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System attribute selection is an integral part of adaptive sched-
uling systems. Owing to the existence of irrelevant and redun-
dant attributes in manufacturing systems, by selecting the
important attributes, better performance or accuracy in predic-
tion can be expected in scheduling knowledge bases. In this
study, we first propose an attribute selection algorithm based
on the weights of neural networks to measure the importance of
system attributes in a neural network-based adaptive scheduling
(NNAS) system. Next, the NNAS system is combined with the
attribute selection algorithm to build scheduling knowledge
bases. This hybrid approach is called an attribute selection
neural network-based adaptive scheduling (ASNNAS) system.
The experimental results show that the proposed ASNNAS
system works very well, when measured by a variety of per-
formance criteria, as opposed to the traditional NNAS system
and a single dispatching strategy. Furthermore, the scheduling
knowledge bases in the ASNNAS system can provide a stronger
generalisation ability compared with NNAS systems under vari-
ous performance criteria.
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1. Introduction

A flexible manufacturing system (FMS) is a highly automated
and computer controlled system that produces parts of moderate
volume and variability. FMS’s have already demonstrated a
number of benefits in terms of time reduction in production
cycle, high product quality, high equipment utilisation, and
greater flexibility in production scheduling, etc. An important
property of an FMS is that it can handle higher uncertainty
in the manufacturing processes such as machine breakdown,
random change of product mix, flexible routeing, and different
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customer demand criteria, etc. Therefore, the profitability of
using a capital-intensive FMS depends on the ability to control
it efficiently. In order to make the task of controlling an FMS
more effective, the system is usually divided into a task-based
hierarchy. One of the standard hierarchies that has evolved is
the factory real-time production control hierarchy in a dynamic
manufacturing environment proposed by the National Institute
of Standards and Technology (NIST) [1]. An automated manu-
facturing research facility (AMRF) has been developed to
demonstrate these concepts. The key to successful implemen-
tation of an AMRF model is its hierarchical planning and
control structure, its transparency, and the partition of the
management, planning, and control functions.

Many workers [2–5] believed that the development of an
efficient scheduling mechanism is the core of FMS operational
control functions. Thus, it becomes necessary to use the system
resources in the most effective manner when building a sophis-
ticated scheduling mechanism.

In dynamic uncertain manufacturing environments, schedul-
ing decisions are usually implemented through dispatching rules
that assign priority indices to the various jobs waiting at a
machine; and the job with the highest priority currently avail-
able is performed next. Many workers [6–9] have studied
dispatching rules in a variety of configurations since the 1960s;
they have come to the conclusion that no single dispatching
rule has been shown to produce better results consistently than
other rules under a variety of shop configuration conditions
and operating criteria.

Baker [7] suggested that it would be possible to improve
system performance by implementing a scheduling policy rather
than a single dispatching rule. Since the values of these
attributes change continually in a dynamic system, it appears
natural to use an approach that employs different scheduling
heuristics adaptively at various time points. Based on this
viewpoint, in order to resolve scheduling problems in real-time
in an FMS environment, the scheduling function applies an
appropriate dispatching rule each time that a decision problem
is encountered. Instead of using a single dispatching rule for
an extended planning horizon, the scheduling function changes
dispatching rules on the basis of the current machine status
over a series of short-term decision-making periods. This tech-
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nique is called adaptive scheduling because it should be poss-
ible to discover the current status of the manufacturing system,
and it should then be possible to determine the most appropriate
dispatching rule to be used for the next scheduling period.
The following sections will examine the work on adaptive
scheduling system.

There are three approaches to solving the problems of an
adaptive scheduling system: the multi-pass simulation approach;
the decision-tree learning approach; and the neural network
approach. For the multi-pass simulation approach, Wu and
Wysk [10] developed a multi-pass simulator methodology for
the on-line control and scheduling of an FMS. A multi-pass
simulator control mechanism evaluates the candidate dis-
patching rules and selects the best strategy based on information
such as the current system status, scheduling objective, and
management goals for each short time period. In the long run,
the control mechanism combines various dispatching rules in
response to the dynamic behaviour of the system.

In the decision-tree learning approach, Shaw et al [11], Park
et al. [5], and Arzi and Iaroslavitz [12] employed inductive
inference algorithms to derive heuristics for selecting the appro-
priate dispatching rules in an FMS. This approach uses a set
of training examples, each of which consists of a vector of
system attribute values and corresponding dispatching rules
that are generated by simulation to construct the scheduling
knowledge in the form of a decision tree. By decision-tree
learning, the suggested procedure provides the scheduler with
the capability of selecting dispatching rules adaptively in a
dynamic changing manufacturing environment.

Neural networks as learning tools have demonstrated their
ability to capture the general relationship between variables that
are difficult or impossible to relate to each other analytically by
learning, recalling, and generalising from training patterns or
data. In the neural network approach applied to adaptive sched-
uling [2,13,14], a neural network constructed for a set of
training samples (such as decision-tree learning training
samples) can suggest a preference indicator for all the dis-
patching rules for a given system status. A neural network,
used as the rule selector, suggests one rule based on the current
system status. In other words, the neural network plays the
role of a dispatching rule decision maker that produces a rule
suitable for the given system status.

Among the three approach discussed above, the multi-pass
simulation approach is not well suited to on-line scheduling and
control owing to its requirement for extensive effort in compu-
tation to select the best dispatching rule. Therefore, machine
learning approaches such as decision trees or neural networks
become the major methodology employed in recent work.

