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Abstract

For choosing speci"c cross-ratios as 2D projective coordinates in various computer vision applications, a reasonable
error analysis model is usually required. This investigation adopts the assumption of normal distribution for positioning
errors of point features in an image to formulate the error variances of cross-ratios. Based on a geometry-based error
analysis, a straightforward way of identifying the cross-ratios with minimum error variances is proposed. Simulation
results show that the proposed approach, as well as a further simpli"ed alternative, yield much better estimations of
minimum error variances in terms of accuracy, cost, and stability compared with some other methods, e.g., the one based
on the rule given by Georis et al. (IEEE Trans. Pattern Anal. Mach. Intell. 20 (4) (1998) 366). Some causes of the
performance di!erences in the estimations are explained using a special con"guration of point features. � 2001 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recently, more and more computer vision researchers
have been paying attention to error analysis so as to
ful"ll the accuracy requirements arising from various
applications such as outer-space exploration, industrial
robots, and so on. In fact, one of the main purposes of
computer vision is to construct a reliable system that can
carry out its tasks with satisfactory e$ciency and pre-
cision in a realistic environment. Early works regarding
these requirements are mainly concerned with the analy-
sis of error propagation, which are well known in the
photogrammetry literature [2}4], and thereby provide
relevant information of quality estimation for di!erent
steps of a vision algorithm [5]. In particular, such an
analysis is often required for 3D shape reconstruction
methodologies. There are basically two classes of
methods to reconstruct 3D shapes from 2D images. The
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"rst class involves strategies relying on camera calib-
ration [6}8] and the second consists of methods based on
projective geometry, which usually utilize reference
points as prior knowledge [9}13]. Due to the simplicity,
some of the projective geometry-based approaches have
also been used in other applications [14}17].
Consider the projective geometry-based approaches

for 3D reconstruction. In Ref. [9], it is shown that refer-
ence points in a sequence of images can be used easily to
derive 3D information of objects in a scene. It is also
found in Ref. [10] that, given more locations of epipoles,
in addition to only four corresponding reference points,
a projective invariant structure can be established to
reconstruct a 3D scene without any prior knowledge of
camera geometry or internal calibration. Subsequently,
a relatively a$ne structure is proposed with one of its
applications being the basis for algorithms performing
3D reconstruction from multiple views [11]. Similarly,
geometric constructive solutions to 3D vision problems,
e.g., positioning a point in the 3D space using two stereo
images, are reported in Refs. [12,13].
For the projective geometry-based 3D reconstruction

relying on reference points, the quality of the reconstruc-
tion strongly depends on that of the image data. In
addition to other possible measurement uncertainties,
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�Detailed description of the criterion is given in Section 3.

�Note that the de"nition of cross-ratio is not unique. Di!er-
ent cross-ratios can be obtained by reordering the four points in
Eq. (1). The de"nitions will give a total of six di!erent cross-ratio
values and any one of the values can be used to derive the rest of
them [21].

2D coordinates of feature points in an image plane will
always have quantization errors due to the limited image
resolution. Hence, the projective coordinates, i.e., pairs of
cross-ratios with respect to the reference points, will also
have error in their values. Such errors must be carefully
analyzed and controlled so as not to seriously in#uence
the "nal reconstruction results.
Several researchers consider the error analysis for

cross-ratios obtained for point feature with respect to
four reference points [18,19]. The analyses are based on
the assumption of an independent, identical, Gaussian
distribution of errors in the locations of the four image
points in an image plane. A given image of four collinear
points is "rst classi"ed by making comparisons between
the measured cross-ratio and those stored in the model
database. Subsequently, the performance of the classi"ca-
tion is described quantitatively by the probabilities of
rejection, false alarm and misclassi"cation. Recently,
a complete sensitivity analysis of the 3D reconstruction
method based on projective geometry has been presented
in Ref. [1] in which the error estimation for the projective
coordinates, i.e., cross-ratios, is considered. As one of the
main results, it is suggested by the authors that, instead of
expensively calculating the error variances of all 24
cross-ratios associated with a 2D feature point, one could
choose the cross-ratios which minimize ��!903�.� How-
ever, such a geometrically phrased criterion is only based
on observations on limited number of examples and
lacks obvious mathematical support. In this paper, a new
approach of estimating error variances of cross-ratios is
proposed. It is shown that with a more clear geometric
interpretation of the mathematical formulation of the
error variances, the proposed approach will perform the
error estimation more satisfactorily in terms of accuracy,
cost and stability.
The rest of the paper is organized as follows. In

Section 2, we give an overview of the projective
geometry-based 3D reconstruction. Subsequently, the er-
ror generated in the output of the "rst stage of the
reconstruction, i.e., the projective coordinates, due to
quantization errors in locations of image points is for-
mulated in Section 3. In Section 4, the geometry-based
mathematical reasoning of the above error is carried out
and, accordingly, a new error estimation approach is
established. Furthermore, by simplifying the estimation
process, a low-cost alternative is also introduced. In
Section 5, simulations are performed using a typical
con"guration of a set of four reference points as well as
a special con"guration wherein three of the four reference
points are nearly collinear. Experiments using a real
image are also carried out for the latter. Finally, we draw
conclusions in Section 6.

