
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 18, 59-84 (2002)

59

Constructing an Object-Oriented Architecture for
Web Application Testing

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG

AND WILLIAM. C. CHU*

Department of Computer Science and Information Engineering
National Chiao Tung University

Hsinchu, 300 Taiwan
E-mail: {jjyang,jlhuang,fjwang}@csie.nctu.edu.tw

* Department of Computer Information Science
TungHai University

Taichung, 400 Taiwan
E-mail: chu@cis.thu.edu.tw

The variety of existing web application frameworks has lead to the development of

a wide range of Web applications for both the Internet and intranets. Web applications
are constructed based on various frameworks ranging from simple HTML-based forms
to complicated distributed-object computations based on Java and CORBA. Web soft-
ware enables programmers to choose a proper framework for their own Web applications.
The prevalence of Web-based applications has also led to the need to adapt software
testing frameworks and tools for them. This study presents a software testing architecture
that integrates several common but enhanced testing tools as a sub-architecture to fit a
common Web application framework. The architecture reuses several software patterns
and architectures from traditional testing environments. A Web application testing envi-
ronment prototype is also constructed to demonstrate the feasibility of the proposed ar-
chitecture.

Keywords: web application testing, software architecture, framework reuse, object- ori-

entation, software testing

1. INTRODUCTION

The frameworks of Web-based applications provide application designers with
flexibility in choosing proper development tools for their implementations of Web-based
applications. The author in [1] radically investigated and identified several categories of
solutions for Web application development. However, developers of large Web applica-
tions currently do not have enough powerful tools to debug or test their Web applications.
The author in [2] addressed the necessity of software testing support to handle the com-
plexity of Web applications. Existing Web testing tools generally verify the syntax in
HTML documents, confirm the hyper-link integrity of a set of HTML documents, test the

Received December 3, 1999; revised April 17 & July 25, 2000; accepted July 31, 2000.
Communicated by Michael R. Lyu.

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

60

GUI components embedded in the browsers, and measure the performance of the Web
application. Few products support overall Web application testing [3]. The researchers in
[4] and [5] tested software components, such as Java Applet and ActiveX controls, that
are frequently embedded in Web pages. The author in [6] extended traditional GUI test-
ing tools to analyze GUI events inside Web browsers. The author in [7] justified the con-
tents of a Web browser's window by matching text patterns or performing a pixel-level
comparison. The researcher in [8] checked popular Web browser documents for syntax
and compatibility. Each of the tools mentioned above tests only one or some aspects of
Web applications. To thoroughly test Web-based application, an adapted software testing
architecture that integrates both traditional testing techniques and modern web-related
software testing support is needed.

This work presents a software architecture that integrates several testing tools by
extending traditional software testing architectures and software patterns [9, 10] to coor-
dinate the design and specification of Web-application testing tasks. Integrating
Web-testing components can reduce the insufficiency of available independent Web test-
ing tools mentioned above for complicated Web application testing. This object-oriented
architecture provides a clear picture of the software components to be reused, including
tool reuse and architecture reuse. A testing environment for Web applications is con-
structed to demonstrate the reusability of the proposed architecture.

The rest of the paper is organized as follows. Section 2 discusses the Web applica-
tion testing issues based on popular Web application development models and traditional
testing techniques. Section 3 presents the software architecture that accommodates the
Web software testing tools. Section 4 presents a prototype of the testing environment
constructed under the architecture while a conclusion is provided in Section 5.

2. CUSTOMIZE TESTING ARCHITECTURES TO
TEST WEB APPLICATIONS

2.1 Web Application Constituents

The structure of a Web application allows application platforms or application de-
signers to place code for Web computation at several locations. Fig. 1 depicts the typical
constituents of the Web application. The contents of a Web application (static HTML
documents, image files, video files, or even programs that run on Web servers or Web
clients) are normally stored on the Web server or database server. The information
processor in the Web application model accepts incoming requests and responds to them
with the appropriate contents. A request is either processed and returned directly or
translated and delegated to another information processor prior to the response.

