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On the Mode-Coupling Formation of Complex 
Modes in a Nonreciprocal Finline 

Ching-Kuang C. Tzuang, Senior Member, IEEE and Jinq-Min Lin, Student Member, IEEE 

Abstract-This paper studies and models the mechanism for 
fc mrming the complex modes commonly found in boxed quasi- 
planar or planar guided-wave structures. To illustrate the fact 
that the mode-coupling among the various forms of modes is 
closely related to the formation of complex modes, the dis- 
p mion characteristics of the complex propagation constants 
(or the so-called mode spectrum) of a nonreciprocal unilateral 
finline are obtained by the rigorous full-wave SDA (spectral- 
dlmain approach). It is found that in the mode spectrum of 
the nonreciprocal finline, a forward wave and a backward wave 
interact to produce a pair of complex modes. The interactions 
h :tween two forward mackward) traveling waves, between a 
firward wave and a backward wave, and between two complex 
v aves (modes) are modeled by applying the model-coupling 
theory. The concept of hypothetical modes is introduced in the 
n lodel. These hypothetical modes are obtained by applying mode- 

)upling theory to the mode spectrum previously obtained. The 
a 3proximate values obtained for the propagation constants of the 
three types of wave interactions using the model presented in 
the paper are in close agreement with those given by the full-wave 
S DA. 

I. INTRODUCTION 
N open lossless media, the following types of guided 
complex waves at a plane interface have been reported 

[ -1: 1) a forward surface wave and a backward surface wave 
(:,existing in pairs and carrying no net real power, 2) two 
(1 :generate proper (spectral) complex waves coupled in a 
nianner that no real power is carried, and 3) improper leaky 
v.aves. The existence of complex waves (modes) in electrically 
Y iielded lossless waveguides, e.g., dielectric-loaded partially 
filled circular waveguide [2], double-layer circular waveguide 
[ 11, [4], shielded dielectric image guide [5], [6], finline [7], 
niicrostrip line [8], [9], suspended coupled microstrip line [lo], 
(: PW (coplanar waveguide) [ l l ] ,  and asymmetric coupled 
s ispended striplines [12], has already been reported. These 
c 3mplex modes, it has been shown, appear inside an electric 
r:iclosure and they are not leaky waves. The complex modes 
;I :e also physical modes which must be considered if accurate 
r:sults are to be obtained for a discontinuity problem. Omar 
and Schiinemann demonstrated this in their analysis of a 
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finline step discontinuity problem [7]. The complex modes are 
therefore the essential constituent part of the mode spectrum 
associated with many inhomogeneously filled waveguides. 

Some research has been conducted toward understand- 
ing the general properties of the guided complex modes. 
Omar and Schiinemann show that complex modes and back- 
ward waves can be supported by inhomogeneously filled 
and anisotropically filled lossless waveguides of arbitrari I y 
shaped cross section [ 131. Another comprehensive treatment 
on the existence of complex modes in such lossless inhi)- 
mogeneously filled dielectric waveguides has been reportcd 
separately by Mrozowski and Mazur [14]-[16]. They showcd 
that, in slightly perturbed homogeneous structures, a pair 1)f 
degenerate TE and TM modes existing in the homogeneoils 
guide are quite sensitive to the small perturbation. These 
degenerate and below-cutoff modes then lead to the formation 
of complex modes in pairs. Subsequently, they established a 
formulation that predicts the existence of complex modes in 
lossless dielectric guides [ 151, [ 161. 

The main aim of this paper is to understand and model 
in a very general sense the mechanism which forms the 
complex modes. Apart from presenting an analysis of the 
complex modes in the reciprocal waveguides, this paper giv :s 
the dispersion characteristics of the propagation constants, )r 
the so-called mode spectrum, of a nonreciprocal unilateral 
finline calculated by the rigorous full-wave SDA (spectr: 1- 
domain approach). Propagation in a nonreciprocal waveguide 
consists of a group of forward traveling waves and a group 3f 
backward traveling waves, of which the propagation constants 
differ in sign and magnitude. This allows us to plot the mode 
spectrum, as shown in Figs. 3-7 and discussed in Section I'd, 
as a function of frequency. The dual vertical axes are centered 
at zero value. The left axis is for the normalized propagation 
constant ( P / k o ) ,  while the right axis is for the normalized 
attenuation constant (cy/ko). Such an arrangement for the plot- 
ting of mode spectrum of the nonreciprocal finline differs from 
all the above-mentioned reports for the reciprocal waveguides 
[2]-[16] and nonreciprocal waveguides [17]-[19]. In these 
reports, the normalized propagation constant is assumed to be 
only either positive or negative in value. Section IV summa- 
rizes three types of wave interactions depicted (in the mode 
spectrum), namely, 1) between a forward (backward) traveling 
wave and a forward (backward) traveling wave, 2 )  between a 
forward wave and a backward wave, and 3) between a pair of 
complex modes and a pair of complex modes. 

