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Optimal Design for a Ball Grid Array Wire Bonding
Process Using a Neuro-Genetic Approach

Chao-Ton Su and Tai-Lin Chiang

Abstract—This study presents an integrated method in which
neural networks, genetic algorithms, and exponential desirability
functions are used to optimize the ball grid array (BGA) wire
bonding process. As widely anticipated, the BGA package will
become the fastest-growing semiconductor package and push
integrated circuit (IC) packaging to higher level of compactness
and density. However, wire bonding in BGA is difficult owing to
its high input/output (I/O) count, fine pitch wire bonds, and long
wire lengths. This study addresses two fundamental issues in the
semiconductor assembly facility on its quest toward a defect-free
manufacturing environment. First, the problem of exploring
the nonlinear multivariate relationship between parameters
and responses and second, obtaining the optimum operation
parameters with respect to each response in which the process
should operate. The implementation for the proposed method was
carried out in an IC assembly factory in Taiwan; results in this
study demonstrate the practicability of the proposed approach.

Index Terms—Ball grid array (BGA), exponential desirability
function, genetic algorithms, neural networks, wire bonding.

I. INTRODUCTION

BGA packages provide a high interconnect density and lead
count using standard pitch dimensions. Wire bonding de-

signs include ultra fine pitch and cavity-up, which conduct heat
from the die through the substrate and interconnect. Owing to
their intrinsic design, BGAs are technically complex to bond,
and are designed for high I/O counts, i.e., up to 500 leads is
common. They also demand fine-pitch ( m) wire bonding
and require long wire lengths, straight loops and small first and
second bond areas [1]. With high I/O count, fine pitch wire
bonds, and long wire lengths, wire bonding in the BGA as-
sembly is difficult. Exploring a manufacturing solution for the
BGA requires an integrated study for wire bonding parame-
ters. Fig. 1 depicts the thermal design architecture of the BGA
package.

The wire bonding process begins from targeting the capillary
on the bond pad and positioned above the die with ball formed
on the end of the wire and pressed against the face of the cap-
illary. The capillary descends bringing the ball in contact with
the die. The inside cone, or radius, grips the ball in forming the
bond. In a thermosonic system, ultrasound vibration is then ap-
plied. After the ball is bonded to the die, the capillary raises
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Fig. 1. Typical BGA thermal design.

Fig. 2. Wire bonding process mechanism.

to the loop height position. The clamps are open and wire is
free to feed out the end of the capillary. The lead of the de-
vice is positioned under the capillary, which is then lowered
to the lead. Wire is fed out the end of the capillary, forming a
loop. The capillary deforms the wire against the lead, producing
a wedge-shaped bond, which has a gradual transition into the
wire. In a thermosonic machine, ultrasonic vibration is then ap-
plied. The capillary raises off the lead. Leaving the stitch bond.
At a pre-set height, the clamps are closed, while the capillary is
still rising with the bonding lead. This prevents the wire from
feeding out the capillary and pulls at the bond. The wire will
break at the thinnest cross section of the bond. A new ball is
formed on the tail of the wire, which extends from the end of
the capillary. A hydrogen flame or an electronic spark may be
used to form the ball. The cycle is completed and ready for the
next ball bond. Fig. 2 depicts the mechanism of wire bonding.

Wire bonding is used throughout the semiconductor industry
as a means of interconnecting the dies, substrates and I/O pins.
Ultrasonic metal welding technology can be used for many dif-
ferent applications by appropriately utilizing its sound wave and
high frequency mechanical energy characteristics. Ultrasonic
energy is used to improve the structure of materials in met-
allurgy. The acoustic irradiation of molten mass improves de-
gasification and the finer grain structure during the hardening
process.
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The wire bonding operation attempts to develop a high yield
interconnect and low wire sweep process with a sufficient long-
term reliability to satisfy customers requirements [2]. To achieve
a high level of wire bonding performance and quality, the ap-
propriate bonding process parameters must be accurately iden-
tified and controlled. The task of the process engineers is to
identify and control these parameters to obtain desired wire
bonding quality for optimizing multiple responses (e.g., max-
imum ball shear strength, wire pull strength, and appropriate
ball size), based on their experience or equipment provider’s
recommendations iteratively. However, this task is complicated
and difficult due to coupled multivariable system, which makes
it impossible to adjust a single parameter without affecting the
others. Therefore, this multivariate operation requires an intelli-
gent system capable of evaluating the process and determining
the optimum adjustment [3].

The use of statistical experimental design techniques in semi-
conductor manufacturing has been proven very beneficial in
process modeling, optimization and control. This approach in
process has yielded fairly good empirical models for processes
such as plasma etching and LPCVD [4]. However, statistical
modeling in semiconductor manufacturing relies on response
surface methods (RSM) to construct process models following
experimentation. Himmel and May [5] demonstrated that RSM
models are lack accurate and robust than models constructed
using neural networks.

