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Abstract. We present a new parallel semiconductor device
simulation using the dynamic load balancing approach. This
semiconductor device simulation based on the adaptive finite
volume method with a posteriori error estimation has been
developed and successfully implemented on a 16-PC Linux
cluster with a message passing interface library. A construc-
tive monotone iterative technique is also applied for solution
of the system of nonlinear algebraic equations. Two different
parallel versions of the algorithm to perform a complete
device simulation are proposed. The first is a dynamic paral-
lel domain decomposition approach, and the second is a
parallel current-voltage characteristic points simulation. This
implementation shows that a well-designed load balancing
simulation can significantly reduce the execution time up to
an order of magnitude. Compared with the measured data,
numerical results on various submicron VLSI devices are
presented, to show the accuracy and efficiency of the method.
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1. Introduction

Numerical modeling and simulation of Very Large
Scale Integration (VLSI) devices has been proven
to be an indispensable tool for the analysis and
optimal design of various semiconductor devices [1].
Computational methods for macroscopic semi-
conductor device models, such as the Drift-Diffusion
(DD) and Hydrodynamic (HD) models, play a cru-
cial role in the development of semiconductor device
simulators. As the dimensions of devices continue
to shrink [1–5], the development of sophisticated
and efficient multi-dimensional semiconductor
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device Technology Computer Aided Design (TCAD)
software provides engineers with significant leverage
in conducting research into new integrated circuit
technologies. Computer-aided semiconductor device
simulations [6–28] provide the capability for a
software-driven approach to new device design,
because of the ability to test new chip designs
before fabrication. It may result in considerable
speedup in the development cycle, and hence a
significant reduction in the cost. However, the
increasing complexity of device simulators has in
the past led to many difficulties in extending the
physical and numerical capabilities. This growing
demand urges more advanced software programming
techniques; for example, parallel and adaptive com-
putation provide an alternative for VLSI device
simulation [29–39].

Parallel computations have received considerable
attention in TCAD applications [20–24]. The avail-
ability of powerful CPUs and high-speed networks
makes a cluster of computers a very powerful tool
for cost-effective, high performance computing in
scientific and engineering applications. A cluster of
PCs connected by a high-speed network becomes a
viable platform for running computation-intensive
parallel applications. In addition, adaptive compu-
tation is currently one of the main concepts in
practical and large-scale computations [25–39].
Considerable effort has recently been directed
towards the development of numerical techniques
for semiconductor device equations. The paralleliz-
ation of numerical simulations with an adaptive
mesh is a very complex task. By focusing the
computing resources on those regions with a high
relative error, the use of unstructured mesh and
Monotone Iterative (MI) technique [7,20,21,40–42]
has the great potential of producing large compu-
tational and storage savings, but it also has the
price of increasing the sophistication of codes and
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algorithms. Because of the irregular load require-
ments of parallel adaptive computation, a mesh must
also be repartitioned for processors during runtime.
Under a cluster parallel computing environment [43–
45], adaptation of the mesh produces imbalances in
the jobs assigned to processors.

In this paper, we present an approach to a parallel
dynamic partition for adaptive computing in sem-
iconductor device simulation. Based on the adaptive
unstructured mesh generation, a posteriori error esti-
mation, Finite Volume (FV) discretization [46–49],
and the Gummel’s decoupling algorithm, 2D sem-
iconductor device models are decoupled and discret-
ized, and hence a system of nonlinear algebraic
equations is obtained. We solve the nonlinear system
by means of the MI method, instead of the conven-
tional Newton’s Iteration (NI) method. The MI
method is a constructive technique for the numerical
solution of Partial Differential Equations (PDEs)
[41,42]. Compared with the NI method, the applied
MI method for VLSI device simulation has some
merits: (1) global convergence, (2) easier implemen-
tation, and (3) ready for parallelization [7,20,21,40].
These properties guarantee that the proposed parallel
algorithms – the dynamic parallel domain decom-
position approach and the parallel current-voltage
(I–V) characteristic points simulation – work well
through the study.