These various types of wave interactions between different 
modes can be explained qualitatively by invoking the mode- 
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ccupling theory [20] in Section V. The theory is briefly 
refiewed and extended to explain how different types of 
m ,de interactions are established. Section VI introduces the 
cc ncept of hypothetical modes, which are obtained by applying 
th 2 mode-coupling theory to the mode spectrum previously 
obtained by the full-wave SDA. The hypothetical modes 
ar: assumed to be either linear or elliptical with frequency 
al  .hough they are not necessarily linear or elliptical. The mode 
c( uplings of these hypothetical modes result in propagation 
cc~nstants of which the values are in very close agreement with 
the full-wave data for the various types of mode interactions 
discussed in Sections IV and V. The procedure to determine 
the coupling coefficients between these various mode interac- 
tions and the corresponding hypothetical modes is presented in 
dctail. The important conclusions are outlined in Section VII. 

For the sake of clarity, Section I1 lists the symbols used 
throughout this paper. Section 111 states the problems associ- 
ated with the complex modes. 

11. LIST OF SYMBOLS 

Throughout the paper, the lossless waveguide cross section 
is assumed to be in the Cartesian 2-y plane. The waveguide 
supports modes propagating along the longitudinal z direction. 
We list the following symbols for reference. 

e jwt :  the time-harmonic factor of angular frequency w = 

e-37": the z-dependence factor 

y = ,G' - j a :  y is the complex propagation constant, p and 
a are real numbers 

0: the propagation constant, or the real part of the complex 
propagation constant 

a: the attenuation constant, or the imaginary part of the 
complex propagation constant 

yp: the complex propagation constant of the hypothetical 
mode p 

yq: the complex propagation constant of the hypothetical 
mode q 

the forward traveling wave [20]: p > 0, a = 0 

the backward traveling wave [20]: ,B < 0, a = 0 

the forward wave [21]: ( p )  . (ap/aw) > 0 
the backward wave [21]: ( p )  . (ap/aw) < 0 

the group velocity vg = (ap/aw)-' 

2r.f 

111. STATEMENT OF PROBLEMS ASSOCIATED WITH 
COMPLEX MODES 

The time-harmonic solutions for the complex modes of a 
r xiprocal waveguide are located in the four quadrants of the 
complex y plane [4]. These complex modes (y) which appear 
I 1 pairs can be divided into two types. Omar and Schiinemann, 
f Jr example, chose one pair of the complex modes of the first 
t Jpe for their finline discontinuity analysis [7] 

y = A$ - j a  (p  > 0, a > 0) (pair 1 of the first type).  

(1) 

They also demonstrated that, by choosing pair 1 of the first 
type, the Poynting power of the complex modes carries no 
real (active) power. Since the finline is reciprocal, the second 
remaining choice for y is 

y = &p + j~ (p  > 0, Q > 0) (pair 2 of the first type) 

( 2 )  

By investigating the derived characteristic equation for the 
normalized propagation constant of a reciprocal dielectric - 
loaded circular waveguide, Clarricoats reported that in the 
vicinity of the special points denoted by P, Q, R, S shown 
in Fig. 1, the magnitude and sign of the complex propagation 
constant y (the complex modes) can be assigned as indicated 
[2]. No complex modes exist near points P and Q in case (a) 
and case (b) of Fig. 1. For case (c), the complex modes near 
point R can be grouped into two pairs according to equations 
(1) and (2). While for case (d), the complex modes near point 
S take the following forms: 

y = ,f3 * j a  ( p  > 0, a > 0) (pair 1 of the second type I 

(19 
or 

y = -p&ja ( p  > 0,a > 0) (pair 2 of the second type1 . 
(4) 

The following questions can be posed. 
1) How general is Clarricoats' theory? Can it be applied to 

guided-wave structures other than the special dielectric-loaded 
circular waveguide that he investigated? 

2) Does a general theory exist that can explain and mod4 
what happens in the mode spectrum of Fig. 1 and that of all the 
above-mentioned papers [2]- [ 19]? For example, Clarricoats 
pointed out that, referring to the case (d), where a forward 
wave and a backward wave coexist, there must be a pair 
of complex modes. Case (c), however, generates a pair of 
complex modes not resulting from a forward wave and a 
backward wave. 

3) When will the two propagating modes or the two evanes- 
cent modes not form the complex modes? 

In what follows, we will report a unified theory to resolve 
the questions raised in this section. 