No matter which one of the machine learning approaches is
used to construct scheduling knowledge bases, the way that
the training examples are described will affect the performance
of the scheduling knowledge bases. A set of training examples
is provided as input for learning the concept representing
each class. A good training example must contain adequate
information in a suitable form for the problem domain. If
training examples do not carry the necessary information, or
appropriate display information, they will have a negative effect
on building the knowledge bases. In scheduling knowledge
bases, a given training example consists of a vector of system

attributes and the corresponding best dispatching rule for spe-
cific performance criteria. There are a large number of system
attributes in a manufacturing system, so the system attributes
which really reflect the current manufacturing system’s ability
to meet performance criteria should be carefully determined.
If we omit one important system attribute, it will have a strong
effect on the learning performance, and may degrade the
scheduling knowledge mapping ability.

Siedlecki and Sklansky [15] gave an overview of combina-
torial feature selection methods and described the limitations
of methods such as artificial intelligence (AI) methods for
graph searching techniques or branch and bound search algor-
ithms, and indicated their infeasibility for large-scale problems
(they considered a 20-element selection problem to be in
the large-scale domain). To handle large-scale problems they
described the potential benefits of Monte Carlo approaches
such as simulated annealing and genetic algorithms (GA). A
direct approach to using GAs for attribute selection was intro-
duced by Siedlecki and Sklansky [16]. In their work, a GA is
used to find an optimal binary vector. Each resulting subset
of features is evaluated according to its classification accuracy
on a set of testing data using a nearest neighbour classifier.
Nevertheless, their proposed methods are not suitable for a
neural network-based classifier owing to the neural network’s
architecture and because its learning parameters are determined
empirically and cannot be resolved beforehand.

In the adaptive scheduling problem domain, Chen and Yih
[17] proposed a neural network-based approach to identify the
essential attributes for a knowledge-based scheduling system.
In their approach, a penalty function was proposed to measure
how much the performance of the network degrades from the
upper bound of the performance when the information of an
attribute is omitted. The major conclusion of their experiment
is that scheduling knowledge bases using a set of selected
attributes are superior for choosing desired dispatching rules
under unknown production conditions, compared with the
knowledge bases built by other sets of attributes. A weakness
of their approach is that the attribute reduction process requires
extensive computational effort and each dispatching rule has
an equal weight in the significant score function when being
chosen for the next control period. Chen and Yih [18] proposed
a FSSNCA (feature subset selection based on nonlinear corre-
lation analysis) procedure not only to select essential attributes,
but also to generate important attributes to facilitate the devel-
opment of knowledge bases and enhance the generalisation
ability of the resulting knowledge bases. However, this
FSSNCA procedure is not suitable for neural network-based
scheduling systems.

The objective of this study is to develop a neural network-
based adaptive scheduling system through selecting significant
system attributes. This is called an attribute selection neural
network adaptive scheduling (ASNNAS) system. The proposed
approach possesses an advantage in terms of computation
effort involved and outperforms the traditional neural network
adaptive scheduling (NNAS) system under various production
performance criteria. In addition, it can more accurately predict
dispatching strategy for the next scheduling control period.

This paper is organised as follows. In Section 2, we give
some background information about neural networks and dis-
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cuss the literature related to input neuron selection in neural
networks. In Section 3, we describe the framework of the
proposed ASNNAS system. In Section 4, we describe the
model considered, and define the set of training examples in
this study. In Section 5, we implement an ASNNAS system
for an FMS case problem and some simulation results are
discussed. Finally, in the last section, we summarise some
conclusions and future research issues.

2. Background Information

2.1 Artificial Neural Network

Artificial neural networks (ANNs) are simplified models of the
central nervous system. They are networks of highly intercon-
nected neural computing elements that have the ability to
respond to input stimuli and to learn to adapt to the environ-
ment. In ANNs, the use of distributed, parallel computations
is the best way to overcome the combinatorial explosion.
ANNs are good at tasks such as pattern matching and classi-
fication, function approximation, optimisation, and data clus-
tering.

2.1.1 Back Propagation Learning Algorithm

In this study, a back propagation (BP) network as shown in
Fig. 1 is chosen to develop the proposed model. BP networks
have been used successfully in many on-line adaptive schedul-
ing tasks described in the literature as well as in many other
applications [19]. Although the training of a BP network-based
systems tends to be relatively slow, the recall process is fast.
This is acceptable, as the primary interest of this study is to
propose a neural network adaptive scheduling system that can
be applied in on-line mode, but will be trained off-line. In
addition, most attribute selection methods are provided by BP
networks in the literature, so we believe that a BP network
suits this study.

A BP network is composed of several layers of neurons: an
input layer, one or several hidden layers, and an output layer.
Each layer of neurons receives its input from the previous
layer or from the network input. The output of each neuron
feeds the next layer or becomes the output of the network.
The above statement can be represented by the following
mathematical equations:

Fig. 1. The BP network structure.

netpj �
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1 � exp(netpi)

� 1 � (2)

where wij is the weight from neuron i to neuron j; bj is a bias
associated with neuron j; apj is the activation value of neuron
j with a sigmoid function for pattern p.

The application of a BP network requires a learning pro-
cedure, which gradually adjusts the neural weights until the
network correctly maps all the training inputs onto the corre-
sponding training outputs. In order to decrease the global error,
this can be done using the gradient-descent rule as follows:

�wij � �
�E
�wij

(3)

where � is learning rate, and E is the global error function.
From Eq. (3), the change in weight is proportional to the

magnitude of the negative gradient of E. The global error
function is the objective of the minimising procedure and is
defined as follows:

E �
1
2p �

p k�
�

output
layer

(tpk � opk)2 (4)

where tpk is the target of the kth output neuron when the pth
pattern is presented; opk is the actual output of the kth output
neuron when its pth pattern is presented.