For most practical submicron device structures,
the electrostatic potential, carrier concentrations and
temperature exhibit extreme layers, particularly in
the neighborhood of p-n junctions. This implies a
local adaptive mesh refinement strategy for un-
structured grids [25–28]. Our study is based on
this physical phenomenon, and a posteriori error
estimation. However, the adaptive computation pro-
duces load imbalances among processors. We pro-
pose a physical-based parallel adaptation and load
balancing algorithm for repartitioning and rebalanc-
ing of the workload. The algorithm supports a
dynamical changing mesh environment, where the
nodes and corresponding unknowns migrate instan-
taneously between the numbers of processor to
balance the workload in each refinement level. Com-
putational results for the PN diode, N-channel Metal-
Oxide-Semiconductor Field-Effect Transistor (N-
MOSFET), and Dynamic Threshold voltage MOS-
FET (DTMOS) are presented to show the accuracy
of the model and efficiency of the solution method,
including parallel speedup achieved with respect to
the number of CPUs on a Linux cluster with a
Message Passing Interface (MPI) library [43,45].

The paper is organized as follows. Sections 2 and
3 describe the semiconductor device models and

adaptive computing method, respectively. Section 4
states the parallel domain decomposition with
dynamic load balancing and parallel I–V points
simulation. Section 5 includes the results and dis-
cussion. Section 6 draws conclusions and suggests
future work.

2. Semiconductor Device Models

Recently, HD models for submicron semiconductor
device modeling have received considerable atten-
tion in the study of hot carrier and non-local effects
[6,8–10,12,14,15,17,24]. One of the HD models con-
sists of at least five coupled nonlinear PDEs for an
electron and a hole. A set of the stationary HD
equations in semiconductor device simulation is as
follows [9,10,17]:
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where � is the electrostatic potential, n and p are
electron and hole concentrations, and Tn and Tp are
the electron and hole temperatures. The electric field
E is defined by E = −��, q is the elementary
charge, �s is the dielectric constant of semiconductor,
�0 is the average carrier energy in the thermal
equilibrium, and the net doping concentration is
D(x, y) = N+
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mean velocities. The expressions for the carrier’s
currents and energy flux densities Jn, Jp, Sn, and Sp

are given by

Jn = −q�nn�� + qDn�n + �nkBn�Tn (8)

Jp = −q�pp�� + qDp�p + �pkBp�Tp (9)
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where the carrier mobility �n and �p depend upon
the doping profile, carrier concentration, electric field
and energy. The diffusion coefficients Dn and Dp

are assumed to satisfy the Einstein relation. The
heat flows Qn and Qp are modeled by a scalar
thermal conductivity times the negative gradient of
the carrier temperature [2–4,6,8–10,14,15,17–19,24].
The unknowns to be solved in Eqs (1)–(5) are �,
n, p, Tn and Tp, respectively.

Over the past decade, the most widely used and
successful device modeling has been the DD equa-
tions. If the local thermal equilibrium assumption is
valid for semiconductor devices, this model can still
be used for device design and research [1–4,7,9,11–
14,16,18–29]. The DD model consists of Eqs (1)–
(3) as stated above, and the physical quantities have
the same meaning as with the HD model. However,
the expressions of Jn and Jp for the DD model are
reduced to

Jn = −q�nn�� + qDn�n (12)

Jp = −q�pp�� + qDp�p (13)

where the unknowns to be solved in Eqs (1)–(3)
are �, n and p, respectively.

Figure 1 shows cross-section views of the N-
MOSFET, PN diode and DTMOS devices studied
in the (x, y) plane. Both these models are subject
to mixed type boundary conditions on the boundary
of the device domain. The boundary conditions of
electrons for the HD model (similar to the DD
model) are stated as follows [2–4,9,14,17]. For an
N-MOSFET, shown in Fig. 1(a), on the source,
gate, drain and substrate ohmic contacts we assume
the Dirichlet boundary conditions for �, n and Tn
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Fig. 1. A schematic diagram for various devices: (a) N-MOSFET,
(b) P-N diode, (c) DTMOS.