Iv. COMPLEX MODES IN A NONRECIPROCAL FINLINE 

Equations (1)-(4) represent various possible ways of group- 
ing the solutions for the complex modes in the y-plane, at least 
for the special case studies conducted by Clarricoats, Omar 
and Schunemann, and others [2]-[19]. If a nonreciprocal 
waveguide can support complex modes, then, because of the 
clear distinction between a forward traveling wave (p  > 0) 
and a backward traveling wave ( p  < 0) in this type of wake- 
guide, only one pair of complex modes will be generated. The 
nonreciprocity destroys the possibility of choosing the second 
pair of complex modes once the first pair of complex modes is 
obtained. In contrast to the two-pair solutions for the complex 
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FI).. 1. Properties of the complex propagation constants near the special points denoted as P, Q, S for the four types of mode spectrum, case (a)-through-(d), 
re>pectively. Case (a) two degenerate cut-off modes at point P. Case (b) arY/af = 0 at point Q, the bottom of an ellipse shape. Case (c) aa/af = 03 
at point R, where the complex modes are in either +D + JCU or 4=0 - JCU mathematical form. Case (d) ap/af = 00 at point S, where the complex 
mcbdes are in either B f ICY or -/3 IN mathematical form 

mades in a reciprocal waveguide, the one-pair solutions for 
the complex modes in a nonreciprocal waveguide distribute 
themselves at only two of the four quadrants of the complex y 
plane. Thus, the complexity of the mode spectrum containing 
the complex modes is reduced by half. 

To illustrate the complex modes existing in a nonrecipro- 
ci.1 waveguide, the mode spectrum (Ey-odd, Ex-even) of a 
s! mmetric unilateral finline with the material and structural 
pxameters shown in Fig. 2 is plotted in Fig. 3. As reported 
ir [22], the finline dispersion characteristics shown in Fig. 3 
changed little when the applied dc magnetic field Ho varied 
from 500 Oe to 30 Oe. It is believed that Fig. 3 illustrates the 
cl ,"on dispersion characteristics of an electrically shielded 
n mreciprocal waveguide. A ferrite substrate magnetized in 
t l  le x-direction is sandwiched between two homogeneous 
dielectric layers with relative dielectric constants €2  and ~ 4 .  

Paother homogeneous layer of ~1 is to the right of the metal 
fins. Fig. 3 has dual vertical axes: on the left is the normalized 
propagation constant, whereas on the right is the normalized 
attenuation constant. 

Being a nonreciprocal waveguide, the finline has many 
fxward traveling waves which are denoted as F I - F ~  in 
Fig. 3. These forward traveling waves, by definition, have pos- 
I ive real propagation constants (y > 0). In contrast, B I - B ~ ,  
\Ihich denote the backward traveling waves, have negative real 
Fropagation constants (y < 0). These two groups of modes 
cccupy the upper half and lower half of the mode spectrum, 
respectively. Three types of mode interactions which exist in 
the Fig. 3 will be discussed. 

The first type of mode interaction is that the mode spectra, 
represented by Fl-F7 (or B I - B ~ ) ,  neither intersect with each 
other, although some come close to each other, nor form any 
c:omplex modes. For example, frame (a), at the upper side 

Fig. 2. Cross-sectional geometry of a unilateral finline integrated on the 
stratified layers containing a ferrite substrate magnetized in x-direction. Tie 
structural and material parameters are: 11 = 3.556 mm, d = h = 1 min, 
l4  = 1.556 mm, b = 3.556 mm, SI = sp = 1.628 mm, U I  = 0.3 min, 
€1 = €4 = 1 . ~ 2  = € 3  = 12.5,4nMs = 4900G, and H ,  = 5000e. 

of Fig. 3, shows that the modes designated as Fz and &73 

have normalized propagation constants which differ by a very 
small value near 32.5 GHz. Similarly, in frame (b), the two 
backward traveling modes B3 and B d  do not intersect near 
39.2 GHz. 

The second type of implied mode interaction illustrated in 
Fig. 3 is the type shown by the modes designated as F4-E44, 
F5-B5, F6-& [frame (c)], and F7-B7 pairs. The F7-137 
pair, for example, constitutes a pair of complex modes below 
41.3 GHz, where a p / a w  = co. A detailed SDA study of the 
F7-B7 pair indicates that at the point where the group veloc ty 
is zero, Le., (8,0/aw)-' = 0 (or a p / d w  = m). Therefore a 
small backward wave region exists in Fig. 3. This will be 
discussed in more detail in Section V. All the F,-B, pairs, 
i = 4 to 7, have small backward regions. The complex modes 
exist to the left of the intersect points where a,L?,/aw = co and 
i = 4 to 7. These complex modes are found to be of either 
y = p k j a  type [equation (3)] or y = -,0&ja [equation (4)] 
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Fig,. 3. The mode spectrum (Ex-even, Ey-odd) of a symmetric unilateral 
fin line of Fig. 2. The solid lines represent the normalized propagation constant 
(the real part of the complex propagation constant) and correspond to the 
left hand side of vertical axis. The dashed lines represent the normalized 
att:nuation constant (the imaginary part of the complex propagation constant) 
an 1 correspond to the right hand side of vertical axis. 

type. These types of complex modes coincide with the case 
(d) of Fig. 1, where complex modes coexist with the backward 
waves and the complex modes possess the mathematical form 
of either equation (3) or (4). The complex modes found here 
are apparently the result of mode interaction of a forward wave 
aiid a backward wave. 