2. Projective geometry-based 3D reconstruction

In this section, we brie#y review some mathematics
involved in the projective geometry-based 3D recon-
struction approach. Let J , K , ¸ and M be four col-
linear points, as shown in Fig. 1; their cross-ratio is
de"ned as

k
�
"[J,K;¸,M]"

J¸ ) KM

K¸ ) JM
, (1)

where J¸ stands for the directed distance from J to ¸,
and so on.� In fact, the cross-ratio is the basic invariant in
projective geometry: all other projective invariants can
be derived from it [20].
Let l

�
denote the line containing the four points with

the line equation

r"b#�d, (2)

where r is the position vector of any point on l
�
, b and

d are the base and directional vectors of the line, respec-
tively, and � is a parameter taking real values. If
�
�
, �

�
, �

�
and �

�
are the �-parameters associated with

J, K, M and ¸, respectively, the cross-ratio de"ned in
Eq. (1) can also be expressed as

k
�
"[J,K;¸,M]"

�
�
!�

�
�
�

!�
�

�
�

!�
�

�
�
!�

�

. (3)

An immediate application of the invariant property of
cross-ratio is to locate a point on a line. For example,
assuming that cross-ratio k

�
is given, so are the locations

of J, K, ¸ on l
�
, it is easy to see from Eq. (3) that the

location of M can be determined as

�
�
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�
�
(�
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(�
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!�
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)
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�
(�
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!�

�
)!(�
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)

. (4)

Therefore, k
�
can be regarded as the 1D projective coordi-

nate of M with respect to �J, K, ¸�.
On the other hand, the same idea can be extended to

locate a 2D point P
�
, also shown in Fig. 1, in a projective

plane P�. This can be done by using two cross-ratios as
follows. Assume that points A, B, C and D are given, and
so is an arbitrarily chosen line l

�
. The location ofM, and

thus line l
�
, can be obtained using Eq. (4) if k

�
is given.

Similarly, l�
�
can be determined if another cross-ratio, say

k
�
, is given for the intersections of another arbitrarily

chosen l�
�
(not shown) and the four lines (including

l�
�
passing through C). Thus, the location of P

�
can be
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Fig. 1. De"nition of cross-ratio and its application in "nding 1D
(2D) location of point M (P

�
).

Fig. 2. Reconstruction of a 3D point using projective coordi-
nates.

obtained as the intersection of l
�
and l�

�
. Therefore,

(k
�
,k

�
) can be regarded as the 2D projective coordinates

of P
�
with respect to �A,B,C,D�.

One main application of the projective coordinates is
to reconstruct the world coordinates of a 3D point from
its projective images. To see the reconstruction proced-
ure, consider the example shown in Fig. 2. Assume that
two reference planes R

�
and R

�
and the 3D locations of

four reference points on each of them are given (only
A, B, C and D on R

�
are shown). Let p and p� be two

images of the feature point P and the two viewing lines
intersect R

�
and R

�
at �P

�
,P

�
� and �P�

�
,P�

�
�, respective-

ly. Since the projective coordinates of P
�
can be obtained

from a, b, c, d and p in the left image plane, the location
of P

�
on R

�
and thus its 3D location can be determined.

Similarly, the 3D location of P
�
, can also be calculated.

In the same way, from the right image plane, the 3D
locations of P�

�
and P�

�
can also be obtained. Finally, the

3D location of the feature point P in the world coordi-
nates system can be determined as the intersection of the
two viewing lines, P

�
P
�
and P�

�
P�
�
.

Thus, for a 3D feature point P, the projective ge-
ometry-based 3D reconstruction approach using two ref-
erence planes can be summarized with the following
procedure:
The line intersection (LI) procedure:
Stage 1. Calculate the 2D projective coordinates of P in

the left and the right image, respectively, for each refer-
ence plane.
Stage 2. Calculate the 3D locations of the two images

of P on each reference plane using the 2D projective
coordinates computed in Stage 1.
Stage 3. Reconstruct P as the intersection of two view-

ing lines.
In the above reconstruction procedures, quantiza-

tion errors in locating point features in the image
planes will result in errors in the location of recon-
structed object points. However, there will be di!erent
error ampli"cation e!ects on di!erent projective co-
ordinates used in Stage 1 of procedure ¸I. In the next
section, an error analysis based on a normal distribution
assumption for the above quantization error will be pre-
sented.

3. Error analysis

We now present an analysis of the errors in the projec-
tive coordinates due to quantization errors in locating
point features in 2D images. Such coordinates are useful
in projective geometry-based computer vision, e.g., in the
reconstruction procedure reviewed in the previous sec-
tion. Consider the left image shown in Fig. 2. Let j, k, l
and m (not shown) be the projective projections of
J, K, ¸ and M (see also Fig. 1), respectively. Moreover,
let bH#�dH denote the line equation of lH

�
(the image of

l
�
) for the 2D coordinates system used in that image,

where bH"(bH
�
, bH

�
) and dH"(dH

�
, dH

�
). The intersection of

lH
�
and ab can be obtained as

�
�
"
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�
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�
b
�
!bH

�
a
�
!bH

�
b
�
#bH

�
a
�

dH
�
(b

�
!a

�
)!dH

�
(b

�
!a

�
)

, (5)

where (a
�
,a

�
) and (b

�
, b

�
) are the coordinates of points

a and b, respectively. With similar computations, �
�
, �

	
and �



can also be obtained. By using �

�
, �

�
, �

	
and

�


in place of �

�
, �

�
, �

�
and �

�
, respectively, in Eq. (3),

we have
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. (6)
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� In particular, we have �(A,B,C)"�(B,C,A)"
�(C,A,B)"!�(A,C,B)"!�(C,B,A)"!�(B,A,C).