Tn = TL (16)

where the TL is the lattice temperature, Vapp rep-
resents the applied voltage at the ohmic contacts,
and ni is the intrinsic carrier concentration. At the
interface between the silicon substrate and gate
oxide, by assuming that the charge in the oxide is
negligible and the electric filed in the oxide is
uniform, Gauss’ Law leads to the following Robin
boundary condition for �:

�s

	�

	n
→ − �ox

VG − �

tox

= Q (17)

where Q is the interface charge density, VG indicates
the applied gate voltage, tox is the gate oxide thick-
ness, n→ is the outward normal vector, and �ox is the
dielectric constant of oxide. Furthermore, we assume
that the electron current flow and electron energy
flux perpendicular to the interface equals zero:

Jn·n
→

= 0 (18)

Sn·n
→

= 0 (19)

To guarantee that the simulated VLSI devices are
self-contained, we apply the homogeneous Neumann
boundary conditions on the left and right artificial
boundaries:
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We have similar boundary conditions for holes. To
study the device transport behavior, including
I–V curves, various numerical methods (e.g. Finite
Difference (FD), FV (or so-called finite box), and
Finite Element (FE) methods), together with NI
methods have been developed [4,6,8–19,22–28] for
the approximated solutions of the HD and DD mod-
els. Different from the NI method, we apply the MI
method to solve the corresponding nonlinear system.

3. Methods of Adaptive Computation

The adaptive computing procedure for semiconduc-
tor device simulation includes: the Gummel’s deco-
upled algorithm [7,9,11,13,14,18,19], FVM [46–49],
MI method [7,20,21,40–42], error estimation tech-
nique [20,21,25–39], and unstructured 1-irregular
[38,39] mesh refinement method. The adaptive
mechanism is based on estimation of the solution
gradient and variation of the lateral current density,
and a posteriori error estimation is applied to pro-
vide local error indicators for incorporation into the
mesh refinement strategy. The local error indicators
guide the adaptive refinement process.

The transport behavior of submicron devices is
governed with coupled PDEs, and is solved sequen-
tially with Gummel’s decoupled [18,19] method. As
shown on the left of Fig. 2, in the DD model the
Poisson equation is solved for �(g+1) given the pre-
vious states n(g) and p(g). The electron current conti-
nuity equation is solved for n(g+1) given �(g) and
p(g). The hole current continuity equation is solved
for p(g+1) given �(g) and n(g). A similar procedure
can be applied to decouple the PDEs of the HD
model. Each decoupled PDE is solved with the
adaptive computing algorithm.

The right flowchart in Fig. 2 shows the adaptive
computation procedure for VLSI device simulation.
For a given decoupled device PDE, we partition the
solution domain into a set of disjoint FVs and
approximate the PDE with the FVM. After FV
discretization, we apply the MI method to solve the
system of nonlinear algebraic equations directly.
Once an approximated solution is computed, we
perform a posteriori error analysis to assess its
quality, and the error analysis produces error indi-
cators and an error estimator. If the estimator is less
than a specified error tolerance (TOL), the adaptive
process will be terminated and the approximated
solution can be output for post-process and analysis.

Fig. 2. Flowcharts for the Gummel’s decoupled (left) and
adaptive computing (right) methods.

Otherwise, we employ a scheme to refine current
elements depending on the magnitude of the error
indicator. A finer partition of the domain is thus
created, and a new solution procedure is repeated
iteratively. We summarize the adaptive computation
procedure below.

� Step 1. VLSI Device Model Formulation. The
mathematical model for a set of semiconductor
device equations, such as the HD and DD model,
is formulated and decoupled with Gummel’s
decoupling algorithm. Each decoupled PDE is
solved with an adaptive computing algorithm
sequentially.

� Step 2. Simulation Domain Discretization. The
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Fig. 3. (a) 1-irregular FE (solid line) and FV (dot line) mesh.
(b) Control volumes for the FV mesh.

adaptive computation begins with a simple initial
mesh and automatically generates an unstructured
mesh by the refinement processes. Figure 3(a)
shows the applied quadrangular FE and FV, where
the control volumes are associated with the
elements. The solid line is the FE mesh and the
dotted line indicates the FV mesh. As shown in
Fig. 3(b), based on our experience, we list 13
possible types of control volume for this unstruc-
tured mesh, where the dots are regular points and
cross-dots indicate irregular points. The FE and
FV mesh refinement algorithm can be found in
further detail elsewhere [26–39,46–49]. Figure

4(a) is a refined 1-irregular mesh and Fig. 4(b)
shows there are 4 levelF0 cells, 12 levelF1 cells
and 4 levelF2 cells. These cells are the children
of the initial mesh; all the nodes built a list of
tree and are stored in a dynamic data structure.