The Web browser is capable of retrieving requested hyper-text documents from the
Web server via the HTTP protocol. The hyper-text document is rendered in HTML (Hy-
per-Text Markup Language) format on the screen. Contemporary Web browsers also
embed a Java virtual machine and a Java Script interpreter to execute the Java Applets or
Java Scripts specified in the documents. Additional information processors, such as Net-
scape Communicator’s plug-in modules and Microsoft Explorer’s ActiveX controls, are
browser-loadable software modules that can extend a browser’s functionality.

CONSTRUCTING AN OBJECT-ORIENTED ARCHITECTURE FOR WEB APPLICATION TESTING

61

Augmented
HTML

Document

Database
Server

Socket/
RMI/

CORBA

Image, Sound, Animation

Plain HTML Document

Java Applet

Server
Side

Intepreter

Web
Browser

Web
Server

Database
Server

Java
VM

Java
Script

Intepreter

Plug-In
Processor

HTML
Render

CGI
Programs

Network
Application

Server

F
r
o
n
t

E
n
d

Tier

Protocol /
Interface

Information
Flow

Information
Processor

Web
Document

LegendCommon
Gateway
Interface

(CGI)

HTTP

Database Access
Protocol

Database Access
Protocol

Database Access
Protocol

Fig. 1. The constituents of typical Web applications.

An HTTP daemon is placed at the Web server to accept HTTP requests from the

browsers. According to the Web server’s configuration, it may forward a request to (1)
the document retriever serving stored HTML documents, Java Applets, or multimedia
files, or (2) to the other information processors on the Web server, such as CGI programs
for dynamically generated HTML documents and contents. Web servers are occasionally
equipped with information processors, e.g., a Java Server Page or Active Server Page
Engine, which perform the computations defined in augmented HTML documents before
these documents are sent to the browsers.

An HTTP-cookie is an entity issued by the information processor on the Web server
and sent to the Web browser via the HTTP protocol. The Web browser stores the
HTTP-cookie and submits the HTTP-cookie back to the Web server if necessary to help
the information processors identify each Web browser. The temporary information that
must be maintained during consecutive HTTP transactions can also be stored in an
HTTP-cookie.

Protocols convey commands, documents, or executable code between information
processors. Hyper-Text Transfer Protocol (HTTP) is employed for communication be-
tween Web browsers and Web servers. The Common Gateway Interface (CGI) is a stan-
dard which enables external gateway programs to interface with information servers,
such as HTTP servers. It forwards both input data and output HTML documents to the
Web browser and CGI programs running on the Web server. In addition to the CGI, some
Web server products may provide alternative application interfaces, such as Microsoft’s
ISAPI or Netscape’s NSAPI, to efficiently connect web applications and web servers.
Database access interfaces such as ODBC (Open Database Connection) and JDBC (Java
Database Connection), are used to connect Web applications with database servers. The
communication between Web application components may also flow through plain TCP
sockets, Java RMI (remote method invocation), or CORBA (common object request bro-
ker architecture). These emerging protocols are more suitable for developing distributed
Web applications in object-oriented technologies.

The organization of a Web application can be divided into three major tiers accord-

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

62

ing to the placement of the components: a Web browser tier, a Web server tier, and a da-
tabase server tier. The information processed in the application is processed tier by tier.
For example, user interaction is performed in the Web-browser tier, program logic com-
putation is executed in the Web server tier, and the database operations are completed in
the database-server tier. This Web application model is known as a kind of three-tier ap-
plication architecture. Information communication between tiers is categorized as
top-down and bottom-up types, in which information can be only passed from the ith tier
to the i + j tier for j = 1 or j = −1.