This study presents an integrated approach not only for
exploring empirical models between process parameters and
responses via neural networks, but also for optimizing the
process through certain parameter settings using genetic algo-
rithms and exponential desirability function for the BGA wire
bonding process. A comparison through confirmatory trials
between RSM and proposed approach with respect to each
response is conducted as well.

The rest of this paper is organized as follows. Neural net-
works, genetic algorithms, and exponential desirability func-
tions are briefly described is made. The next section presents
an integrated procedure for optimizing the BGA wire bonding
process. An experimental design for the implementation of pro-
posed procedure is then illustrated, followed by a comparison of
proposed procedure and RSM in terms of process performance.
Concluding remarks are finally made.

II. M ODELING AND OPTIMIZATION APPROACH

FOR BGA WIRE BONDING

A. Neural Networks

Major progress in studying neural networks has been made
since 1980. Neural networks are increasingly used to model
complex manufacturing processes, generally for process and
quality control [6]. Frequently these models are used to iden-
tify optimal process setting. An approximated model can be
constructed using a back-propagation neural network. In addi-
tion, the output can be predicted by using statistical methods.
However, according to Seet and Boullart’s, such methods tend
to be generally less accurate [7]. Neural networks possess the
unique capability of learning arbitrary nonlinear mappings be-
tween noisy sets of input and output patterns [4]. Basically, a

Fig. 3. Topology of the back-propagation neural network.

neural network approach can typically be constructed without
assuming anything about the functional form of the relationship
between predictors and response [8]. In addition to learning and
extracting the process behavior from previous operating infor-
mation. This approach can also be used as a model for process
optimization. Neural networks have demonstrated strong capa-
bility of learning nonlinear and complex relationship between
process parameters and responses without any prior knowledge
regarding the process. The neural network approach holds a
major advantage over the statistical method in that the neural
network is explicitly nonlinear through hidden layers. It is a
more general mapping procedure in which a specific function
format is not required in model building [9]. This particularly
fits the highly complex process of BGA wire bonding [10].

Neural networks have recently emerged as a highly promising
alternative to physically based models and statistical methods
of semiconductor process modeling. Fig. 3 displays the gen-
eral structure of a feedforward, multilayer neural network used
for semiconductor process modeling that is typically trained via
back-propagation [4]. The back-propagation networks have al-
ready been applied to a wide range of problems (e.g., speech
synthesis, and pattern recognition) and, in most cases, exhibit a
good behavior and results [11]. Once trained, a back-propaga-
tion network can be evaluated quickly, which is an advantage
during the optimization phase. Recent overviews of neural net-
work applications in manufacturing industry were compiled by
Zhang and Huang [12]. More related applications can also be
found in ([3]–[7], [10], [13]–[17]).

The BP neural networks consist of layers of neurons intercon-
nected such that information is stored in the weight assigned to
the connections. Network learning aims to determine an appro-
priate set of connection strengths which facilitate the activation
of these processing units to achieve a desired state that imitates
a given set of sampled patterns. In addition, a sigmoid activation
function determines the activation level of a neuron.

B. Genetic Algorithms (GAs)

More conventional optimization methods start from one point
in the search area and then move sequentially to achieve the op-
timumsolution, therebyoperating rather locallyandhighlyprone
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to falling inside a coincidental local optimum. GAs counteract
entrapment in a local optimal solution to imitate the principles
of natural genetics and natural selection to constitute search and
optimization procedure. They perform a global, random, parallel
search for an optimal solution using simple computations.

GAs are efficient local search methods based on natural se-
lection and population genetics. These algorithms use random-
ized operators operating on a population of candidate solution
to generate a new population of candidates in the search space
[18]. Owing to that large dimensions are involved in the param-
eters-to-responses function and a mathematical formulation is
unavailable, this study applies genetic algorithms, one of the
promising approaches for optimizing the complicated produc-
tion system. GAs are known for their robustness and effective
overall search capabilities [19]. Huang and Adeli [15], Setteet
al. [7], as well as Hsu and Su [20] have demonstrated the ability
of Gas to perform an optimum search through GAs. A GA in
its simplest form uses three operators: reproduction, crossover,
and mutation.

C. Exponential Desirability Function

It’s not unusual to deal with multiresponses in a manufac-
turing process. Optimizing the process with respect to any
single response often results in nonoptimum values for the
remaining characteristics. A simple and intuitive approach
to multiresponse problem is to superimpose the response
contour plots and to determine an optimal solution by visual
inspection. Such a method is severely limited by the number of
input variables and/or responses [21]. The desirability function
approach attempts to transform a multiresponse problem into
a single response one by mathematical transformation [22].
Kim and Lin [21] develops an approach based on maximizing
exponential desirability functions that do not require any
assumptions regarding the form or degree of the estimated
response models, such an approach is robust to the potential
dependencies between response variables. Their approach aims
to identify the settings of the input variables to maximize the
degree of overall satisfaction with respect to all the responses.
The exponential desirability function has been extensively used
to simultaneously optimize several responses. The benefits of
the exponential desirability are that they are easily understood,
intuitively, and allow the user to weigh the response according
to their importance.