The third mode interaction is not merely confined to the 
modes possessing real propagation constants, but may occur 
between two complex modes. This additional complication is 
shown in frame (d) of Fig. 3. In order to understand why the 
iriaginary parts do not intersect and real parts do, the real 
arid imaginary parts of the propagation constant need to be 
ir vestigated simultaneously. Similar observations are found in 
().her locations of Fig. 3. 

In summary, when two modes with nearly equal propagation 
constants interact, the result of mode interaction is either 
niodes with purely real propagation constants or modes with 
c )mplex propagation constants (complex modes). Further- 
niore, the various types of complex modes may also interact 
to produce other complex modes. 

In the next section, the mode-coupling theory will be 
r1:viewed. This theory can be used to explain all the above- 
mentioned observations on the mode spectrum of Fig. 3 quali- 
tatively and to model the various types of the mode interactions 
quantitatively . 

v. MODE-COUPLING THEORY AND THE COMPLEX MODES 

.& ,. Review of Mode-Coupling Theory 

When two independent modes y p  and yq propagate along 
5 eparate waveguides and couple through an aperture, the 
I esultant modal solutions after coupling has occurred are 
tlesignated as y1 and 72. Pierce formulated the relationship 

between (y1,~2) and ( y p , r q )  as follows [20]: 

71 = - yp +yq + /- (5 )  2 

yz = k?-% 2 - /- (6;) 

where K is the coupling factor between -yp and yq. 
If rp and y4 represent the modes with codirectional power 

flow, then the upper sign (+) applies in (5) and (6); but if yl, 
and y4 have contradirectional power flow, the lower sign (- j 
applies. Note that group velocity defines the direction of power 
flow of a certain mode. Therefore, the slope of a certain mode 
in Fig. 3 defines the direction of power flow of that particular 
mode. 

Inversely, yp and yq can be expressed in term of 71, 72, 
and K. 

r p  = -7j- y1 +yz + /- 
y l l = 2 -  71 +^12 J(1w. (8) 

(7) 

In (7) and (8), if y1 and y2 have codirectional power flow, 
the upper sign (-) applies, otherwise, the lower sign (+) 
applies, The coupling coefficient K and the sign (+/-) relate 
the modes before and after the coupling. Knowledge of the 
K value and power flow directions enables the derivation of 
the hypothetical modes, yp and y4, from the modes 71 and 32 
(i.e., SDA data). 

The resultant modal solutions yl and 7 2  are the true 
electromagnetic wave solutions satisfying the boundary value 
problem imposed on Fig. 2. These two modes, y1 and ?ar 
can be obtained from the full-wave SDA approach. In fact, 
the mode spectrum of Fig. 3 can be viewed, in a much more 
general sense, as not being limited to two modes. The mode 
yi represents the ith mode, where i = 1,2,  . . , N and N is 
the number of modes shown in Fig. 3. 

The corresponding modes to y1 and y2 before the coupling 
occurs are called the hypothetical modes because they do not 
satisfy the boundary value problem of the specific waveguide 
structure. These hypothetical modes with complex propagation 
constants, designated as y p  and yq, will be shown to be very 
useful for explaining and modeling the three types of mode 
interactions summarized in Section 1V. 