� Step 3. FV Approximation and Exponential Fit-
ting. We discretize the decoupled device PDEs
with the FVM, and use the exponential fitting
technique (the so-called Scharfetter–Gummel
[18,19] scheme for the DD model and the
Scharfetter–Gummel–Tang [15] scheme for the
HD model) to locate sharp variations in the carrier
concentration and energy. The fitting schemes
are often used for the FV approximated current
continuity and energy flux equations [6,8–
10,12,14,15,17,24] and have their merits.

� Step 4. Solution of Nonlinear System. The conven-
tional Gummel’s decoupling scheme for solving
the DD model consists of three inner NI loops
(five for the HD model) for each unknown func-
tion, and an overall outer loop for all unknowns.
Based on the nonlinear property of each PDE,
we replace the NI method and solve the system
of nonlinear algebraic equations with the MI
method. We derived the MI formula for device
simulation earlier [7,20,21,40]

Fig. 4. (a) Root and refined rectangular cells. (b) Data structure
of the unstructured mesh.
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(D + 
I)Z(m+1) = (L + U)(m) − F(Z(m)) + 
Z(m)

(21)

where Z is the unknown vector, F is the nonlinear
vector form, and D, L, U and I are the diagonal,
lower triangular, upper triangular and identity matr-
ices, respectively. The MI parameter 
 is determined
node-by-node [7] depending on the device structure,
doping concentration, bias condition and the nonlin-
ear property of each decoupled PDE. We note in
general that the NI method requires a sufficiently
accurate initial guess to begin with the iterations,
and forms a Jacobian matrix [14]. In contrast to the
NI model, the MI method does not involve a Jacob-
ian matrix, and the solution formula, Eq. (21), is of
the Jacobi type and is ready for parallelization.
� Step 5. A Posteriori Error Estimation. When the

approximated solution is computed, we perform
a posteriori error estimation for all elements [25–
39]. As mentioned above, the computed solution
exhibits large gradients within junctions and the
channel surface. With this observation, the vari-
ations of potential, electron concentration and
electron current density are computed element-
by-element to be a set of error indicators for the
FV approximation. Figure 5 shows the pseudo-
code for the error estimation and mesh refinement.
We verify the global error estimators of the
approximated solution. If it converges, we go to
step 7; otherwise, we carry out step 6 for adaptive
mesh refinement.

� Step 6. Mesh Refinement. The 1-irregular mesh
refinement scheme is applied to refine the mesh.
Back to step 3 for the next computation.

� Step 7. Post-process. The computed solutions are
used for the next process or for calculating physical
measurable quantities, such as the I–V curves [2–4].

Fig. 5. Pseudo-code for the error estimation and mesh refinement.

4. Parallel Algorithms and Load
Balancing

Two different parallel algorithms to perform a com-
plete device characteristics simulation are presented
here. One uses dynamic load balancing in a parallel
domain decomposition approach; the other is a novel
parallel I–V points simulation. The adaptive FV
computation produces a number of nodes for a
refined mesh that is much larger than the number
of nodes in the initial mesh, and leads to a load
imbalance. For parallel simulation a serial static
graph partition algorithm has been designed to
partition and distribute the initial mesh, but it is not
so feasible to rebalance the workload of refined
mesh [22–24]. We present a dynamic parallel
domain decomposition algorithm, and describe the
second parallel algorithm, the parallel I–V points
calculation method for VLSI device simulation.

As shown in Fig. 6, based on different device
structures and the bias condition, the simulation
domain is dynamically partitioned into some disjoint
sub-domains. When a refined tree structure is
created, the number of processors for the next com-
putation will first be dynamically assigned and allo-
cated following the total number of nodes. We apply
the geometric dynamic graph partitioning method in
the x- or/and y-direction to partition the total number
of nodes and assign those partitioned nodes to each
processor. For the HD model simulation, each
partition sub-domain contains five nonlinear systems
(three nonlinear systems for the DD model) to be
solved, where the systems have arisen from
Gummel’s decoupled and adaptive FV approximated
device PDEs. Once previous results are given, the
boundaries for partitioned sub-domains are totally



130 Y. Li et al.

Fig. 6. An illustration of the dynamic partition for various devices: (a) N-MOSFET, (b) P-N diode, (c) DTMOS.