Table 1
Cross-ratios associated with a point p and four reference points �a, b, c, d�

i Cross-ratio k
�

Dep. i Cross-ratio k
�

Dep.

1 [ab, ac, ad, ap]"
�(a, b, d)�(a, c, p)

�(a, c, d)�(a, b, p)
t
�

13 [cb, ca, cd, cp]"
�(c,b,d)�(c,a,p)

�(c,a,d)�(c,b,p)

t
�
t
�

2 [ab, ad, ac, ap]"
�(a, b, c)�(a, d, p)

�(a, d, c)�(a, b, p)
1!t

�
14 [cb, cd, ca, cp]"

�(c, b, a)�(c,d, p)

�(c, d, a)�(c,b, p)

t
�
!t

�
t
�

3 [ac, ab, ad, ap]"
�(a, c, d)�(a, b, p)

�(a, b, d)�(a, c, p)

1

t
�

15 [ca, cb, cd, cp]"
�(c, a, d)�(c,b, p)

�(c, b, d)�(c,a, p)

t
�
t
�

4 [ac, ad, ab, ap]"
�(a, c, b)�(a, d, p)

�(a, d, b)�(a, c, p)

t
�
!1

t
�

16 [ca, cd, cb, cp]"
�(c, a, b)�(c,d, p)

�(c, d, b)�(c,a, p)

t
�
!t

�
t
�

5 [ad, ac, ab, ap]"
�(a, d, b)�(a, c, p)

�(a, c, b)�(a, d, p)

t
�

t
�
!1

17 [cd, ca, cb, cp]"
�(c, d, b)�(c,a, p)

�(c, a, b)�(c,d, p)

t
�

t
�
!t

�

6 [ad, ab, ac, ap]"
�(a, d, c)�(a, b, p)

�(a, b, c)�(a, d, p)

1

1!t
�

18 [cd, cb, ca, cp]"
�(c, d, a)�(c,b, p)

�(c, b, a)�(c,d, p)

t
�

t
�
!t

�

7 [ba, bc, bd, bp]"
�(b, a, d)�(b, c, p)

�(b, c, d)�(b, a, p)
t
�

19 [db,dc, da, dp]"
�(d, b, a)�(d, c, p)

�(d, c, a)�(d, b, p)

t
�
!t

�
t
�
!1

8 [ba, bd, bc, bp]"
�(b, a, c)�(b, d, p)

�(b, d, c)�(b, a, p)
1!t

�
20 [db,da, dc, dp]"

�(d, b, c)�(d, a, p)

�(d, a, c)�(d, b, p)

t
�
!1

t
�
!1

9 [bc, ba, bd, bp]"
�(b, c, d)�(b, a, p)

�(b, a, d)�(b, c, p)

1

t
�

21 [dc, db, da, dp]"
�(d, c, a)�(d, b, p)

�(d, b, a)�(d, c, p)

t
�
!1

t
�
!t

�

10 [bc, bd, ba, bp]"
�(b, c, a)�(b, d, p)

�(b, d, a)�(b, c, p)

t
�
!1

t
�

22 [dc, da, db, dp]"
�(d, c, b)�(d, a, p)

�(d, a, b)�(d, c, p)

t
�
!1

t
�
!t

�

11 [bd, bc, ba, bp]"
�(b, d, a)�(b, c, p)

�(b, c, a)�(b, d, p)

t
�

t
�
!1

23 [da,dc, db, dp]"
�(d, a, b)�(d, c, p)

�(d, c, b)�(d, a, p)

t
�
!t

�
t
�
!1

12 [bd, ba, bc, bp]"
�(b, d, c)�(b, a, p)

�(b, a, c)�(b, d, p)

1

1!t
�

24 [da,db, dc, dp]"
�(d, a, c)�(d, b, p)

�(d, b, c)�(d, a, p)

t
�
!1

t
�
!1

� In this table, Dep. indicates the dependency between the
twenty four de"nitions of cross-ratio; for example, if k

�
is repre-

sented by t
�
, then k

�
can be obtained by 1!t

�
.