One of the problems of a gradient-descent rule is setting an
appropriate learning rate. The gradient-descent can be very
slow if the learning rate � is small and can oscillate widely
if � is too large. This problem results essentially from error-
surface valleys with steep sides but shallow slopes along the
valley floors. One efficient and commonly used method that
allows a greater learning rate without causing divergent oscil-
lations is the addition of a momentum term to the normal
gradient-descent method. The idea is to give each weight some
momentum so that it will tend to change in the direction of
the average downhill force that it feels. This scheme is
implemented by giving a contribution from the previous time
step to each weight change:

�w(t) � ���E(t) � ��w(t � 1) (5)

where � 	 [0, 1] is a momentum parameter and a value of
0.9 is often used.

2.1.2 Network Architecture

At present, there is no established theoretical method to deter-
mine the optimal configuration of a BP network. Most of
the design parameters are application-dependent and must be
determined empirically. Patterson [20] indicated that a single
hidden layer would be sufficient for most applications. A
second hidden layer will improve the performance when the
mapping function is particularly complex or irregular. The need
for more than two hidden layers is highly unlikely. In this
study, the proposed BP network consists of three layers: one
input layer, one hidden layer, and one output layer. In the
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BP network-based adaptive scheduling model, the input layer
contains some user-determined neurons that represent system
state attributes, one neuron for each state attribute. The neurons
of the output layer are determined by the dispatching rules
considered as shown in Fig. 1.

Once the number of input and output neurons is established,
the number of hidden units should be determined next. Widrow
et al. [21] indicated that the optimal number of hidden neurons
could be determined by trial and error. The best way is to
start with an estimation of the minimum number and refine
the network by adding and pruning neurons. When deciding
on the appropriate number of neurons to start with for a given
application, we can use the rule-of-thumb that the number of
neurons h in the first hidden layer should be about

h �
P

10(m � n)
(6)

where P is the number of training examples and n and m are
the number of inputs and outputs, respectively.

2.1.3 Data Pre-processing

Before the data are presented to the networks, all of the values
of input neurons are usually normalised to the range of [�3, 3],
and the values of output neurons are normalised to the range
of [0, 1]. The reasons are as follows. First, in a BP network,
if the value of the input pattern is greater than 3, the result
of the sigmoid function will be close to 1; and if the value
of the input layer is less than �3, the result of the sigmoid
function will be close to 0. Thus, too many values of the input
pattern which are greater than 3 or less than �3 will impede
the change in the weights of the BP network. Secondly, for
the BP network, the value of the target pattern in the sigmoid
function should be set between 0 and 1. The values of training
examples in the pre-processing equations used in this study
are defined as follows:

S �
High � Low
Max � Min

(7)

O �
Max 
 Low � Min 
 High

Max � Min
(8)

Xadj � S Xin � O (9)

where Xin is the input value of training examples; Xadj is the
adjusted value after normalisation of the training examples; S
and O are scale and offset values, respectively. Max and Min
are the actual maximum and minimum values of each input
or output node in all training examples, respectively. High and
Low are the desired maximum and minimum values for input
or output patterns in all training examples, respectively.

2.1.4 Network Learning

Once the basic network architecture has been established, the
details of the training process and training regime can be
determined. The initial weights of the BP network are randomly
set between �0.5 and �0.5. For training, the standard back-
propagation learning algorithm can be used. In this case, the
best performance can be achieved by varying the learning and
momentum coefficients during the training process. Based on

experimental experience, the value of � can be set low 0.20–
0.25) at the beginning, then by gradually increasing the value
of �, we can find a suitable learning rate. On the other hand,
the value of � can be set high (0.90–0.95) at the beginning,
then by gradually increasing the value of �, we can find an
appropriate momentum coefficient.

The training set should be divided into two groups: a set
for training the network, and a set for testing the performance
of the trained network. The training and testing sets should be
of approximately equal size if a sufficient number of samples
are available. Otherwise, the training set should be given
priority in order to ensure a good generalisation of training
examples, the value of the root mean square (RMS) error
defined in Eq. (10) for all patterns can be used as an index
for the performance of the trained network. If the RMS error
reaches a stable condition or is less than some criterion, the
network stops training and then uses the testing data set to
verify the trained networks. The network with the lowest RMS
error can be selected as the final neural network.

RMS error � �E � �� 1
2P �

p k�
�

output
layer

(tpk � opk)2� (10)

2.2 Attribute Selection Algorithm Based on
Weights of Neural Networks

The interconnections of all the neurons provide essential infor-
mation on the BP network architecture. The weight wij rep-
resents the strength of the synapse (called the connection or
link) connecting neuron i (source) to neuron j (destination).
Positive weights have an excitatory influence, whereas negative
values of weight have an inhibitory influence. Zero value in
weights means no connection between the two neurons. In a
BP network, the output of the network depends on both the
weights of the input to the hidden layer and the weights of
the hidden layer to the output; therefore, it is tempting to try
to combine these two sets of weights in a measure of the
importance of input neurons.

Based on the above viewpoint, several workers [22,23]
proposed the following measure for the proportional contri-
bution of an input to a particular output:

Qik � �
j � �wij�

�
i

�wij�



�wjk�

�
j

�wjk� � (11)

where i is the input layer neuron index; j is the hidden layer
neuron index; k is the output layer neuron index; wij is the
weight from the input layer of neuron i to the hidden layer of
neuron j; wjk is the weight from the hidden layer of neuron j
to the output layer of neuron k.