In order to achieve an overall optimization with respect to
all the responses, a “minimum” operator for aggregating the re-
sponses can be stated as

(1)

subject to

(2)

This formulation aims to identify which maximizes the min-
imum degree of satisfaction with respect to all the responses
within the experimental region , i.e.,

(3)

The exponential desirability function can be formed as

(4)

where is the exponential constant , and is
a standardized parameter representing the distance of the esti-
mated responses from its target in units of the maximum allow-
able deviation. For example, for a response with symmetric
desirability function is defined as

(5)
Similarly, for the smaller-the-better (STB) type or larger-the-
better (LTB) type response, the following transformations for
the value

(6)

(7)

ranges between and for an NTB-type response and
between 0 and 1 otherwise. In both cases the value of
achieves its maximum value when . The function
given in (4) has been proven to provide a reasonable and flexible
representation of human perception and is convenient to handle
analytically.

The exponential desirability function has several method-
ological advantages over the available methods in terms of
optimizing multiresponse. First, the “maximin” approach is
robust to the potential dependence between responses. Such
dependence is extremely difficult to detect or model in practice.
Second, this approach achieves a better balance between all
the responses compared with the existing methods. Third, the
objective function value allows a satisfactory physical interpre-
tation in terms of degree of satisfaction. Fourth, the approach
can also be viewed as a fuzzy logic approach. The “maximin”
approach is equivalent to using the logical and operator in
fuzzy logic, denoting the intersection of the corresponding
membership functions. Related studies have demonstrated that
this optimization scheme is quite effective in compromising
multiple conflicting objectives [22]–[24].

D. Proposed Optimization Procedure

This study proposes an integrated neuro-genetic-exponential
desirability function algorithm capable of optimizing the param-
eter settings in a BGA wire bonding process. The proposed ap-
proach consists of two stages. The first stage procedure involves
using of a BP network to derive the relationship model between
input parameters and output responses. Notably, the trained net-
work can accurately predict the behavior of possible parameter
combinations. Thus, tuning the input parameters in the trained
network allow us to obtain the corresponding responses. The ex-
ponential desirability is then used to transform the multiple re-
sponses into a single response. During the second stage, GA is
applied to obtain the optimum degree of satisfaction. Herein,
the chromosome is used to represent the possible solution. Each
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Fig. 4. Schematic diagram for determining the optimal wire bonding
parameters.

gene in the chromosome represents the value of the input pa-
rameter. For example, a manufacturing process has three input
parameters , and . A chromosome can represent the value
of the three parameters , respectively. The essential ge-
netic operators during the iterative procedure can be found in
the previous section. These operations are conducted to obtain
the optimal response, which is evaluated by the fitness func-
tion. Therefore, the optimal parameter of the problem can be ob-
tained. Fig. 4 schematically depicts the proposed optimization
procedure. The detailed procedure is summarized as follows.

Step 1) Collect the input parameters and corresponding re-
sponses.

Step 2) Develop a BP network model to obtain the relation-
ship between the input parameters and output re-
sponses.

Step 3) Apply the exponential desirability function to
transform the multiple responses into a single
one. The trained network with a modified single
response is referred to as a fitness function.

Step 4) Set the GA operating conditions (e.g., population
size, generation size, parameter number, crossover
rate, and mutation rate).

Step 5) Create an initial population by randomly selecting
the value of the input parameters.

Step 6) Repeat steps 7-11 until the stopping condition is
reached.

Step 7) Calculate the fitness value by inputting the param-
eter values to the fitness function.

Step 8) Select the parameter values according to the com-
puted responses.

Step 9) Crossover the fitness parameter values.
Step 10) Mutate the parameter values to yield the next gen-

eration.
Step 11) Obtain the current optimal parameter values.
Step 12) Obtain the optimal parameter settings.

III. EXPERIMENTAL RESULTS

A. Training of Neural Networks

An engineering experiment on the 52-m fine pitch BGA
wire bonding process is conducted to optimize the wire
bonding process with respect to each response, which is shown

TABLE I
RESPONSES OF THE52-�m FINE PITCH BGA

TABLE II
PROCESSPARAMETERS AND THEIR LEVELS

TABLE III
OPTIONS FORNEURAL NETWORKS

in Table I. Table II lists the process parameters and value for
each level. Thirty-two trials are conducted by a well-structured
orthogonal array . The experimental data are then used
for constructing the relationship model between parameters
and responses through the BP neural network in which 80%
(approximately 25 samples) are used for training the neural
networks while the remaining 20% (approximately seven
samples) are used for testing.