B. Qualitative Description of Mode-Coupling Mechanism 
in the Nonreciprocal Finline 

Frames (a), @), (c), and (d) of Fig. 3 in Section IV illustrate 
three kinds of mode interactions existing in the nonreciprocal 
finline shown in Fig. 2. With the aid of two-dimensional mode- 
coupling theory (N = 2) and the concept of hypothetical 
modes, described in Section V-A, the nature of mode-coupling 
in each case described in Section IV is investigated. Through- 
out the paper, the hypothetical modes yp and rq are assumed 
to be either a linear or an elliptical function of frequency. The 
determination of the hypothetical modes, yp and yq, and their 
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(a 
Fi :. 4. Various types of mode interaction explained by mode-coupling theory. Subscripts 1 and 2 denote the true modes satisfying the boundary conditioris 
imposed on Fig. 2. Subscripts p and q denote the hypothetical modes before the coupling occurs. All horizontal axes are the frequency axes in GHz. TIe  
so id lines and the dotted lines represent the normalized propagation constants. The dashed lines and dashed-dotted lines represent the normalized attenuatic n 
ci3nstants. (a) Mode interaction between two forward traveling waves. Solid lines: true modes; dotted lines: hypothetical modes. (b) Mode interaction betwec n 
t u 0  backward traveling waves. Solid lines: true modes; dotted lines: hypothetical modes. (c) Mode interaction between a forward wave and a backward wav:. 
Dotted lines: hypothetical modes; solid lines: real parts of y1 and 7 2 ;  dashed lines: imaginary parts of y1 and 72. (d) Mode interaction between two pair of 
ct-mplex waves. Solid lines: real parts of hypothetical modes; dashed lines: parts of hypothetical modes; dashed-dotted lines: the corresponding 71 and 7 2  modei. 

c( upling factor K will be described in Section VI for all three 
kinds of mode interactions individually. 

I )  Mode Interaction Between a Forward (Backward) Trave- 
11 ig Wave and a Forward (Backward) Traveling Wave: Mode 
1 ,1  and F2 in frame (a) of Fig. 3 are approximated by two 
h {pothetical modes, yp and yq,  which are two straight lines 
ir the mode spectrum. The arrangement is shown in Fig. 4(a), 
Ahere yp > 0, yq > 0, dyp/dw > 0, dy,/dw > 0. Thus, 
1 , and yq represent two forward traveling waves which have 
cctdirectional power flow. To determine y1 and 7 2 ,  the upper 
sign (+) is applied in (5) and (6). Obviously, y1 and y2 are 
ai ways real, and therefore no complex propagation constants 
c m  be obtained. The resultant coupled-mode solutions for y1 
and 7 2  by applying (5) and (6) to the two assumed hypothetical 
n odes y p  and yq are also shown in Fig. 4(a). 

In frame (b) of Fig. 3, modes B2 and B3 can also be 
approximated by two straight lines yp and yq as shown in 
Etg. 4(b). Now, yp  < 0, yq < 0, ayp/dw < 0, dyq/dw < 0. 
1 hus, y p  and yq represent two backward traveling waves with 
c I )directional power flow, which is opposite to the previous 
c ise shown in Fig. 4(a). Again, the upper sign (+) is applied 
i r  (5) and (6) to determine y1 and 7 2 .  The values for y1 and 
rt 2 must also always be real and, as a consequence, there also 
e cist no complex modes. 

2) Mode Interaction Between a Forward Wave and a Back- 
~ a r d  Wave: Equations (5) and (6) indicate that the complex 
niodes will occur when certain conditions are met. If y p  and 
*) are two propagating modes (i.e., a = 0), then y1 and 7 2  are 
c Implex modes only when the lower (-) sign is applied in the 
s p a r e  root calculation. When y p  and yq are two evanescent 

modes (i.e., ,l? = 0), then y1 and 7 2  will be complex modes 
only when the upper (+) sign is applied to (5) and (6). 

If two hypothetical modes yp  and yq are assumed as shown 
in Fig. 4(c), a forward wave and a backward wave near the 
intersecting point of the two straight lines can be defineti. 
(This will become clear in the next section.) With propcr 
determination of the value of coupling factor K ,  equatioris 
(5) and (6) will yield the solutions for y1 and y2 as shown 
in Fig. 4(c). The two solid lines represent both the fonvaid 
traveling wave and the backward traveling wave. The solid 
line labeled ,& = ,& shows the degenerate real parts of tke 
complex modes and has a starting point at ap/dw = 00. T l e  
dashed lines labeled a1 or a2 are the two imaginary parts 
of the complex propagation constants. These results are vel y 
similar to those reported in Fig. 3 for the same form of mocle 
interaction. 

3) Mode Interaction Between Two Complex Modes: In the 
next section, it will become clear that the complex propagaticln 
constants y1 and 7 2  have their imaginary parts on the lozi 
of an ellipse, if yp  and yq are assumed to be linear wi h 
respect to frequency. To begin, when we’re interested in 
understanding the mode interaction between two compkx 
modes, it is assumed that the complex modes have their 
complex propagation constants like those shown in Fig. 4(c). 
Now, the two hypothetical modes yp and yq are no 1ong:r 
linear functions of frequency. ap and cyq (in dashed lines), the 
imaginary parts of yp  and y q ,  represent two ellipses with long 
and short axes, respectively. Since Bp and &, the real parts of 
y p  and yq,  respectively, are two straight lines intersecting at 
the point P, the product of apP/dw and dpq/dw is negative. 
Thus, the lower sign (-) in (5) and (6) applies in this case. 
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Ccnsequently, near the point P (ap = aq, Pp = Pq), the 
imaginary parts a1 and a2 of the corresponding 71 and 7 2  

sh4)uld be either higher or lower than the values of ap (or 
( t 3 )  at the intersecting point Q, where point Q and point P 
an: at the same frequency. The results for y1 and 7 2  using 
thc dashed-dotted lines for the imaginary parts are plotted for 
comparison with those shown in frame (d) of Fig. 3. Again, 
bnth look very similar. 