In order to capture scheduling knowledge, we must decide
on a mapping function between system attributes and dis-
patching rules under different performance criteria for the
neural networks in this study. The measure for input neurons
introduced here is an extension of Eq. (11). We can define
attribute selection score of input neuron i by the equation
below:
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ASi �

�
k

Qik

k
(12)

where k is the output layer neuron index and also represents
the dispatching rule used in this study.

In Eq. (12), a higher score means that the attribute for this
input neuron is more important. A major problem is how many
attributes should be used in a BP network model for training.
The relevant work offers no definite answer. In this study, we
set a threshold value that is equal to a reciprocal value of the
studied attributes. If the attribute selection score is below this
threshold value, the corresponding input neuron can be deleted
from the BP model. Only when using important attributes as
the inputs for neural networks, can a higher system performance
or generalisation ability in scheduling knowledge bases be
expected.

3. The Architecture of the ASNNAS
System

The ASNNAS system shown in Fig. 2 has been designed to
identify important attributes of the system status and then build
scheduling knowledge bases for an FMS system. The concept
of constructing this system is based on a neural network
approach that learns relations from a set of training examples.
The proposed ASNNAS system includes three stages: training
example generation, attribute selection procedure, and on-line
adaptive scheduling knowledge generation.

Fig. 2. The architecture of the ASNNAS system.

The first stage is to collect a set of training examples. The
input data of this stage include the FMS system specification,
production data specifications, the training example specifi-
cation (to be described in Section 4), the training example
collection mechanism, and the scheduling control period to
build a simulation model for off-line learning training
examples. In this stage, the training example collection mech-
anism must provide a comprehensive initial knowledge base,
which represents a wide range of possible system states. In
order to reach this goal, we use the multi-pass simulation
approach [10] as a mechanism for the collection of training
samples.

The length of a scheduling control period may have an
effect on the system performance [2,10]. If the scheduling
control period is too short, no statistics can be collected for a
given reasonable performance measure. On the other hand, if
the scheduling control period is too long, the adaptive schedul-
ing mechanism will not be sensitive enough to switch between
different dispatching rules at correct time. Therefore, it would
be better to determine the scheduling control period based on
performance criteria in a dynamic manner.

The second stage is the attribute selection stage. In this
stage, the set of training examples is put into the neural
network for off-line learning. The task of the training phase
is to determine the weights of neural networks so that the
input/output (system attributes/dispatching rules) mapping func-
tions can be captured by the neural network. When the values
of network weights are generated, the attribute selection algor-
ithm can then be employed to identify important system attri-
butes. This stage results in a set of training examples with
important attributes.

In the third stage, the neural network retrains the whole set
of training examples with important attributes obtained from
the second stage in order to generate scheduling knowledge
bases. When neural network off-line learning finishes, the FMS
system can receive the scheduling control period signal from
the on-line adaptive scheduling control mechanism and then
enter the current system status into the neural network for on-
line scheduling control. The neural network-based adaptive
scheduling control mechanism compares the forecast perform-
ance measures of various output nodes (dispatching rules) and
selects the best dispatching rule as the execution function for
the next control period. In other words, the neural network in
this stage plays the role of a decision maker that produces
part dispatching strategies suitable for the current system status.
Using this architecture, the ASNNAS system can easily identify
important attributes for building sound adaptive scheduling
knowledge bases, and the performance of the FMS system will
be significantly improved in the long run.

4. FMS Problem Description

4.1 Model Characteristics

Figure 3 shows an FMS model layout used in this study,
which is a modification of the model used by Montazeri and
Van Wassenhove [8]. The FMS system consists of three
machine families (F1, F2, and F3), three load/unload stations,
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Fig. 3. The layout of the FMS model in this study.

three AGVs, an input buffer and a central WIP buffer with
limited capacity, and a computer-controlled local area network.
The first two machine families have two machines, and the
third family has one machine. There are 11 different types of
part to be produced in this model. In order to achieve different
conditions in terms of machine load and shifting bottleneck,
we design five types of product mix ratios (as shown in
Table 1), which will be changed continuously over a constant
time period.

Several related operating assumptions are listed below.

1. It is assumed that the raw materials for each type of part
are readily available.

2. Each job order arrives randomly at the FMS and consists
of only one part with an individual due date.

3. A part with a pallet travels to each machine or load/unload
station in order to achieve operation flexibility, and the
part type match for one specific pallet problem is not con-
sidered.

4. Each machine can execute only one job order at a time.
5. Each machine is subject to random failures.

Table 1. Part mix ratio used in this study.

Part mix ratio (%)

Part ID Type 1 Type 2 Type 3 Type 4 Type 5

1 11.00 14.00 6.00 9.00 14.00
2 11.00 14.00 6.00 9.00 14.00
3 11.00 15.00 6.00 9.00 14.00
4 12.00 10.00 15.00 8.00 15.00
5 6.00 12.00 15.00 13.00 7.00
6 8.00 8.00 9.00 12.00 5.00
7 8.00 5.00 8.00 3.00 5.00
8 7.00 3.00 8.00 9.00 4.00
9 7.00 3.00 7.00 8.00 4.00

10 2.50 1.00 4.00 1.00 6.00
11 16.50 15.00 16.00 19.00 12.00

6. Processing times are assumed to be predetermined.
7. An idle machine in a family has a higher priority than

other machines to process a part. If there is no idle
machine in the family, then the part goes to the machine
of the lowest utilisation.