To give a geometric interpretation to the above equa-
tion, de"ne the triangle function

�(A,B,C)O �
�
(A

�
B
�
!A

�
B
�
#B

�
C

�
!B

�
C

�

#C
�
A

�
!C

�
A

�
), (7)

whose magnitude, ��(A,B,C)�, gives the area of triangle
�ABC.� With this de"nition, we can rewrite Eq. (6) as

k
�
"

�(a, b, d)�(a, c, p)

�(a, c, d)�(a, b, p)
. (8)

Since six di!erent cross-ratios can be obtained for each of
the four reference points being the origin of the pencil of
the reference lines going through (i) the other three refer-
ence points and (ii) the measured point p, a total of 24

di!erent cross-ratios k
�
1)i)24 can be used for p, as

listed in Table 1.� In theory, if the projective coordinates,
as well as other relevant quantities, are calculated pre-
cisely, 3D object points can be reconstructed perfectly
with procedure ¸I. However, quantization errors are
intrinsic to locations of point features extracted from an
image, which will result in errors in the computation of
projective coordinates as well as in the reconstruction.
Often, the normal distribution is utilized to model such
quantization errors, which is usually assumed to have
a zero mean and the following covariance matrix:

�
��
��

�
��

�
��

��
��
� .
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�k
�

�a
�

"

(�(a, b, d)�(a, c, p))� (�(a, b, p)�(a, c, d))!(�(a,b, p)�(a, c, d))�(�(a, b, d)�(a, c, p))
(�(a, b, p)�(a, c, d))�

"

[(b
�
!d

�
)�(a, c, p)#(c

�
!p

�
)�(a,b, d)]�(a,b, p)�(a, c, d)

(�(a, b, p)�(a, c, d))�

!

[(b
�
!p

�
)�(a, c, d)#(c

�
!d

�
)�(a, b, p)]�(a, b, d)�(a, c, p)

(�(a,b, p)�(a, c, d))�
. (10)

Accordingly, the variance of cross-ratio k
�
, for example,

can be calculated as

��
�� ���

"��
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�
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�
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�
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�
#�
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�
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�
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#�
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#�
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���
��

#��
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�a

�
�

�
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�
#�

�k
�

�c
�
�

�

#�
�k

�
�d

�
�

�
#�

�k
�

�p
�
�

�

���
��

#2 �
�k

�
�a

�

�k
�

�a
�

#

�k
�

�b
�

�k
�

�b
�

#

�k
�

�c
�

�k
�

�c
�

#

�k
�

�d
�

�k
�

�d
�

#

�k
�

�p
�

�k
�

�p
�
����

O e
���

��
��

#e
���

��
��

#e
����

�
��
, (9)

where e
���
, e

���
, and e

����
are de"ned as the error ampli"-

cation factors for ��
��
, ��

��
, and �

��
, respectively. Thus,

given the repetition/symmetry of Table 1, and the prob-
ability that in any practical application all measured
points will have equal error, di!erent cross ratios (k

�
's)

will statistically have di!erent error variances (��
�	 ���

) ac-
cording to Eq. (9). Speci"cally, ��

�	 ���
is equal to the

weighted sum of ��
��
, ��

��
and �

��
with the weighting

factors equal to non-identical e
���
, e

���
, and e

����
, respec-

tively. For simplicity, for locating of a point feature in an
image, it is assumed that the correlation between the
inaccuracies in x and y directions can be ignored, i.e.,
�
��

�0. Consequently, only the two ampli"cation factors,
e
���

and e
���
, will need to be considered in Eq. (9).

Note that, even though the above error analysis is
formulated for k

�
, a similar analysis for other projective

coordinates can also be performed. In general, the ampli-
"cation factors may vary widely for di!erent cross-ratios
being used as projective coordinates, e.g., in Stage 1 of
procedure ¸I. In Ref. [1], instead of calculating all the
error variances associated with the 24 cross-ratios and
then choosing the ones with the smallest variance, it is
suggested that cross-ratios which minimize ��!903�

should be used. According to their de"nition, for each of
the 24 cross-ratios listed in Table 1,

�"Lo�op,

where o, o�3�a, b, c, d�, oOo�, and�(o, o�, p) is the second
triangle function in the denominator. For example,
LCAP

�
"82.83 in Fig. 1 and will minimize ��!903�.

Therefore, either k
�
or k

�
shown in Table 1 should be

used. However, the authors simply use an example to
suggest that a cross-ratio thus obtained is `more likelya
to be robust, without giving any obvious mathematical
support.

4. Proposed algorithms for error estimation

As noted previously, the calculation for all the ampli"-
cation factors is time-consuming and a quick estimation
of their relative magnitude is usually desired in time-
limited situations such as in real-time computer vision,
etc. In this section, we will suggest di!erent ways of
estimating the minimum error ampli"cation factors
based on a geometry-based analysis of Eq. (9). It is
shown in Section 5 that the estimation approaches pre-
sented in this paper can generate better estimates than
the afore mentioned ��!903� criterion with less compu-
tation.

4.1. Dexnition and a geometry-based error analysis

To estimate the relative magnitude of error ampli"ca-
tion factors for di!erent cross-ratios, let us "rst consider
the factor e

���
in Eq. (9). For the "rst partial derivative

given in Eq. (9), we have

Similar expressions can be obtained for other partial
derivatives. Subsequently, the ampli"cation factor e

���
in

Eq. (9) can be evaluated as

e
���

"

1

[�(a, b, p)�(a, c, d)]�

��[[(b
�
!d

�
)�(a, c, p)#(c

�
!p

�
)�(a, b, d)]

��(a, b, p)�(a, c, d)
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�The notations �
��
, �

��	
, ��

��
and ��

��	
, which are identical to

k
�
, k

��
, k

��
and k

��
de"ned in Ref. [1], are introduced here to

make easy the mathematical reasoning for proposed approaches
to estimating minimum ampli"cation factors of error variances
for the cross-ratios listed in Table 1.