By invoking the model-coupling theory and making a proper 
choice for the two hypothetical modes rP and yq, the entire 
mode spectrum shown in Fig. 3 has been explained success- 
fully. Thus, the questions raised in Section I11 have been 
re ;olved, at least qualitatively. 

VI. QUANTITATIVE DESCRIPTION OF MODE-COUPLING 
MECHANISM IN THE MODE SPECTRUM OF FIG. 3 

The material presented in Section V explained the mode- 
c( upling effects of various types of modes. This section shows 
h(lw to determine the hypothetical modes yP and yq, and 
the value of the coupling factor K directly from the full- 
wave data shown in Fig. 3. By doing so, it is hoped that a 
dr,eper insight into the physical nature of the mode spectrum 
czn be gained. Furthermore, if the hypothetical modes T~ 
arid yq can be obtained in a systematic and correct way, 
si bstitution of their values into equations (5) and (6), should 
allow comparison with the full-wave SDA solutions. If yP and 
T ,  are obtained correctly, both coupled-mode solutions and 
fi 11-wave data should be inclose agreement. Since, there are 
IC ainly three distinct types of mode interactions discussed, we 
u ill investigate them separately. 

A Mode-Coupling Between Two Forward 
(Hackward) Traveling Waves 

For the case of hypothetical forward or backward traveling 
nlodes, no complex modes exist as explained in Section V-B- 
1 Turning to Fig. 4(a) or (b), 

Yp = Pp (9) 
Yq = Pq (10) 

( W P l a w ) .  (aPq/aw> > 0 (11) 

u,here Pp (yp) and Pq (yq)  are both real numbers and have 
c3directional power flow. Let 

AP = Pi  - P 2 .  (12) 

Substituting (5) and (6) into (12), we obtain 

After some algebraic manipulations, we have 

Parts (a)-(d) of (14) suggest that AD has a minimum value 
of 2K when Pp = pq. Turning to frame (a) of Fig. 3, an 
examination of the modes F2 and F3 shows that A@ = PI -p:l 

has a minimum value. Using the data shown in frame (a) as 
an example, the minimum of AP occurs at 32.5 GHz, which 
means AP/lco = 2K/lco = 0.0146. The slopes for the two 
straight lines Pp and p, are approximately determined by the 
neighboring points on p1 and P 2 .  One proper choice for pp and 
pq is as indicated in Fig. 5(a), where they are chosen as two 
asymptotic lines. Fig. 5(b) compares the resultant 01 and 
obtained by substituting the values of Pp and pq into equations 
(5)  and (6) to those obtained from the SDA data. Very close 
agreement is obtained. The physical interpretation of Fig. 5(a) 
and (b) is as follows. At the point where the two hypothetical 
propagating modes, pP and ,On, possessing codirectional power 
flow intersect, strong coupling occurs and a mode conversion 
(exchange) takes place. The two modes then settle to become 
the physical 01 and P 2  modes. 

B. Mode Coupling Between a Forward Wave and a 
Backward Wave: Complex Modes Occur 

Assume that a forward traveling wave ,LIP and a backward 
traveling wave Pq can be approximated by two straight lines. 
These ,Bp and ,Oq modes are hypothetical and are defined 
above the frequency, fintsec, the intersecting frequency of the 
two modes as shown in Fig. 6(a). A backward wave region, 
where Pq . (dPq/aw) < 0, can be defined for the hypothetical 
mode Pq. Pp is obviously a forward wave. Substituting the 
values of Pp and pq into (5) and (6), one obtains the coupled- 
mode solutions y1 and 7 2 .  As shown in Fig. 6(a), a region of 
complex modes exists. The resultant coupled-mode solutions 
also exhibit a backward wave region. 

From (5) and (6), the complex modes, due to mode coupling 
of a forward wave and a backward wave, have their imaginary 
parts expressed as 

Let the two straight lines representing PP and 0, be 

P p  = a .  f + b 
Pq = c .  f + d  

where a, b, c, d are real constants, and f is the frequency 
variable in gigahertz. 