8. When the part finishes each step of the process, it must
return to one of available load/unload stations for reorien-
tation. Otherwise, it will go to central WIP buffer to wait
for the next operation (part reorientation in load/unload
stations).

9. An AGV can carry only one piece of a part at a time and
move in the counterclockwise direction only.

10. All material movements not using the AGV system are
assumed to be negligible.

Based on the assumptions discussed above, the part type,
routeing, and process time are given in Table 2.

4.2 Training Examples Presentation

A set of training examples is provided as system information
for learning the concepts representing each class. A given
training example consists of a vector of attribute values and
the corresponding class. A concept learned can be described
by a rule determined by a machine learning approach such as
inductive learning or by using a neural network. If a new set
of input attributes satisfies the conditions of this rule, then it
belongs to the corresponding class. Baker [7] indicated that
the relative effectiveness of a scheduling rule depends on the
state of the system, given by performance criteria. Hence, in
order to build the scheduling knowledge bases, training
examples must have enough information to reveal this property.

In adaptive scheduling knowledge bases, a set of training
examples can be represented by the triplet 	P, S, D
. P denotes
the user-defined management performance criteria; S is the set
of system status; D represents the best dispatching rule under
this performance criteria and system status.

Three kinds of performance criterion are usually studied in
adaptive scheduling research [2,5,11,12,14]: throughput based;
flow-time based; and due-date based. In order to compare the
efficiency of the ASNNAS system with that of other dis-
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Table 2. Part routeing and process times.

ID Average time Part routeing Processing
per operation (min) times (min)

1 9.14 L F2 L F1 3 11 10 20
L F2 L 3 14 3

2 9.00 L F2 L F1 3 10 10 24
L F2 L 3 10 3

3 12.14 L F2 L F1 3 15 3 30
L F2 L 10 21 3

4 16.71 L F2 L F1 3 12 3 53
L F2 L 10 33 3

5 13.67 L F2 L F1 8 16 5 25
L F1 L F2 5 22 10 24
L 8

6 19.45 L F2 L F1 5 25 15 24
L F1 L F1 5 22 10 38
L F2 L 3 57 10

7 18.45 L F2 L F1 5 28 15 27
L F1 L F1 5 25 10 40
L F2 L 3 35 10

8 20.00 L F2 L F1 5 36 15 30
L F1 L F1 5 32 10 49
L F2 L 3 25 10

9 24.73 L F2 L F1 5 45 15 42
L F1 L F1 5 34 10 80
L F2 L 3 23 10

10 38.82 L F2 L F1 5 52 10 61
L F1 L F1 5 61 30 112
L F2 L 3 38 50

11 36.11 L F3 L F3 12 95 12 45
L F2 L F2 3 36 50 51
L 21

patching rules with respect to different performance criteria,
the four performance criteria used in this study are shown in
Table 3.

In the FMS environment, jobs arrive randomly and system
attributes change over time. Because of the exponentially grow-
ing complexity of the underlying optimisation problem, sched-
uling decisions in such systems are usually specified in terms
of scheduling rules. Whenever a machine becomes idle, which
job should be processed next on the machine must be determ-
ined. This selection is made by assigning a priority index to
various jobs competing for the given operation, the job with

Table 3. Performance criteria used in this study.

Performance Description Mathematical definition
criteria

TP Throughput �SF�

MF Mean flow time �
i�SF

Fi

�SF�
MT Mean tardiness

T �

�
i�SF

Ti

�SF�
NT Number of the tardy �

Ti�0

1
parts

the highest priority is selected. Dispatching rules differ in how
they assign these priority indices. The need for using adaptive
dispatching rules arises from the fact that no single dispatching
rule has been proved to be optimal for a job shop or an FMS
environment. That is, no dispatching rule has been shown to
produce consistently lower total costs than all other rules under
a variety of shop configurations and operating conditions. For
example, in the case of minimising tardiness, the shortest
processing time (SPT) heuristic is found to be effective for
high machine use and tight due dates, whereas the earliest due
date (EDD) is effective when due dates are loose. The modified
operation due date (MOD) delivers the best performance in
the intermediate range and with a balanced workload. However,
when significant imbalance in machine workload exists, the
modified job due date (MDD) is suggested for implementation.
Based on the statements discussed above, it is not necessary
to spend excessive effort in studying the best dispatching
heuristics in different environments. We select nine dispatching
rules that have been found to be effective for the objective in
terms of four performance criteria in this study. Table 4 gives
these nine heuristic dispatching rules.

The major objective of this study is to identify important
system attributes under different performance criteria, so, we
try to examine exhaustively all possible system attributes.
Thirty candidate attributes were examined and are given in
Table 5. The selected criteria for system attributes are based
on previous work [2,12,14,17,18], which used machine learning
methodology to develop scheduling knowledge bases.
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Table 4. FMS system attribute used in this study.