separated, and we solve nonlinear systems with Eq.
(21) independently. When newer MI solutions of
nonlinear systems are computed, we perform the
boundary data exchange for the next Gummel’s
iteration loop. Figure 7(a) shows the pseudo-code
for the parallel domain decomposition. The compu-
tational procedure for the parallel domain decompo-
sition consists of:

(A1) Initialize MPI and configurations;
(A2) Establish 1-irregular mesh tree structure;
(A3) Count the number of nodes and apply a

dynamic partition algorithm to determine how
many processors are required in this simul-
ation, where all nodes are identified and num-
bered;

(A4) Solve all assigned jobs with Eq. (21) and
communicate data with the MPI protocol;

(A5) Perform the error test for all elements and
run the refinement for the corresponding
elements;

(A6) Repeats steps (A3)–(A5) until the error of
all elements is less than a specified error
bound; and

(A7) Host processor collects all computed results
and stops the MPI.

As shown in Fig. 7(b), the dynamic partition
algorithm for load balancing in step (A3) is:

(B1) Count the number of total nodes;
(B2) Find out the optimal number of processors

based on the node numbers and an empiri-
cal formula;

(B3) Calculate how many nodes should be
assigned to each processor by dividing the
total nodes by the optimal number of pro-
cessors;

(B4) Along the x- or y-direction in the device
domain, search (from left to right and bottom
to top) and assign nodes to these processors
sequentially. Repeat this step for all nodes;
and

(B5) In the neighborhood of junctions, if it is
necessary, one may change the search path
for obtaining a better load balancing.

A full set of I–V curves, such as ID–VD curves,
provides the most important device characteristics
for VLSI device, circuit and system design. A con-
ventional approach to calculating a set of I–V curves
is the continuity technique, which starts from the
previous I–V point as an initial function to the next
I–V point due to the local convergence property of
the NI method. This continuation process from a
low I–V point to a desired high I–V point, leading
to convergence of the I–V point, greatly depends
upon the choice of initial guesses, and is also a
time-consuming task [14]. Figure 8(a) illustrates the
second parallel algorithm, our parallel I–V points
simulation technique. This is a new alternative to
quickly extract device I–V data. Based on the
developed MI solver, all I–V points (see Fig. 8(b))
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Fig. 7. (a) Parallel domain decomposition. (b) Dynamic par-
tition algorithm.

are computed independently, and there are no data
exchanges required in this I–V points parallel com-
putation. The second parallel method is successfully
implemented on a Linux-cluster with a MPI library,
and has a high computational efficiency for device
I–V curve simulation. It consists of:

(C1) Initialize MPI and configurations;
(C2) The server creates the required processor and

each processor has its own client;
(C3) The server sends out all scheduled I–V points

to processors – each processor communicates
with client;

(C4) Clients calculate assigned I–V points by solv-
ing the whole HD model independently;

(C5) If the job is done, client sends the data back
to the server and calls for the next compu-
tation;

(C6) Repeat (C3)–(C5) until all jobs are done; and
(C7) Stop the MPI environment.

Figures 9(a) and 9(b) describe the parallel organi-

Fig. 8. An illustration (a) and algorithm (b) of the parallel I–V
points simulation.

zation and network architecture, respectively. The
preprocessor performs all tasks including preparation
of the necessary input data for each parallel pro-
cessor. The input data are prepared on the host
machine and sent to each processor of the parallel
machine through TCP/IP. Figure 9(b) is the Linux-
cluster system and the network configuration con-
structed in this work. Each cluster contains 16 PCs;
files access and share through the Network File
System (NFS) and Network Information System
(NIS). The User Datagram Protocol (UDP) con-
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Fig. 9. (a) A parallel organization for the computation. (b) The
Linux-cluster and network.

trolled by the MPI is applied to the short distance
communication.

5. Results and Discussion

The constructed Linux-cluster utilized for the simul-
ation consists of 16 AMD 1 GHz CPUs with 512
MB memory and an Intel 100 MBit fast Ethernet,
connected with a 100 MBit 3Com fast Ethernet

Fig. 10. A plot of the 0.5 �m N-MOSFET doping profile in Ex. 1.