2.2 Domain Components for Web Application Testing

Several approaches have been adopted by Web application developers to construct

Web applications according to user interaction and program logic. The following are
typical and combinable scenarios in Web application construction:

(1) Applications that consist of augmented HTML documents that are handled by the

processors at the server-side. The processors range from macro processors to em-
bedded script (e.g. Microsoft Active Server Page, Server-side JavaScript, Java Server
Page) processors.

(2) Applications that are designed as client-side scripts and are run at the client-side.
Scripts written in JavaScript or VB Script are executed at the browser to perform
user interaction and data validation.

(3) Applications that are originally developed in traditional languages, such as C++ or
Perl, and interact with the Web client through the CGI equip themselves with Web
features by adding modules to receive requests and reply to the results through the
CGI (or its alternatives – Microsoft’s ISAPI and Netscape’s NSAPI).

(4) Applications that send HTTP-cookies back and forth between the Web server and the
browser to track the session status and other variables.

(5) Applications that connect to database servers and primarily employ SQL statements
and ODBC to communicate with the database servers.

The architectures for software testing environments have been divided into the fol-

lowing five subsystems [11, 12]: (1) test development, (2) test measurement, (3) test exe-
cution, (4) test failure analysis, and (5) test management. The author in [13] classified the
software architecture reuse approaches as either abstraction or integration. The abstrac-
tion software architecture comes from the application domain and is realized by defining
objects and their operations in a domain language while the integration software
architecture integrates diverse domain components into a single application.

A testing environment for Web applications can serve to specialize traditional soft-
ware testing environments. An architecture that supports testing of Web applications can
be obtained from a traditional one by specializing the architecture and introducing some
unique domain components that support the testing tasks for Web applications. Tradi-
tional software testing architectures can divide a testing system into subsystems accord-
ing to the domain primitives. Both abstraction and integration aspects can be considered
when revamping a traditional Web testing architecture. The abstraction aspects may be
overhauled by constructing Web-related domain components (primitives) that facilitate

CONSTRUCTING AN OBJECT-ORIENTED ARCHITECTURE FOR WEB APPLICATION TESTING

63

specification of Web-related testing operations. The integration aspects may be amended
by formatting the architecture in an object-oriented approach that can integrate the do-
main components and perform specific tasks in a testing environment.

Domain components might be included as primitives in the testing environment to
facilitate specification of web application testing tasks for the above scenarios. The pos-
sible domain components (tools) are listed in terms of the Web application testing archi-
tecture subsystems in Section 3.

2.3 Testing With Domain Components

Tools that perform Web application testing can be created by selecting proper do-

main components from Web-enhanced software testing architectures based on the do-
main components. Testers can easily discover several new testing tools in a Web applica-
tion’s testing process to increase the testing efficiency and reduce the testing effort. For
example, a tool that tests Web applications written in Microsoft ASP scripts may employ
a Server-Side Script Analyzer to fetch the source code of the scripts from the Web servers.
It can then extract the executable code fragments in order to analyze the control and data
flow within the scripts. The control-flow or data-flow information can be passed to tradi-
tional flow-based test cases generators for test cases generation.

Test cases for Web application may contain the user interface operations of Web
browser users. Therefore, the Test Case Executor for Web application must be designed
so as to have the capability to recognize a new file format which can represent a mouse
click on a Web link, an embedded image or the values filled into an HTML form. To
automate the testing process, the testers can utilize testing execution components, such as
Form Filler and GUI Event Generator, so that each operation predefined in the test script
can be executed without the need for the testers to perform the operation manually.

Whether an application fails or passes a test case can be manually judged by the
testing staff or automatically judged by the Test Oracle according to pre-defined rule(s).
A Test Coverage Analyzer and its related reporting components can produce a testing
report based on the percentage of the tested part and the outcome of each test case.