Substituting (16) and (17) into (15), we obtain 

which is an equation for an ellipse. The imaginary parts 
(a1 and a2) of the complex modes fall into the loci of an 
ellipse if pP and pq are assumed to be two linear functions of 
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FIJ:. 5. Mode-coupling between two forward traveling waves. The solid lines 
represent the SDA data. The dotted lines represent the hypothetical modes P p  
an1 3,. The dashed-dotted lines represent the coupling modes pi and Pz. 
( a  Determination of the hypothetical uncoupled modes P p  and P, from the 
fullwave SDA mode spectrum. F2 and F3 are two modes obtained by the 
STiA. K / k o  = 0.0073. (b) Comparison of the mode spectrum obtained by 
SC)A and that by mode-coupling using PP and pq obtained in (a). 

fr:quency. The real part of the complex modes is (p, + pq)/2 
drrived directly from ( 5 )  and (6). The ellipse is symmetric 
about the frequency axis as illustrated in Fig. 6(a). When 
d,, = Bq, Icy1 - = 2K. The long axis and short axis are 
h / ( ( a  - c)/2) and K, respectively. The ellipse is centered 
at point [ (d  - b ) / ( a  - c),O]. Once the ellipse is known, the 
qiiantities K ,  ( a  - c),  ( d  - b)  are readily known. We need 
two more equations to determine a, b, c, d. When cy1 or 2 = 0 
ir (15), ,f3, - pq = 2K. In Fig. 6(a) [or (b)], we may draw 
tvro vertical line segments (tangential to and p2 curves) 
p.issing through the point where cy1 or 2 = 0 or, equivalently, 
331 or 2/aw = 00, either upward or downward by a distance 
11.. In this way, points U and D are defined as indicated in 
F,g. 6(a) or (b). The hypothetical modes p p  and fin must pass 
tt rough these points U and D, respectively. Substituting the 
t\<o coordinates of points U and D into equations (16) and 
( 7), respectively, we obtain another two equations. Finally, 
ttle constants a, b, c, d are solved. 

The only one problem remaining is how to obtain the 
e lipse that approximates the region where complex modes 

a/ko 

Frequency (GHz)  

Frequency ( GHz) 

a/ko 

..ai 

35.55 - 
2A3 I 9 4 l  9 5 l  9 6 ’  9 7 I  8 

F r e q u e n c y  (GHz)  

Fig. 6. Mode-coupling between a forward wave and a backward wave. Tlie 
solid and dotted lines correspond with the left hand side vertical axis. The 
dashed lines correspond with the right hand side vertical axis. IC’ = K / k o .  
Synthesis of hypothetical modes P p  and Pn from the complex modes data 
approximated by an ellipse. (b) Determination of the ellipse obtained by the 
data points 1, m and n corresponding to those in frame (c) of Fig. 3. After 
the ellipse is known. Pp and Pq are obtained with a / k o  = 0.077, b / k o  = 
1.34, c / k o  = -0.067, d / k o  = -1.54, K / k o  = 4.0. (c) Comparison of 
the mode spectrum obtained by SDA and that by the model using P p  and 11, 
obtained in (b). the solid lines and dashed lines represent the SDA normalized 
propagation and attenuation constants, respectively. The dashed-dotted lines 
represent the corresponding coupled-mode solutions y1 and yz. 

exist. Note that in the mode spectrum of Fig. 3, the regions 
containing complex modes can never be elliptical because the 
mode couplings between various complex modes occur. To 
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a\ )id such influence by the existence of other complex modes 
nrirby, Fig. 6(b) illustrates the points 1, m, and n chosen 
fei determining the ellipse using the frame (c) of Fig. 3 as 
an example. An ellipse can be uniquely defined by knowing 
three points on its loci and the even symmetry about the 
frtquency axis. Once the ellipse is obtained, such as the one 
shlwn in Fig. 6(b), the hypothetical modes p p  and pq can be 
obtained with their parameters a, b, c, d and coupling factor 
l3-, indicated in the same figure. Note that in parts (a) or (b) 
of Fig. 6, a small backward wave region exists. 

Fig. 6(c) compares the resultant coupled-mode solutions 
oktained by substituting the values of pp  and pq of Fig. 6(b) 
in o ( 5 )  and (6) with the full-wave SDA data near 35.55 GHz. 
Tlie solid lines are for the SDA F6-& traveling wave pair 
ar d the real part of the SDA complex modes. The dashed lines 
ar: for the imaginary part of the SDA complex modes. All the 
d: shed-dotted lines are the corresponding data obtained by the 
m Jde-coupling model. These two sets of data agree favorably. 

C Mode Coupling Between Two Complex Modes: 
C ,mplex Modes Still Exist. 