�Due to its complex computation, similar rules based on the
numerator part are yet to be developed.

Table 2
De"nitions of �

��
, �

��	
, ��

��
, and ��

��	
for all k

�
's

i �
��

�
��	

��
��

��
��	

i �
��

�
��	

��
��

��
��	

1 �(a,b, p) �(a, c, d) �(a, c, p) �(a,b, d) 13 �(c, b, p) �(c, a, d) �(c, a, p) �(c, b, d)
2 
 �(a,d, c) �(a,d, p) �(a,b, c) 14 
 �(c, d, a) �(c, d, p) �(c, b, a)
3 �(a, c, p) �(a,b, d) �(a,b, p) �(a, c, d) 15 �(c, a, p) �(c, b, d) �(c, b, p) �(c, a, d)
4 
 �(a,d, b) �(a,d, p) �(a, c, b) 16 
 �(c, d, b) �(c, d, p) �(c, a, b)
5 �(a,d, p) �(a, c, b) �(a, c, p) �(a,d, b) 17 �(c, d, p) �(c, a, b) �(c, a, p) �(c, d, b)
6 
 �(a,b, c) �(a,b, p) �(a,d, c) 18 
 �(c, b, a) �(c, b, p) �(c, d, a)
7 �(b,a, p) �(b, c, d) �(b, c, p) �(b,a, d) 19 �(d,b, p) �(d, c, a) �(d, c, p) �(d,b, a)
8 
 �(b,d, c) �(b,d, p) �(b,a, c) 20 
 �(d,a, c) �(d,a, p) �(d,b, c)
9 �(b, c, p) �(b,a, d) �(b,a, p) �(b, c, d) 21 �(d, c, p) �(d,b, a) �(d,b, p) �(d, c, a)
10 
 �(b,d, a) �(b,d, p) �(b, c, a) 22 
 �(d,a, b) �(d,a, p) �(d, c, b)
11 �(b,d, p) �(b, c, a) �(b, c, p) �(b,d, a) 23 �(d,a, p) �(d, c, b) �(d, c, p) �(d,a, b)
12 
 �(b,a, c) �(b,a, p) �(b,d, c) 24 
 �(d,b, c) �(d,b, p) �(d,a, c)

! [(b
�
!p

�
)�(a, c, d)#(c

�
!d

�
)�(a, b, p)]

��(a, b, d)�(a, c, p)]�

# [(d
�
!a

�
)�(a, c, p)�(a, b, p)�(a, c, d)

!(p
�
!a

�
)�(a, c, d)�(a, b, d)�(a, c, p)]�

# [(p
�
!a

�
)�(a, b, d)�(a, b, p)�(a, c, d)

!(d
�
!a

�
)�(a, b, p)�(a,b, d)�(a, c, p)]�

# [(a
�
!b

�
)�(a, c, p)�(a, b, p)�(a, c, d)

!(a
�
!c

�
)�(a, b, p)�(a, b, d)�(a, c, p)]�

# [(a
�
!c

�
)�(a, b, d)�(a, b, p)�(a, c, d)

!(a
�
!b

�
)�(a, c, d)�(a, b, d)�(a, c, p)]��. (11)

As can be seen in Eq. (8), the denominator part of the
cross-ratio k

�
corresponds to the product of signed

areas of two triangles. Let �
��
(�

��	
) denote the signed

area with (without) p as a vertex of the triangle,
i.e., �

��
"�(a, b, p) and �

��	
"�(a, c, d). Similarly,

in the numerator, let ��
��

"�(a, c, p) and ��
��	

"

�(a, b, d).� (See Table 2 for the de"nitions for all k
�
's.)

Accordingly, Eq. (11) can be expressed in a simpler form
as

e
���

"

1

��
��

�� ��
��	

��

��[[(b
�
!d

�
)��

��
#(c

�
!p

�
)��

��	
]�

��
�

��	

! [(b
�
!p

�
)�

��	
#(c

�
!d

�
)�

��
]��

��	
��

��
]�

# [(d
�
!a

�
)�

��
!(p

�
!a

�
)��

��	
]� (�

��	
��

��
)�

# [(p
�
!a

�
)�

��	
!(d

�
!a

�
)��

��
t]� (�

��
��

��	
)�

# [(a
�
!b

�
)�

��	
!(a

�
!c

�
)��

��	
]� (�

��
��

��
)�

# [(a
�
!b

�
)�

��
!(a

�
!c

�
)��

��
]� (�

��	
��

��	
)��.

(12)

Expressions of similar form can also be derived for the
ampli"cation factor e

���
, as well as for the ampli"cation

factors for other k
�
's, 1)i)24.

With the 1/(��
��

����
��	

��) term in Eq. (12), it is very
much likely that the k

�
which has the maximum value of

��
��

� ��
��	

� will have the minimum e
���

and e
���
.� Such an

observation motivates approaches proposed in the fol-
lowing subsections for a quick identi"cation of minimum
error ampli"cation factors, and the corresponding cross-
ratios.

