BGR, say GR'. Then, GR' contains exactly one of the sets
{1},{1,2}, and {1,5}. GR' cannot contain {1} since no subset of
{{2,3},{2,4},{3,4}} can cover each of 2, 3, and 4 exactly once. GR’
cannot contain {1,2} since any subset of {{5,6},{5,7},{6,7}}
cannot cover each of 5, 6, and 7 exactly once. Similarly, GR' does
not contain {1,5}. Hence, GR does not contain a (7, 1)-BGR. It
follows that M7 3 is not universal.

For N=7 and W=2t+3 and t>1, let GR; be the
(7, 2t + 3)-BGR obtained from GR, by adding t copies of
{2,3},{2,4},{3,4},{5,6},{5,7}, and {6,7} and 2t copies of {1},

see Fig. 3a. It can be shown similarly that GR; does not contain a
(7, 1)-PBGR. Therefore, M7, 3 is not universal when ¢ > 1.

For N >8and W =2t + 3 and t > 0, let GRy ; be the (N, 2t + 3)-
BGR obtained by adding N copies of singletons of {8},...,{N} to
GR,, see Fig. 3b. Then, GRy; does not contain an (N, 1)-BGR since,
otherwise, GR; would do. Therefore, My 2,3 are not universal for
al N >8and t=0,1,....

Summing up above, we know My is not universal when
N >7and W is odd (> 3).

2 UNIVERSAL MN)W’S

Now, the question is when is My i universal?

It was shown in [3], [2] that My v is universal when N < 6. It is
also true when W = 1,2 by Lemma 12 of [5]. We have just shown
that My w is not universal when N > 7 and W (> 3) is odd. What
then are the cases when N > 7 and W is even (> 4)? Are they
universal? Fortunately, the answer to this question is yes.

We will show that the statement of Lemma 9 in [5] is true when
W is even. That is, an (N, W)-PBGR can be decomposed into %
(N, 2)-PBGRs when W is even. The proof of Lemma 9 in [5] is
flawed. Next, we give a short proof using Tutte’s famous f-factor
theorem (Corollary 3.11, p. 78 in [1]).

To describe the theorem, we need some definitions and
notations. Let G = (V, E) be a graph and k be a positive integer.
A k-factor of G is a subgraph of G containing every vertex of G and
with every vertex having the degree of k. Let D and S be disjoint
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2m singletons

Fig. 4. Transformation of 2-graph PBGR to a multigraph.

subsets of V. G — D denotes the graph obtained from G by deleting

all vertices in D and dg_p(z) denotes the degree of vertex z in

graph G — D. e¢(S, D) denotes the number of edges of G having

one end in S and the other in D.

Lemma 1 [1] (k-Factor Theorem). A loop-free multigraph G contains a
k-factor if and only if

A=HD|-q(D,S) =Y (k—dgp(x)) >0 (1)
zes

for all disjoint sets D, S C V(G), where q(D, S) denotes the number
components C of G — D — S such that e¢:(S, V(C)) + k|V(C)| is odd.

Corollary 1. A regular multigraph of even degree contains a 2-factor.

Proof. Let the degree of G be 2r (r > 1). Then, for any two disjoint
sets D, S C V(G), we have

A =2|D|-¢(D,S) - > (2-dsp(x))

zeS

=2|D| —¢(D,S) = 2|S| + Y d¢p()

zes
=2|D| - ¢(D,S) = 2[S| + 2r|S| — ea(D, S)
=2|D[ = 2|5| + 2r|S| = ec(D, S) — (D, 5).

Moreover, for a component C of G — D — S with odd value of
eq(V(C),S) +2|V(C)| or, equivalently, eq(V(C),S), we have
eq(V(C),D) > 1 and eq(V(C),S) > 1 since

da(z) =2r,z € V(O).
Then,

q(D7S)+eg(D,S)§2r|S\, (2)

Q(Dvs)"_eG(DvS) §27‘|D|~ (3)
If |D| > |S], by (2) we have
A =2(D| — |8]) + (2r18] - e¢(D, S) — a(D, 5)) > 0.
Otherwise |D| < |5], by (3) we have
A =2|D| —2|S| + 2r|S| — eq(D, S) — q(D, S)
> 2|D| - 2|S| + 2r|S| — 2r|D|

=2(|S| = [D)(r = 1)
> 0.

Inequality (1) holds in both cases, therefore, G contains a
2-factor by Lemma 1. |

Corollary 2. When W is even, an (N, W)-PBGR can be decomposed into
% (N, 2)-PBGRs.
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Proof. Let G be a 2-graph representation of an (N, W)-PBGR with
even W. If G does not have singletons, then G is a regular
multigraph of even degree. Therefore, G has a 2-factor by
Corollary 1. Otherwise, G will have singletons with all of them
being equal singletons, say {z}, and the number of them is an
even number, say 2m. Let G’ be the regular multigraph
obtained by adding 2 copies of {,y;}, % copies of {y;,z}
and {y;,w;}, and ”T” copies of {z;,w;} for i =1,...,m, where
i, Zi, w; are new vertices (see Fig. 4). Clearly, G’ has degree W
and a 2-factor of G’ can be boiled down to a 2-factor of G. G’
contains a 2-factor by the above argument; therefore, G contains
a 2-factor. Since removing the edges of a 2-factor from G results
in a regular graph of even degree, it contains a 2-factor too.
Continuing this process, we know G can be decomposed into
union of 2-factors and, hence, an (N, W)-PBGR can be
decomposed into % (N, 2)-PBGRs. O

Now, we show My is universal whenever W is even (> 4).
Let W be an even number. Then, My - is isomorphic to the disjoint
union of % My s. By Corollary 2, every (N, W)-PBGR can be
decomposed into % (N, 2)-PBGRs, where each can be routed in an
My since every My is universal (Lemma 12 of [5]). It follows
that My w is universal.

It is known that the number of switches in My, is (})W and it
is a lower bound for the universal (N, W)-SB. Therefore, an My y is
an optimum USB if it is universal.

Summarizing the above, we know that the statement about
My w in [5] should be modified to the following theorem.

Theorem 1. My yy is universal if and only if N < 6 or W is even. My w
is an optimum universal switch block if it is universal.

3 CONCLUSION

In view of practice (practical application), it is quite useful already to
have the result that My y is universal for an even W since we can
choose to design FPGA switch boxes with an even number of tracks
to gain universal routing property. However, as a problem, the
generic (N, W)-USB design problem for N > 7 and odd W (> 3) is
still left open and it seems to be a hard problem because no efficient
method is known to compute all N-way MBGRs for any given N.
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