Using the same procedure described in the previous sec- 
tion, we obtain two hypothetical complex modes y p  and yq 
corresponding to the F7-& and F6-& pairs in Fig. 3, 
respectively. These two hypothetical modes are elliptical in 
st ape as shown in Fig. 7(a). To obtain the resultant coupled- 
mode solutions from y p  and yq, the group velocity of the 
complex modes must be known. Given a pair of complex 
modes, say, y p ,  that propagate with the same phase velocity 
p,, and the same group velocity (dBp/dw)-', and that have 
tt e same magnitude but different signs for the attenuation 
constants, we may consider one of the complex modes car- 
r!.ing on exponentially decaying energy and the other an 
e cponentially rising energy. The net sum of the total energy 
c.irried by this complex mode, yp ,  is zero [23]. In Fig. 7(a), 
? t 9  = pp(7 )  & jap(7)  and yq = &(6) f j aq(6) .  The ellipses 
d:noted by f a p ( 7 )  and &aq(6) intersect at point Q. (Here, 
only one of the four intersecting points is shown.) Two straight 
lines denoted by pp(7 )  and pq(6) intersect at point P. Because 
( 3,L?p/dw).(dpq/dw) < 0, the group velocities of the complex 
niodes y p  and yq are in opposite directions. Therefore, the 
11)wer sign (-) should be applied to (5)  and (6) to the resultant 
cmpled-mode solutions y1 and 7 2 .  

When yp = yq, i.e., at the intersecting points of the two 
ellipses, (5)  and (6) yield 

71 = 7,) + j K  (19) 
7 2  = %(or 3b) - j K  (20) 

AT = 71 - 7 2  = 2 j K .  (21) 

Accordingly, the coupling factor K can be easily obtained 
from the full-wave SDA data by applying (21) to the full- 
iqave data such as that which appears in frame (d) of Fig. 3, 
<v.hich shows the K / k o  = 0.1. Substituting the known value 
of K ,  the complex values of rP and yq of Fig. 7(a), which are 
obtained as described in the Section VI-B, into (5 )  and (6), 
we obtain the coupled-mode solutions of 71 and 7 2 .  Note that 
the solid and dashed lines represent the normalized complex 
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-120 -80 -40 0 
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Fig. 7. Mode-coupling between two complex modes. The solid and dashed 
lines represent the normalized propagation constant and attenuation con- 
stant, respectively. The dashed-dotted lines represent the corresponding cou- 
pled-mode solutions 71 and 7 2 .  (a) Two hypothetical modes yp and - 'q  

obtained directly from Fig. 3 using the procedure described in Section VI-B, 
where the corresponding straight lines for obtaining the two ellipses ale: 
F6B6: a/ko = 0.0770, b / k o  = 1.34, cJko = -0.067, d / k o  = -1.24, 
l iJko  = 4.0; F7B7: a / k o  = 0.0256, bJko = 0.31, c / k o  = 0.0256, 
d / k o  = -0.712, h'lko = 1.57. (b) Comparison of the mode spectrum 
obtained by SDA and mode-coupling (5) and (6) using yp and yp. i.e. two 
ellipses, obtained in (a). K / k o  = 0.1. 

propagation constants of the SDA data, while the dashed- 
dotted lines are for the corresponding coupled mode solutions. 
These two sets of data agree closely to each other. Fig. 7(b) 
illustrates the fact that the interaction of two pairs of complex 
modes may also result in the complex modes. 

VII. CONCLUSION 

In this paper, a study of the formation of complex modes us- 
ing unified model-coupling theory is presented. The nonrecip- 
rocal finline, rather than the reciprocal guided-wave structure, 
was chosen as the vehicle for investigation so as to simplify the 
mode spectrum. The entire mode spectrum of Fig. 3 has been 
examined closely. For example, it has been shown that modal 
interaction between forward (or backward) traveling wab es 
in the same direction will not produce complex modes, hut 
that the interaction between a forward wave and a backward 
wave will if their propagation constants are the same, i.e., 
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tht:ir modal spectral lines intersect. The unified mode coupling 
thr:ory has been used to explain the behavior of the mode 
sp xtrum. 

Beyond the qualitative description of mode-coupling effects 
or the mode spectrum of the nonreciprocal finline under 
hiestigation, this paper provides mathematical details on 
th,: modeling of the three types of mode interactions in the 
nc nreciprocal finline. Good agreement between the approxi- 
m ited coupled-mode solutions and the full-wave SDA data 
for  propagation constants is obtained for all three types of 
m )de interaction. Although the physical interpretation of the 
h! pothetical modes is not given in the paper, the authors intend 
to report on this subject in a separate paper. 

The work performed in this paper can be extended to 
t h e  study of mode-coupling effects on the reciprocal guided- 
wive structures without much difficulty. For example, two 
a #directional evanescent modes will result in a oair of comolex 
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