4.2. Maximum denominator method

According to the geometry-based error analysis pre-
sented in the previous subsection, we now propose the
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"rst algorithm, namely the maximum denominator (MD)
method. The MD method identi"es, for each point fea-
ture, the cross-ratio with the maximum denominator
magnitude

k
�
, i"arg � max

������

��
��

� ��
��	

�� (13)

as the one with the smallest error ampli"cation factors
e
���

and e
���
. (Assume ��

��
"��

��
, the minimization of

e
���

#e
���

is considered.) In fact, it is not necessary to
check all 24 cross-ratios since, as one can see from the
third and the last column (dependency) of Table 1, they
can be divided into pairs of cross-ratios with each pair
having identical behavior in error ampli"cation; hence,
only 12 cross-ratios are to be examined. Thus, for each
point feature under consideration, the cross-ratio with
minimum error ampli"cation factors is identi"ed by the
following procedure (assuming that only odd i's are taken
into account).
The MD procedure:
Step 1. Identify the cross-ratio

k
�
, i"arg � max

������

��
	��
���

� ��
	��
���	

�� (14)

as the one with smallest error ampli"cation factors
e
���

and e
���
.

For some situations which are not uncommon, on the
other hand, we can consider ��

��
�'s and ��

��	
�'s separately

for more e$cient computation, as will be discussed next.

4.3. Two-step method ��
��

� then ��
��	

�

To accelerate the estimation of error ampli"cation
factors based on Eq. (14), the second method, namely the
two-step (TS) method, is developed based on the follow-
ing observations. Consider the 12 ��

��
� ��

��	
�'s in Eq. (14)

calculated for each feature point. If the four reference
points are selected in advance, the ��

��	
�'s will be "xed.

Furthermore, the ��
��	

�'s will not be very di!erent from
one another if locations of the reference points are chosen
properly, e.g., the points are distributed fairly symmetric-
ally with respect to their centroid. On the other hand, the
��

��
�'s may vary signi"cantly because, in principle, a fea-

ture point p can appear in any location in an image. The
above observations suggest that the identi"cation of the
maximum denominator may be achieved approximately
by evaluating ��

��
�'s "rst and then ��

��	
�'s.

According to the properties of the triangle function,
de"ned in Eq. (7), only six di!erent ��

��
�'s, each represent-

ing two cross-ratios, need to be considered. For example,
we have ��

��
�"��

��
� for k

�
and k

�
from Table 2. Ac-

cordingly, the TS method "rst calculates six di!erent
values of ��

��
� and identi"es two of the 12 cross-ratios

having the maximum ��
��

�. Subsequently, one of the two
cross-ratios which has larger ��

��
� ��

��	
� is identi"ed as

the one with minimum error ampli"cation factors. In
summary, we have the following procedure to identify the
cross-ratio with minimum error ampli"cation factors.
The TS procedure:
Step 1. Calculate the six ��

��
�'s, i.e., for i"1, 3, 5, 9, 11

and 17.
Step 2. For the maximum ��

��
� obtained in Step 1,

identify the cross-ratio

k
�
, i"arg ( max

���
���� ����� �

(��
��	

�, ��
��	

�)) (15)

as the one with smallest error ampli"cation factors
e
���

and e
���
.

Consider the time complexity of the three methods.
The ��!903� criterion suggested in Ref. [1] requires the
computation of 12 �'s for comparison. Simpli"cation of
the estimation is possible by considering the value of

cos� �"�
oo� ) op

�oo�� �op��
�
. (16)

Thus, a total of 68 multiplication and 12 division opera-
tions is required. On the other hand, the MD method
requires the evaluation of 12 cross-ratio denominators,
which involve the calculation of (�

�
)"10 cross-products,

or 20 multiplication operations equivalently, to "nd
��

�
�'s and ��

�	
�'s, and additional 12 multiplication opera-

tions to "nd the 12 ��
�
� ��

�	
�'s. Finally, the TS method

checks 6 cross products in the "rst step, and then 2 more
in the second, which require a total of 16 multiplication
operations.

5. Simulation results

This section reports the simulation results obtained
with estimation methods, MD and TS, proposed in the
previous section, as well as the method suggested in
Ref. [1], denoted here as orthogonal method (OR). Two
simulations are provided to examine their performances
under di!erent conditions. Fig. 3 shows a 500�500 im-
age of reference points used in the two simulations.While
�a, b, c

�
, d�, representing a typical geometry of reference

points, are used in the "rst simulation, point c
�
is re-

placed with c
�
in the second simulation in which three of

the reference points are nearly collinear.

5.1. Simulation 1 * a typical situation

In this simulation, locations of the four reference
points, a"(109, 112), b"(96, 285), c

�
"(365, 390) and

d"(312, 227), are assumed to be identical to that shown
in "g. Fig. 6 of Ref. [1]. The error variance is considered
for the projective coordinates of feature points p

�
's

located on a regular grid of size 21�21"441. For
example, p

�
"(0, 0), p

�
"(0, 25), and so on.
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Fig. 3. The 500�500 image of reference points used in the two
experiments.

Fig. 4. The minimum ��
����

estimated by the three estimation methods for the 441 feature points.

For simplicity, assume that ��
��

"��
��

"1 and �
��

�0.
The error variances of k

�
, similar to that formulated in

Eq. (9) for k
�
, can be expressed as

��
�� ���

"e
���

#e
���
. (17)

Accordingly, the 12 error variances, ��
���
����
�

, 1)i)12,
can be calculated and the minimum error variance, de-
noted as ��



, can be identi"ed for each feature point.