Table III lists several options of the neural network architec-
ture; in which the structure 8-4-3 under the best convergence
criterion of the root of mean square (RMSE) is selected to ob-
tain a better performance.

B. Determination of the Fitness Function

In this sturdy, responses, and have lower specifications
and has the corresponding target value. Herein, the expo-
nential desirability function is used to solve the multi-response
problem. We have

(8)

where is calculated from (3) and (4). The engineering man-
agement agrees on employing a convex, convex, and concave
exponential desirability function for , and with

respectively, according to their importance. There-
fore, is set as the fitness function of the GA as further explored
in the next section.
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TABLE IV
IMPLEMENTATION RESULTS OFGA

C. Optimization Using Genetic Algorithms

Each input parameter in the BGA wire bonding process is
normalized to the value between 0 and 1 and they are com-
bined into one string. For example, the input parameters listed
in Table II are transformed into the chromosome representation

in a string. Strings are randomly generated
to form the initial population. When GA is applied to optimize
the BGA wire bonding parameter selection, the essential op-
erators, including reproduction, crossover and mutation should
be determined in advance. Herein, a roulette wheel approach is
adopted as the selection procedure. The crossover rate and mu-
tation rates are set as 0.5 and 0.01, respectively. Fifty strings are
randomly generated to establish the initial population. Notably,
5 000 generations were processed.

D. Results

The above information is used and the GA is executed
twenty runs. Table IV summarizes the implementation results.
The higher value of implies a better degree of satisfaction in
terms of compromised solution. The largestvalue is 0.8812
and its optimum chromosome is (167.1, 6.7, 36.7, 46.5, 0.21,
24.8, 5.9, 62.3). These settings are the optimal condition for the
eight process parameters.

E. Comparison

Conventionally, process engineers handle a multiresponse
problem to apply the RSM, polynomial models fitted to each
of the responses. They then superimpose the response contour
plots to determine optimal parameter settings by overlaying of
contour plots along with a separate response surface analysis.
The best subset models and their-values using RSM are

The optimal process settings can be obtained as values of (159.2,
8.2, 40.5, 51.8, 0.31, 21.4, 5.3, 67.1).

This study conducted a comparison between the RSM and the
proposed approach for benchmarking purposes. According to
the comparison on Table V, the proposed approach reveals better

TABLE V
COMPARISONBETWEEN THERSM AND THE PROPOSEDAPPROACH

Fig. 5. Yield rate trend.

performance more than 10% on the wire pull and ball shear in
terms of short term process capability. Because the values of
wire pull and ball shear are the most important characteristics
which will highly affect the electrical function of the device
in later applications, these results are highly satisfied the line
engineers.

This paper was also employed the-tests of the mean values
for the wire pull and ball shear between the two approaches, re-
spectively, the statistics are 4.26 with a value of 0.0001and
3.35 with a value of 0.0009. Thus, there are strong evidences
to indicate that the means for wire pull and ball shear by the
proposed approach are greater than the means by the RSM
approach.

The effectiveness of the proposed approach is conducted at a
semiconductor assembly line in Taiwan that was undertaken to
optimize the BGA wire bonding parameters. The implementa-
tion results under mass production over eight months confirm
that the proposed approach outperforms the conventional RSM
method in optimizing a BGA wire bonding process. According
to the quality trend chart (Fig. 5) from the shop floor, the wire
bonding yield has been risen to an average around 99.92% over
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eight months from 98.1% which equivalents to a reduction of
18 200 DPPM (defect parts per million). The annual cost saving
is expected to exceed 1.1 million US dollars from implementing
the proposed approach in Month 2, whereas the expenditure for
the experiment was below USD 2,000.

IV. CONCLUSION

This study has demonstrated that integrating BP neural net-
works, genetic algorithms, and exponential desirability function
can optimize the BGA wire bonding process. Although statis-
tical experimental design techniques in semiconductor manu-
facturing have greatly benefited in process modeling, optimiza-
tion and control, statistical modeling that heavily relies on re-
sponse surface methods (RSM) to construct process models fol-
lowing experimentation are less accurate and robust than neural
networks models. The neural network approach is better than
statistical method largely owing to that the neural network is
explicitly nonlinear through hidden layers. It is a more general
mapping procedure in which a specific function format is not
required in model building. This study also demonstrated the
superiority of the proposed approach over RSM base on cri-
teria such as degree of satisfaction , testing the difference
about two population means, and short term process capability.
The proposed approach can easily achieve optimization of the
complex process with multiple responses. These settings facil-
itate process engineers in achieving acceptable process control
during the production. In addition, the improvement in process
performance allows the factory to more easily fabricate prod-
ucts with superior quality in the IC assembly industry.
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