3. WEB TESTING ENVIRONMENT ARCHITECTURE

The authors in [11, 12] reviewed several software testing environments for tradi-
tional software applications. The author in [14] also summarized several research and
practitioner reports on testing object-oriented software. Based on the testing environ-
ments commonly used, the authors in [11, 12] generalized software testing architectures
in order to represent traditional software testing environments. This work adopts the gen-
eralized architecture as a basis for developing a suitable architecture for constructing
Web application testing environments. In this section, the testing architecture and its
augmentation are described.

3.1 The Architecture

A software testing environment consists of five subsystems based on the reference

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

64

architecture given in [11]. More Web programming styles (e.g., Active Server Page and
JavaScript) continue to be proposed as the number of Web applications increase. These
programming styles have introduced several new-fashioned techniques that were not
used in traditional software. For example, one document may contain several code frag-
ments written in various programming languages, and these fragments may be inter-
preted in either the browser, server, or database tiers. Therefore, one Web application
should be analyzed in the browser, server, or even database tier to produce the corre-
sponding analysis services for various programming languages. A novel subsystem called
the Source Document Analysis Subsystem (SDAS), is added to the above architecture to
solve the testing problems introduced by these unique programming styles. Fig. 2 depicts
an overview of this architecture.

Source

Documents

Source Document

Analysis

Subsystem

Test Management Subsystem

Test Development

Subsystem

Test Measurement

Subsystem

Test Failure

Analysis

Subsystem

Test Execution

Subsystem

Data Flow

Original Subsystem

New Subsystem

Legend

Fig. 2. Web application testing environment architecture. (NOTE: the solid lines indicate data flow.)

An SDAS is employed in this architecture to analyze source documents and extract
some useful information, such as the control flow model. A Test Management Subsystem
(TMS) serves as a warehouse that stores all extracted information and provides access
interfaces which other subsystems can use to manipulate the stored information. A Test
Development Subsystem (TDS) provides maintenance functions which testers can use to
create, modify, or delete test cases that are stored in the TMS. A Test Execution Subsys-
tem (TES) is employed to execute test cases, activate Web applications with designated
paths, fill corresponding test data, and capture execution results. A Test Failure Analysis
Subsystem (TFAS) verifies the test cases by analyzing the captured execution results
needed to determine whether or not these test cases match the Web application specifica-
tions before sending the results to the TMS. The TFAS also summarizes all the verifica-
tion results of all the test cases in order to determine how many test cases have been
executed, and verified. A Test Measurement Subsystem (TMES) measures whether and
how much of a test criterion is adequately satisfied.

Although the architecture described in this paper is not particular to test ob-
ject-oriented Web applications, it does not hinder testing tools which are used to test the
object-oriented features of the software. Testing tools which incorporate traditional ob-
ject-oriented testing techniques [14-16] can still utilize the defined interfaces in order to
interact with existing testing tools in the proposed testing architecture.

3.2 The Source Document Analysis Subsystem (SDAS)

Different programming approaches employed for Web application development

CONSTRUCTING AN OBJECT-ORIENTED ARCHITECTURE FOR WEB APPLICATION TESTING

65

have different characteristics. For example, server side programming focuses on database
accesses and on generating documents for a Web browser according to database queries.
Client side programming concentrates on GUI representation and manipulation in a Web
browser. A programming approach may need a distinct programming language that is
associated with a set of tools, such as a Server-Side Script Interpreter, Client-Side Script
Interpreter, or HTML Analyzer.

Fig. 3 depicts the class diagram of these tools. All tools that are designed to be used
to analyze source documents and extract some information (e.g., hyperlinks) are called
Analyzers. There are two categories of Analyzers for Internet software: HTML Analyzers
and Script Analyzers. HTML Analyzers process HTML fragments in source documents
and extract information, such as the input fields in HTML forms. Script Analyzers proc-
ess embedded script fragments and extract information, such as the control flow of these
script fragments. Script Analyzers are divided into two categories: Client-Side Script
Analyzers and Server-Side Script Analyzers, according to the locations where the script
fragments are interpreted. Client-Side Script Analyzers deal with script fragments that are
interpreted in Web browsers, and Server-Side Script Analyzers manage script fragments
that are interpreted in Web servers.