Without carrying out the complex calculation of all 12
variances, the three estimation methods (MD, TS and
OR) are applied, respectively, to choose a k

�
which is

supposed to have the minimum ��
����

for each feature
point. Fig. 4 shows the minimum ��

����
estimated by the

above three methods, denoted as ��

���

, ��

���

and ��

���

,
respectively, for the 441 feature points. One can see

clearly that while MD and TS methods both yield low
error variances with hardly noticeable di!erences, the
minimum error variances estimated by the OR method
are signi"cantly higher. For example, a peak can be
observed for the OR method for p

���
"(325, 225), which

is located very close to d. Since Lc
�
dp is the closest to

903, k
��
with a very small�

��
"�dc

�
p is chosen accord-

ing to the ��!903� criterion, resulting in a large error
variance. Similar explanations can be given for peaks
associated with p

��
, p

��
, etc., obtained from the OR

method.
Such a performance di!erence could be explained part-

ly as follows. For any 2D feature point p, the error
variances associated with the 12 k

�
's depend on the coor-

dinates of four reference points and that of p itself, i.e.,
there are ten variables (a

�
, a

�
, . . ., d

�
, d

�
and p

�
, p

�
) which

need to be considered.Without an obvious mathematical
support, the ��!903� criterion adopted in the OR
method can hardly capture the complex e!ects due to so
many variables. On the other hand, the denominator part
of cross-ratio adopted in the proposed methods exhibits
itself as a reasonable and e$cient indication of the rela-
tive magnitude of error variances expressed in Eq. (9).
From another perspective, the above results can also

be demonstrated directly on the image plane. As the basis
for performance comparison, Fig. 5(a) shows the 21�21
minimum error variance ��



obtained through direct cal-

culation, e.g., using Eq. (9) for k
�
. The gray value is made

to vary logarithmically with the darkest (brightest)
gray level denoting the value of 10
� (10
���). Simi-
larly, Fig. 5((b)}(d)), show the di!erences, ��


���
!��



,

��

���

!��



and ��

���

!��


, respectively, with the

darkest (brightest) gray level denoting the di!erence of
10
� (10
�). It is readily observable from these di!er-
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Fig. 5. Gray-level images representing the minimum error vari-
ances and the di!erences between these minimum and those
obtained with OR, MD and TS methods, respectively. (a) ��



, (b)

��

���

!��


, (c) ��


���
!��



, (d) ��


���
!��



.

Fig. 6. The total number of the 21�21 locations for which the
cross-ratio with the smallest (black), the second smallest (gray)
and the third smallest (white) error variances will be selected.

� In theory, the cosine function given in Eq. (16) will yield the
same magnitude for both k

��
and k

��
. Hence, the selection bet-

ween the two is simply a consequence of numerical di!erences.

ences that (i) the deviations from ��


are much higher for

the OR method than the other two, and (ii) the MD and
TS methods have very similar behaviors in estimating
��


in terms of the magnitude of estimation error as well

as the distribution of such error in di!erent image loca-
tions. While (i) is consistent with the results shown in
Fig. 4, (ii) is due to the fact that, in principle, the TS
method is a simpli"cation of the MDmethod with minor
modi"cations.
In general, for each feature point, besides the k

�
with

the smallest error variance (��


), those with slightly higher

error variances may also be used as projective coordi-
nates to generate satisfactory reconstruction results.
Fig. 6 shows for each of the three estimation approaches,
the total number of the 21�21 locations for which the
cross-ratio with the smallest (black), the second smallest
(gray) and the third smallest (white) error variances will
be selected. While the MD method results in good esti-
mates for most locations, the OR results correspond to
the least, as expected.
To investigate the behavior of the OR method further,

a special con"guration of reference points will be con-
sidered in the following example. Such an example also
partly addresses the issue of the selection between the
MD and TS methods under di!erent conditions.

5.2. Simulation 2 * a special case

In Fig. 3, consider the set of reference points which is
slightly di!erent from those used in Simulation 1 in that

c
�
is replaced with c

�
.The situation corresponds to a

special con"guration of the reference points, i.e., a, b and
c
�
, are near-collinear in the projective image. Figs. 7 and

8 show simulation results similar to Figs. 4 and 5, respec-
tively, obtained in Simulation 1. The error variances in
Fig. 7 are shown in logarithmic scale to accommodate
dramatically increased dynamic range of the error vari-
ances obtained with the OR method. Notice that ex-
tremely large error variance values occur for a subset of
the "rst 170 feature points. On the other hand, the dy-
namic ranges for the MD and TS methods seem to be
similar to that shown in Fig. 4. In Fig. 8(a), the minimum
error variances are shown to have a di!erent distribution
of overall increased values due to the change of the
con"guration of the reference points. For the results
shown in Figs. 8(b)}(d), observations similar to that for
Figs. 5(b)}(d) can be obtained except for (i) the extremely
large values resulting from the ORmethod (as mentioned
earlier), and (ii) a bigger di!erence between the MD and
TS methods compared with the results shown in Fig. 5.
For a more in-depth analysis of (i), Fig. 9 extracts the

error ampli"cation zone (��

���

*1) from Fig. 8(b) and
shows the cross-ratio, explicitly by its index, chosen by
the OR method at each grid location in the zone. Clearly,
the zone can be divided into three parts. For example, for
the darkest (black) area shown in Fig. 9, which includes
a region near the line passing through point b and per-
pendicular to bd,Ldbp is the closest to 903 compared to
the other 11 �'s; hence, according to the OR estimation,
k
��

or k
��

will be selected.� However, the two cross-
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Fig. 7. The minimum ��
�� ��

similar to Fig. 4, estimated by the three estimating methods for the 441 feature points, for simulation 2.