System attribute Description Mathematical definition

NJ Number of the jobs in the system �SJ�

MeUM The mean utilisation of machines �
k

Wk

K

SdUM Standard deviation in machine
���

k

[Wk � MeUM]2

K � 1 �utilisation

MeUL Mean utilisation of load/unload stations �
l

Wl

L

MeUB Mean utilisation of pallet buffers �
p

Wp

P

MeUA Mean utilisation of AGVs �
a

Ba

A

MiOT Minimum imminent operation time of candidate jobs Min
ieoSJ

{Pij}
within the system

MaOT Maximum imminent operation time of candidate jobs Max
i�SJ

{Pij}within the system

MeOT Mean imminent operation time of candidate jobs
within the system

�
i�SJ

Pij

�SJ�
SdOT Standard deviation in imminent operation time of

candidate jobs within the system �� �
i�SJ

[Pij � MeOT]2

�SJ� � 1 �
MiPT Minimum total processing time of candidate jobs Min

i�SJ � �
j

Pij �within the system

MaPT Maximum total processing time of candidate jobs Max
i�SJ� �

j

Pij �within the system

MePT Mean total processing time of candidate jobs within
the system

�
i�SJ

�
j

Pij

�SJ�
SdPT Standard deviation in total processing time of

candidate jobs within the system �� �
i�SJ

[(�
j

Pij) � MePT]2

�SJ� � 1 �
MiRT Minimum remaining processing time of candidate Min

i�SJ� �
j�SRi

Pij �jobs within the system

MaRT Maximum remaining processing time of candidate Max
i�SJ� �

j�SRi

Pij �jobs within the system

MeRT Mean remaining processing time of candidate jobs
within the system

�
i�SJ

�
j�SRi

Pij

�SJ�
SdRT Standard deviation in remaining processing time of

candidate jobs within the system �� �
i�SJ

[( �
j�SRi

pij) � MeRT]2

�SJ� � 1 �
MiST Minimum slack time of candidate jobs within the Min

i�SJ
{SLi}system

Continued
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Table 4. Continued.

MeST Mean slack time of candidate jobs within the system �
i�SJ

{SLi}

�SJ�
SdST Standard deviation in slack time of candidate jobs

�� �
i�SJ

[(SLi) � MeST]2

�SJ� � 1 �within the system

MaTA Maximum tardiness of candidate jobs within the system Max
i�SJ

{Ti}

MeTA Mean tardiness of candidate jobs within the system �
i�SJ

{Ti}

�SJ�
SdTA Standard deviation in tardiness of candidate jobs within

�( �
i�SJ

[(Ti) � MeTA]2

�SJ� � 1
)the system

MaWL Maximum workload in front of any machine/station Max
k�l � �

i�SJ

�
j�SRi

Pk
ij � �

i�SJ

�
j�SRi

Pl
ij �within the system

ToWL Total workload in front of any machine/station within �
i�SJ

�
j�SRi

Pijthe system

MeSO Mean sojourn time of candidate jobs within the system �
i�SJ

t � ARi

�SJ�
SdSO Standard deviation in sojourn time of candidate jobs

�� �
i�SJ

[(t � ARi) � MeSO]2

�SJ � 1� �within the system

MeTD Mean time until due date of candidate jobs within �
i�SJ

Di � t
�SJ�the system

SdTD Standard deviation in time until due date of candidate
�� �

i�SJ

[(Di � t) � MeTD]2

�SJ � 1� �jobs within the system

Table 5. Heuristic dispatching rule used in this study.

Dispatching rule Description Mathematical definition

FIFO Select a job according to first in first out Min
i�SJ

{ARi}

SPT Select a job with the shortest processing time
Min
i�SJ

� �
j

Pij �
SIO Select a job with the shortest imminent operation Min

i�SJ
{Pij}

time

SRPT Select a job with the shortest remaining processing
Min
i�SJ

� �
j�SRi

Pij �time

CR Select a part with the minimum ratio between time
Min
i�SJ

� Di � t

�
j�SRi

Pij

�until due date and its remaining processing time

DS Select a part with minimum slack time
Min
i�SJ

� Di � t � �
j�SRi

Pij �
EDD Select a part with the earliest due date Min

i�SJ
{Di}

MDD Select a part with the minimum modified due date
Min
i�SJ

� Max(Di,t � �
j�SRi

Pij) �
MOD Select a part with the minimum modified operation

Min
i�SJ

� Max(Di � �
j�SRi

Pij, t � �
j�SRi

Pij) �due date
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The notation used in defining training examples is given at
the end of the paper.

5. Implementation of ASNNAS System

5.1 Simulation Model Building and Training
Example Generation

To verify the proposed methodology, a discrete event simul-
ation model is used to generate training examples and compare
the ASNNAS system with the NNAS system or other individual
dispatching rules with respect to various performance criteria.
The simulation model is built and executed using the SIMPLE
�� object-oriented simulation software [24] and implemented
on a Pentium III PC with Windows 2000 system.

Several parameters were determined by a preliminary simul-
ation run. The time between job arrivals is exponentially
distributed with a mean of 31 min, and the due date of each
job is randomly assigned from 6 to 10 times the total processing
time with a uniform distribution. The maximum number of
pallets (jobs) that are allowed in the FMS system is 50. The
proportions of part types given in Table 1 vary continuously
every 20 000 min in this study.

The training examples are generated by executing a simul-
ation run for every scheduling rule having the same initial
system attribute state and arriving job stream, according to
Arzi and Iaroslavitz [12]. In order to realise this concept, the
technique of multi-pass simulation is used to collect the training
examples that contain the system attribute state variable
recorded at decision points and the performance measure
recorded for each dispatching rule at the end of the schedul-
ing point.

To generate training examples, we used 40 different random
seeds and chose from the simulation clock 1000–5000 min
(1000 min for one unit) to generate 200 different job arriving
patterns. A warm-up period for each run is 10 000 min and
followed by 10 multi-pass simulation scheduling periods, each
of which ranges from 1000 to 5000 min (after the warm-up
period) depending on a trial and error process for each perform-
ance criteria. There are 2000 training examples collected in
total which are then arbitrarily divided into a training set and
test set. Each set contains 1000 training examples.