GetLinks()

Analyzer

GetCGIFormSignature()

HTML Analyzer

getControlFlow()

Script Analyzer

Client-Side Script Analyzer

getSessionVariableList()

Server-Side Script Analyzer

JSP AnalyzerASP Analyzer JavaScript Analyzer VBScript Analyzer

Abstract class

Concrete class

Legend

Fig. 3. A class diagram of the source document analysis subsystem.

SDAS extracts information, such as the control flow, from source documents and

sends them to the TMS. The idea of generating test cases based on the control flow in-
formation is fundamental in software testing. The authors in [17, 18] proposed methods
for constructing the control flow of Web applications based on the hyperlink relations
between source documents. A source document may contain HTML, server-side script,

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

66

and client-side script all at the same time. Analyzers are designed to extract hyperlinks in
three steps. Fig. 4 depicts an SDAS architecture that can construct the control flow of
Web applications. The analysis process contains the following steps:

1. Source documents are sent to a Server-Side Script Analyzer, which analyzes the
server-side script (i.e. ASP) fragments, which are then sent to a Server-Side Script
Interpreter, which interprets the server-side script fragments.

2. The interpreted source documents are sent to a Client-Side Script Analyzer which
analyzes the client-side script (i.e. JavaScript) fragments, which are then sent to Cli-
ent-Side Script Interpreter, which interprets the client-side script fragments.

3. The source documents interpreted in step 2 are sent to an HTML Analyzer which
analyzes the HTML fragments.

4. All hyperlinks extracted in steps 1, 2, and 3 are sent to a Control Flow Builder which
constructs the control flow of the Web application, which is then stored in the TMS.

ASP

Analyzer

JSP

Analyzer

JavaScript

Analyzer

VBScript

Analyzer

HTML

Analyzer

Server Side

Script

Interpreter

Client Side

Script

Interpreter

Control Flow Builder

Source

Documents

Test

Management

Subsystem

Document Analysis Subsystem

Client Side

Script Analyzer

Server Side

Script Analyzer

Fig. 4. Source document analysis subsystem.

CONSTRUCTING AN OBJECT-ORIENTED ARCHITECTURE FOR WEB APPLICATION TESTING

67

3.3 The Test Management Subsystem (TMS)

Testing (and validation) deals with many artifacts that may be created during earlier
development phase(s) or even the validation phase [11]. Compared with traditional soft-
ware, Web applications play additional roles with respect to Web servers and browsers,
and have additional control mechanisms, such as cookies and sessions. Therefore, testing
of Web applications is diverse (and might be more complicated than) than testing of
traditional software since test artifact management (e.g., manipulation of test cases) is
more important. The TMS serves as a warehouse for other subsystems and provides test-
ing artifact management as it contains an Application Information Repository and a Test
Suite/Case Repository, which both have a manager that handles repository manipulation.

A Web application testing model defined in [17] is adopted to represent and store
the control and data flow of Web applications in the Application Information Repository.
The Test Suite/Case Repository stores test suites (and cases) that include test data, execu-
tion paths, execution results, and test reports. The TMS provides a set of repository ac-
cess interfaces and separates the interfaces from their implementations. Other subsystems
can create, manipulate, delete and query repositories by means of these access interfaces.
The TMS Manager pattern [10] is designed to achieve this goal.

Fig. 5 depicts the TMS architecture based on the Manager pattern. The client sub-
system sends request messages to the Test Suite/Case Manager, which then loads or cre-
ates the Test Case corresponding objects, and manipulate the test suites or cases. The
client subsystem can directly employ the Test Case object after manipulation. The client
subsystem does not need modification when testers change the implementation of the
Test Suite/Case Repository because the two are not connected. The Application Informa-
tion Manager is implemented in a manner similar to that for the Test Suite/Case Man-
ager.