Fig. 8. Gray-level images, similar to those shown in Fig. 5,
obtained for simulation 2. (a) ��



, (b) ��


���
!��



, (c) ��


���
!��



,

(d) ��

���

!��


.

Fig. 9 . The cross-ratio chosen by the OR method, at each grid
location in the error ampli"cation zone.

ratios correspond to the worst choices. This is because
their denominators also contain a �

��	
(�(b, c, a) or

�(b, a, c), see Table 2) with extremely small magnitudes
due to the near collinearity, resulting in unacceptably
large error variances. Similar observations can be made
for other feature points shown in Fig. 9 which are located
near the line passing through point a (c

�
) and perpen-

dicular to ad (c
�
d) for which cross-ratio k

�
or k

�
(k

��
or

k
��
) will be selected. In contrast, since both ��

�
� and ��

�	
�

are considered, an extremely large ��


does not appear in

the MD or the TS results. For example, for the TS
method, we have max���

�
��"��(b, d, p

�
)�"��(d, b, p

�
)�

for p
�
; however, since ��(b, c

�
, a)��0, the TS method will

choose �
�
"�(d, b, p

�
). Therefore, either k

��
or k

��
will

be selected.
The reason for (ii) is that, while the MD method takes

into account 12 ��
�
� ��

�	
�'s, the TS method considers

only 6 ��
�
�'s and then proceeds with the estimation only

for the max���
�
��. It is easy to see that such a strategy
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Fig. 10. Simulation results, similar to that shown in Fig. 6,
obtained for simulation 2.

Fig. 12 . Errors in values of cross-ratios corresponding to ��

���

, ��

���

,��

���

, respectively, calculated for the images of the 441 grid
points shown in Fig. 11.

Fig. 11. A 642�1024 image of the 21�21 grid points and the
four reference points marked with squares.

will reduce the overall searching space and, somehow in
the special case considered in Simulation 2, results in
a larger performance di!erence between the two
methods. Fig. 10 shows the results similar to that shown
in Fig. 6. If one only considers ��


���
and ��


���
(black

areas), an improvement of the MD results as well as
a degeneration of the TS results can be seen clearly. Even
so, on the grounds that both ��


���
and ��


���
do not

exceed 10
� at all times, as shown in Fig. 7, both
methods are considered as generating satisfactory results.
Nevertheless, deciding whether the MD or the TS
method should be adopted under di!erent conditions is
not trivial in general and requires further investigations.

5.3. Experiments using real images

In our work, experiments using real images are carried
out to verify the simulations performed in the previous
subsections. For brevity, only the experiments for Simu-
lation 2 are presented in this subsection. Fig. 11 shows
a 642�1024 image of the 21�21 grid points and the four
reference points marked with squares. Locations of all
these points with image pixel precision are obtained with
ordinary point detection algorithm.
For each grid point, cross-ratios which are identi"ed in

the previous subsection to have ��

���

, ��

���

, ��

���

, re-
spectively, are calculated. Fig. 12 shows errors in these
cross-ratio values compared with their theoretical values
for all the grid points. It is readily observable that the
errors are fairly consistent with the statistical results
shown in Fig. 7. Similar results, which are not included
here for brevity, are also obtained for images of the same
scene taken from other viewpoints.
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6. Summary

This paper concerns error analysis for perspective
projection-based 3D shape reconstruction. Based on a
normal distribution assumption, formulation of error
variances for di!erent cross-ratios with respect to a set of
reference points utilized in the reconstruction is estab-
lished. According to a geometry-based mathematical rea-
soning, the proposed error estimation approach suggests
that the cross-ratios with the maximum denominator
magnitudes, i.e., the maximum products of areas of two
corresponding triangles, will lead to the minimum ampli-
"cations of error variance. Subsequently, the MD pro-
cedure for error estimation is developed. Compared with
the OR method suggested in Ref. [1], the proposed
approach generates better results for an ordinary con"g-
uration of four reference points as well as for a special
one. In the latter case, three reference points are nearly
collinear. A brief explanation is also given for the signi"-
cantly worse results obtained with the estimation method
presented in Ref. [1] for such a special case.
As an alternative to the MD method which already

requires less computation than the OR method, the more
e$cient TS method is also introduced. The latter is
a straightforward simpli"cation of the former which con-
siders the area of one triangle, instead of the product of
two triangles, at a time and e!ectively halves the compu-
tation costs. However, as for the trade-o! between the
two methods, it is not trivial to decide whether the MD
or the TS method should be adopted under di!erent
conditions, and this requires further investigations.
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