5.2 BP Network Off-line Learning and Important
Attribute Selection

In this phase, neural networks are used to capture the mapping
function between the system state attributes and the dispatching
rules under various performance criteria. The BP network
model used in this study is built according to the guidelines
in Section 2.1 and implemented in NeuralWorks Professional II
Plus (NeuralWare 2000) software [25]. Some of the important
experimental parameters in the BP network model used in this
study are described as follows:

The initial network connection weights: [�0.5, �0.5]

Learning rate: 0.2, 0.3, and 0.4

Momentum: 0.9

Initial bias: 0.5

Learning rule: generalised delta-rule

Transfer function: sigmoid

Scaled input neuron network range: [�3, �3]

Scaled output neuron network range: [0, �1]

Hidden layer neuron range: [3, 20]

Maximum iterations: 100 000

Based on the above-mentioned parameters, a total of 54
training processes are implemented for each performance cri-
terion. Next, the training examples are put into the BP network
models for off-line learning. Table 6 shows the topology and
learning parameters of BP network models after the training
process is chosen for use in attribute selection.

When the values of network weights are generated, we use
Eqs (11) and (12) to calculate attribute selection scores to
measure important system attributes. The scores of system
attributes for each performance criterion are presented in Table
7 and the results of the selected attributes are shown in Table 8.

5.3 Scheduling Knowledge Bases Building and
On-line Simulation Verification

To verify whether the selected attributes for FMS system are
effective in building scheduling knowledge bases, all of the
training examples generated from stage 1 with their important
attributes will be retrained to build the new scheduling control
mechanism. The results will be compared with individual dis-
patching rules and original scheduling knowledge bases from
stage 2 for each performance criteria under various system
scenarios. The topology and learning rate of each BP network
model for building new adaptive scheduling control mech-
anisms are presented in Table 9.

To examine the effectiveness of the ASNNAS system in
various system scenarios, a series of simulation experiments
were conducted. A stream of arriving jobs, each of a
160 000 min simulation run was generated by using a different
set of random seeds. The performance of ASNNAS systems
was compared with that of NNAS systems and individual
dispatching rules using 20 random seeds based on four perform-
ance criteria. Table 10 displays the mean and standard deviation
(SD) of 20 simulation runs under different scheduling stra-

Table 6. The design parameter of a selected BP network model in
attribute selection processes.

Performance Topology Learning rate Root mean square
criterion error of testing

data

TP 30–7–9 0.3 0.0811
MF 30–16–9 0.4 0.0687
MT 30–11–9 0.4 0.0871
NT 30–8–9 0.3 0.0791
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Table 7. The attribute selection score for each performance criterion.

System attribute Attribute selection score

TP MF MT NT

NJ 0.0726 0.1055 0.0667 0.0826
MeUM 0.0389 0.0362 0.0155 0.0703
SdUM 0.0542 0.0277 0.0488 0.0249
MeUL 0.0218 0.0202 0.0135 0.0357
MeUB 0.0279 0.0249 0.0491 0.0306
MeUA 0.0075 0.0189 0.0230 0.0245
MiOT 0.0186 0.0371 0.0215 0.0325
MaOT 0.0171 0.0249 0.0278 0.0250
MeOT 0.0328 0.0194 0.0210 0.0419
SdOT 0.0399 0.0271 0.0489 0.0146
MiPT 0.0247 0.0309 0.0191 0.0249
MaPT 0.0555 0.0370 0.0319 0.0212
MePT 0.0454 0.0304 0.0238 0.0331
SdPT 0.0492 0.0828 0.0293 0.0286
MiRT 0.0289 0.0270 0.0311 0.0229
MaRT 0.0502 0.0217 0.0228 0.0326
MeRT 0.0479 0.0354 0.1103 0.0579
SdRT 0.0302 0.0220 0.0443 0.0272
MiST 0.0294 0.0267 0.0362 0.0312
MeST 0.0200 0.0239 0.0217 0.0166
SdST 0.0123 0.0243 0.0203 0.0401
MaTA 0.0263 0.0322 0.0399 0.0332
MeTA 0.0280 0.0271 0.0166 0.0249
SdTA 0.0178 0.0200 0.0175 0.0147
MaWL 0.0191 0.0174 0.0226 0.0171
ToWL 0.1141 0.1156 0.0985 0.0756
MeSO 0.0216 0.0198 0.0205 0.0232
SdSO 0.0198 0.0206 0.0276 0.0400
MeTD 0.0161 0.0174 0.0130 0.0202
SdTD 0.0121 0.0260 0.0171 0.0323

Table 8. The results of selected attributes for each performance cri-
terion.

Performance Important attribute subset Number of
criterion attribute

selected

TP {NJ, MeUM, SdUM, SdOT, MaPT, 10
MePT, SdPT, MaRT, MeRT, ToWL


MF {NJ, MeUM, MiOT, MaPT, SdPT, 7
MeRT, ToWL


MT {NJ, SdUM, MeUB, SdOT, MeRT, 9
SdRT, MiST, MaTA, ToWL


NT {NJ, MeUM, MeUL, MeOT, MePT, 10
MeRT, SdST, MaTA, ToWL, SdSO


Table 9. The topology of ASNNAS models.

Performance Topology Learning rate Root mean square
criterion error of testing

data

TP 10-12-9 0.3 0.0791
MF 7-9-9 0.4 0.0692
MT 9-8-9 0.3 0.0874
NT 10-16-9 0.4 0.0801

tegies. ASNNAS systems have been shown to be able to
achieve better results measured by all the performance criteria
owing to their efficiency.