The test process becomes too time-consuming and complicated to be performed by
only one tester as the testing environments expand. Therefore, the TMS adopts the
Bodyguard pattern [10] to provide shared object access, fine-grained control of access
restrictions, and dynamic access rights manipulation.

3.4 The Test Development Subsystem (TDS)

The TDS allows testers to manipulate test suites and cases by automatically gener-
ating test cases or constructing them manually based on the application information gen-
erated by the SDAS. The test suites and cases are stored in the TMS. The TDS sends the
user’s request to the TMS for execution after receiving these requests. The TDS contains
five tools: a Test Case Generator (TCG), a Test Suite/Case Maintenance Tool (TSCMT),
a Test Case Recorder (TCR), a Test Case Constructor (TCC), and a Test Case Viewer
(TCV).

The TCG can automatically generate test cases under a testing criterion, such as
all-statement or all-branch coverage for Web applications. The Test Data Definition
Grammar is a context-free grammar that is designed to enable testers to specify the for-
mat or pattern of test data. The test data for these test cases are generated according to the
specifications. Fig. 6 presents an example fragment of the Test Data Definition Grammar.
All non-terminal symbols start with $. In this example, u8417805 and U8217506 are two
of the candidate test data generated by the grammar defined in the example.

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

68

task

Client

Subsystem

collection of Test

Cases

create()

search()

retire()

Test Suite/Case

Manager
creates,destroys

retrivevs

test cases
collection of Test

Steps

initialize()

destroy()

gotoFirstStep()

nextStep()

Test Case

test data

getUrl()

getTestData()

Test Stepcontains

use

task

Client

Subsystem

collection of

Application

Information

create()

search()

retire()

Application

Information

Manager
creates,destroys

retrivevs

test cases

collection of

information

initialize()

destroy()

gotoFirstStep()

nextStep()

Application

Information

data

getEntryNode()

Control Flowcontains

use

data

getVarInfo()

Data Flowcontains

Fig. 5. The test management subsystem.

 $StudentID�$IDPrefix+$Num+$Num+$Num+$Num+$Num+$Num+$Num
 $IDPrefix�u|U
 $Num�0|1|2|3|4|5|6|7|8|9

Fig. 6. An example fragment of the test data definition language.

There are at least two problems in automatic test case generation: the test cases may

not be practical, and they may not cover all significant scenarios. Fig. 7 shows an exam-
ple control flow for a sample Web application. Three test cases may be generated based
on the stated coverage criterion as illustrated in Fig. 8. Test case 3 is impractical since the
test data in N1 may cause N4 to not contain a hyperlink to N5. Moreover, an
N1�N4�N3�N5 execution path is not covered in the generated test cases even though
it may be a significant and practical scenario.

The TSCMT includes functions which enable it to help the tester manipulate the test
suites/cases so as to solve the problem introduced by the TCG. These functions include
test suite/case editing, deleting, and reviewing. The testers can review these test cases
using a TCV, a graphic tool used to view the test cases, and modify or even delete these
test cases using the TSCMT.

The TCR semi-automatically creates test cases in order to defeat the weakness of
the TCG mentioned above. A desired test case, which is not generated by the TCG, can be
created with the TCR as follows. When the tested Web application is executed, the TCR
can record the execution scenario. The execution steps in the recorded scenario are then
translated into test cases. Testers can thus utilize the Web browser to acquire these test
cases.

CONSTRUCTING AN OBJECT-ORIENTED ARCHITECTURE FOR WEB APPLICATION TESTING

69

N1

N5

N3N2 N4

Fig. 7. An example control flow for a web application.

Test Cases No. Execution Path

1 N1�N2�N5
2 N1�N3�N5
3 N1�N4�N5

Fig. 8. The test paths generated from the control flow shown in Fig. 7.