Fig. 11. Simulated electrostatic potential in Ex. 1.

switch. The first example confirms the accuracy of
the DD model for a 0.5 �m lightly doped drain
(LDD) N-MOSFET [2–4] with tox = 7.0 nm. Figure
10 is a plot of the device doping profile in log
scale, and Fig. 11 is the simulated electrostatic
potential at VDS = VGS = 2.2 V. Figure 12 shows

Fig. 12. Simulated (dots) and measured (solid line) ID-VD curves
for the 0.5 �m LDD N-MOSFET.
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a comparison of the ID–VD curves between the
numerical simulation (dots) with the DD model and
experimental measurement (lines), where the device
geometric ratio defined by the width divided by
channel length (W/L) is 40.0/0.5 and VBS = 0.0 V.
It also shows the accuracy of the method. All I–V
points in Fig. 12 are computed independently on the
Linux-cluster by the parallel I–V points calculation
method. The initial guesses for all I–V point compu-
tations are the same, and are chosen to be the charge
neutrality condition [2–4,7,9,14].

The second example is designed to show the
submicron HD device simulation on a 0.25 �m N-
MOSFET for investigating the hot carrier and non-
local effects near the drain region [2–4]. The device
has elliptical 1020 cm−3 Gaussian doping profiles in
the source and drain regions, 1016 cm−3 in the p−

substrate region, and a shallow 1017 cm−3 implan-
tation in the channel surface. The junction depth is
0.125 �m, lateral diffusion under gate is 0.087 �m,
and tox = 6.2 nm. Figure 13 is the simulated electron
temperature and clearly indicates the hot electron
phenomena near the drain edge under high bias
condition VDS = VGS = 2.1 V. It takes about 40
Gummel’s iteration loops to reach the specified stop-
ping criterion (maximum norm error less than 10−4).

We compare the simulation validity between the
HD and DD models for submicron device that chan-
nel length is less than 0.25 �m. By simulating a
0.18 �m N-MOSFET with tox = 3.3 nm, Fig. 14
indicates there is a significant difference in I–V
curves calculation between the HD (diamonds) and
DD (dots) models. Compared with the measured
data (lines), we find that the DD model has an over-
estimation (about 25%) in ID–VD curves, whereas
the HD model has more accurate simulation results.
The results not only report that the HD model has
good consistency with the measurement data, but
also suggests that the DD model only works well
for long channel MOSFETs (e.g. L = 0.25 �m or

Fig. 13. Simulated electron temperature at VDS = VGS = 2.0 V
in Ex. 2.

Fig. 14. Simulation and measurement of ID-VD curves for the
0.18 �m N-MOSFET.

above). Therefore, we confirm that the HD model
plays a crucial role for the deep-submicron (short
channel) MOSFETs simulation.

We discuss the efficiency of the adaptive simul-
ation approach for N-MOSFETs simulation. The
device structure is the same as for the first example;
its bias is at VDS = VGS = 2.2 V, and the problem
we simulated is with the HD model. In contrast to
conventional device simulation beginning with fine
grids, our initial mesh contains only 16 elements
and 25 nodes, so is rather simple and coarse. Start-
ing with this initial mesh, the adaptive simulation
automatically generates a sequence of approximated
solutions on the corresponding adaptive mesh until
the maximum norm error of the solution is less than
a specified error tolerance. As shown in Fig. 15,
the error estimation together with the error indicators
here shows an efficient way of locating variations
in the solutions so that the refined mesh is precisely
arranged adaptively to those regions with higher
errors. From the computed electrostatic potential as
well as the refined mesh, shown in Figs 11 and
15(a), the adaptive method demonstrates good con-
sistency and efficiency for N-MOSFET simulation.
For various VLSI device simulations, the starting
initial mesh for the 3.6 � 2.6 �m2 P-N diode
consists of 16 elements and 25 nodes, and for the
0.25 �m DTMOS it consists of 256 elements and
289 nodes. Figure 15(a) shows a final refined mesh
for the N-MOSFET at VDS = VGS = 2.0 V, Fig.
15(b) is for the P-N diode at applied voltage 2.0
V, and Fig. 15(c) is for the DTMOS biased at VDS

= VGS = 2.0 V, respectively. All the variations of
the computed solution within one element guarantee
less than an error indicator, 10−4. The final P-N
diode mesh consists of 2700 refined elements and
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Fig. 15. Final refined mesh for various devices: (a) N-MOSFET, (b) P-N diode, (c) DTMOS.