To examine whether the ASNNAS system provides signifi-
cant evidence superiority to that provided by the NNAS system
and individual dispatching strategies, a paired t-test was perfor-
med. A paired t-test does not assume that the mean responses
of the dispatching strategies are independent (owing to the use
of common random number seeds which are not independent
in this study). The null hypothesis is that the mean values of
all the scheduling strategies are equal. An overall significance
level of 95% was selected for this analysis. The results of the
paired t-test are summarised in Table 11.

From the results of the paired t-test, the hypothesis is
rejected at the significance level of 95% for all dispatching
rules. Therefore, it can be concluded that the performance of
the ASNNAS system dominates all of the individual dis-
patching rules.

Although no significant discrimination was found between
the ASNNAS system and the NNAS system, the performance
of the ASNNAS system is shown to be superior to that of the
NNAS system measured by each performance criterion.

To further examine the difference between the ASNNAS
and NNAS systems, the ability of knowledge bases to select
the best dispatching rule at a scheduling control point for each
criterion was estimated to the greatest possible accuracy. The
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Table 10. A comparison of the mean and SD between ASNNAS and the other scheduling strategy (min).

Scheduling TP MF MT NT
strategy

Mean SD Mean SD Mean SD Mean SD

ASNNAS 5224.00 34.41 1121.08 302.55 739.31 50.18 773.95 81.24
NNAS 5223.85 34.49 1123.11 304.86 768.57 48.54 805.90 83.34
FIFO 5195.35 52.73 2339.86 1126.08 1686.15 148.85 3123.95 123.60
SPT 5214.75 39.56 1146.34 382.21 878.14 69.30 1007.00 101.67
SIO 5206.60 46.13 1509.49 552.78 982.08 77.28 1415.20 121.33
SRPT 5220.50 35.20 1314.07 515.58 875.71 64.17 854.45 84.08
CR 5167.10 61.22 2021.34 775.99 1886.57 75.31 2412.75 120.92
DS 5218.40 39.77 1367.23 609.77 1357.13 155.80 1008.30 119.73
EDD 5204.50 49.19 2110.81 1165.13 1123.80 129.68 2239.25 165.46
MDD 5203.00 49.48 2122.94 1202.03 1262.84 137.67 2231.00 174.38
MOD 5202.65 50.01 2136.97 1197.59 1266.39 143.82 2306.70 177.33

Table 11. A comparison of the paired t-test between ASNNAS and the other dispatching strategy.

Performance P value
measure

NNAS FIFO SPT SIO SRPT CR DS EDD MDD MOD

TP 0.186 0.000 0.000 0.000 0.000 0.000 0.007 0.004 0.002 0.001
MF 0.137 0.000 0.005 0.000 0.004 0.000 0.006 0.000 0.000 0.000
MT 0.130 0.000 0.002 0.000 0.004 0.000 0.000 0.002 0.000 0.000
NT 0.313 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000

greater accuracy implies a better generalisation ability for
knowledge bases. Table 12 displays the accuracy of 20 simul-
ation runs under two different strategies of scheduling knowl-
edge bases. The examination results show that the ASNNAS
system can achieve greater accuracy than the NNAS system
based on all the performance criteria.

6. Conclusion

We have developed the ASNNAS system for on-line dis-
patching in a dynamic FMS environment. The proposed attri-
bute selection algorithm can easily measure the important
system attributes that can be used for constructing scheduling
knowledge bases. Moreover, less effort is required to build
scheduling knowledge bases by using reduced system attributes
than by using more system attributes.

The simulation experiment results show that the use of the
attribute selection procedure in building scheduling knowledge
bases delivers a better production performance than the case
in the absence of the attribute selection procedure or the use

Table 12. Accuracy of two scheduling knowledge bases on various
performance

TP MF MT NT

ASNNAS 0.7113 0.6953 0.6875 0.6516
NNAS 0.6325 0.6578 0.6315 0.6156

of individual dispatching rules. The results of prediction accu-
racy also reveal that scheduling knowledge bases through
attribute selection can enhance the generalisation ability based
on various performance criteria.

This study did not verify whether this attribute selection
algorithm is applicable to other machine learning methods such
as decision tree learning so we would like to study this topic
in the near future. In addition, how to improve the generalis-
ation ability of scheduling knowledge bases corresponding to
the continuously shifting environment of product mix is another
important issue for further research.
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Notation

t time at which a decision is to be made
T scheduling period
i job index
j operation index
k machine index (K � number of machines)
a AGV index (A � number of AGVs)
l load/unload station index (L � number of

load/unload station)
p pallet buffer index (P � number of pallet buffer)
Wk working time percentage on machine k in simul-

ation period
Wa working time percentage on AGV a in simulation

period
Wl working time percentage on load/unload station l in

simulation period
Wp working time percentage on pallet buffer p in simul-

ation period
Pij processing time of the jth operation on job i
Pk

ij processing time of the jth operation on job i in
machine k

Pl
y processing time of the jth operation on job i in

load/unload station l
ARi time at which job i arrived at the system
Di due date of job i
Ci time at which job i is completed and leaves the

system
SJ set of jobs within the system
SF set of finished jobs
SRi set of remaining operations of the job i
�SJ� cardinality of S(t)
�SF� cardinality of F(t)
Fi flow-time of job i (Fi � Ci � ARi)
Ti tardiness of job i (Ti � Max(0, Ci � Di))

SLi slack time of job i (SLi � Di � t � �
j�SRi

Pij)