2400 nodes. For the N-MOSFET it is 7700 elements
and 7400 nodes, and for the DTMOS it is 25,100
elements and 24,000 nodes. Figure 16 shows the
number of elements and nodes versus the successive
adaptive refinement processes. We find that the mesh
tends to have a stable refinement size after the
eighth refinement level for the P-N diode and the
fifteenth refinement level for both the N-MOSFET
and DTMOS.

The parallel performances of the two parallel
algorithms achieved are reported next. The speedup
is the ratio of the code execution time on a single
processor to that on multiple processors. Efficiency
is defined as the speedup divided by the number of
processors [43–45]. By setting a more strict error
indicator 10−6 within one element, Fig. 17 shows
the speedups and efficiencies of the parallel dynamic

load balancing of domain decomposition for various
VLSI devices on the 16 CPU Linux-cluster with the
MPI library, where the applied voltage is the same
as previously. The refined nodes for the P-N diode,
N-MOSFET and DTMOS are 15,300, 55,600 and
60,100, respectively. Figure 18 shows the perform-
ance achieved of the dynamic load balancing of
domain decomposition for the N-MOSFET simul-
ation. The maximum difference is defined as the
maximum difference of the code execution time
divided by the maximum execution time. A similar
variation of the maximum difference for the P-N
diode is less than 6.5%, and for the DTMOS it is
3.3%. Table 1 records the parallel load balancing
timing of the DTMOS simulation on an 8-processor
Linux-cluster, and it shows a good dynamic load
balancing for the domain decomposition. As shown
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Table 1. Parallel load balancing timing for the DTMOS simulation on an 8-CPUs Linux-cluster

Nodes Parallel time (Sec.) Max. diff.
(%)

CPU

#0 #1 #2 #3 #4 #5 #6 #7

5000 30 29 29 30 30 30 29 30 3.3
10000 121 118 119 121 121 119 121 120 2.5
15000 228 227 227 228 228 227 226 224 1.8
25000 323 316 323 318 322 323 320 318 2.2
40000 631 628 631 631 619 630 620 619 1.9
50000 841 840 831 841 824 833 840 841 2.0
60000 1325 1311 1308 1324 1300 1322 1321 1315 1.9

Fig. 16. Number of elements (nodes) versus refinement level for
various VLSI devices.

Fig. 17. Achieved speedups and efficiencies for the dynamic
partition of the parallel domain decomposition.

in Fig. 19, we find a nearly optimal value for the
speedup and efficiency of the parallel I–V points
simulation with the HD model. As partially illus-
trated in Fig. 14, there are in total 11 I–V curves
with VGS = 0, 0.2, %, 1.8, 2.0 V. Each one these
consists of 10 I–V points, with VDS varying from
0.1 to 1.9 V with a 0.2 V step. The sequential
execution time of the complete simulation of all
110 I–V points is about 21,000 seconds.

6. Conclusions

In this paper, a practical approach to implement the
dynamic parallel partition for adaptive computation
in semiconductor device simulation has been

Fig. 18. Load balancing of the parallel domain decomposition
for the N-MOSFET simulation.
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Fig. 19. Speedup and efficiency of the parallel I–V points HD
simulation for the 0.18 �m N-MOSFET.

presented. Using the adaptive mesh technique, FVM,
error estimation and the MI method, two different
parallel versions of the algorithm to perform a
complete device simulation have been proposed. The
first algorithm is a dynamic parallel domain
decomposition approach, and the second is a parallel
I–V points simulation. These two parallel simulation
approaches have been shown to be an efficient
alternative in parallel semiconductor device simul-
ation. Combined with adaptive computing method-
ology, the parallel algorithms have been developed
and successfully implemented on a Linux-cluster
with an MPI library. Compared with the measured
data, numerical results on various VLSI devices
have been presented to show the accuracy and
efficiency of the method. Typical parallel perform-
ance results, such as parallel speedup, efficiency,
and maximum difference, have also been included.
The parallel methods developed and implemented in
this work show that cluster computing is a feasible
alternative for characterization of semiconductor
devices.
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