There are at least two TCR subclasses: the Data Input Sequence Recorder (DISR) and the
GUI Event Recorder (GUIER). Fig. 9 depicts a TCR’s class diagram. The DISR tracks
the execution sequences and data fields entered by the testers in HTML forms, and it also
constructs the test cases. The DISR contains two modules, the HTTP Bridge and HTTP
Analyzer, and its architecture is depicted in Fig. 10. The HTTP Bridge captures the HTTP
communication between the Web server and browser. The captured communication is
analyzed by the HTTP Analyzer which constructs the test cases. The HTTP Header Ana-
lyzer analyzes the header of the HTTP communication in order to extract the values of
the HTML form inputs. The HTML Analyzer analyzes the HTML part in order to extract
information related to the HTML form (e.g., the field names in the HTML form). The
HTTP Header Analyzer and HTML Analyzer then send the analysis results to the Test
Case Constructor, which constructs the test cases.

The author in [19] noted that more applications have been built with complex
graphical user interfaces (GUI), and that testing of GUI-based systems is now vital to
validating the behavior of the GUI. Web applications are treated as GUI-based systems
only when the GUI behavior is of concern. A GUI Event Recorder(GUIER) records the
user-caused GUI events related to Web applications (mouse movements, button clickings,
etc.) by intercepting the application and operating system events and constructing the test
cases. The GUIER can also test the GUI behavior about ActiveX controls and Java Ap-
plets. The recorded execution information of the tested Web application is gathered by
the DISR or the GUIER and stored in a format recognizable by the TCC for subsequent
test case refinement. The TCC is an editing tool that can modify a test case, refine exist-
ing test cases, and manually create test cases. It can also solve the second problem intro-
duced by the TCC. Testers can manually develop test cases by writing test scripts using
the TCC if they are familiar with the Web applications and testing environment.

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

70

SetName()

StrartRec()

StopRec()

CreateCase()

Test Case

Recorder

HTTP Analyzer

HTTP Bridge

Data Input Sequence

Recorder

InterceptEvent()

GUI Event

Recorder

SetPort()

pipeHTTP()

HTTP Bridge

HTML Analyzer

HTML Header Analyzer

getDataInputSeq()

HTTP Analyer

has a

has a

getDataInput()

HTTP Header

Analyzer

has a

Abstract class

Concrete class

Legend

ConstructCase()

StoreCase()

Test Case

Constructorsends recorded data to

HTML Analyzer
has a

Fig. 9. A class diagram of the test case recorder.

Web Browser Web Server

HTTPHTTP

HTTP

HTTP

Header

HTML

Document

CGI Form

Signature

CGI Form

Input List

HTTP Bridge

HTTP Header

Analyzer
HTML Analyzer

Test Case

Constructor

Test Case

HTTP Analyzer

Test Management

Subsystem

Fig. 10. The data input source recorder.

The class diagram shown in Fig. 11 illustrates the relationships among these tools.
The TSCMT coordinates execution of the TCC, TCR or TCG to produce the desired test
cases. The testing staff can use the TCV to view the test cases produced by the TCC,
TCR or TCG. The test cases are then sent to another subsystem, the TMS, for subsequent
test execution.

CONSTRUCTING AN OBJECT-ORIENTED ARCHITECTURE FOR WEB APPLICATION TESTING

71

LoadSuite()

GenTestCases()

Store()

Test Case

Generator

ListAllSuite()

NewSuite()

DeleteSuite()

ListCaseFromSuite()

NewTestCase()

EditTestCase()

DeleteTestCase()

ViewTestCase()

Test Suite/Case

Maintenance Tool

InsertTestStep()

AppendTestStep()

Store()

Test Case

Composer

SetName()

StartRec()

StopRec()

CreateCases()

Test Case

Recorder

In
v
o
k
e

Invoke

Invoke

Test Management

Subsystem

A
ccess

Access

A
cc
es
s

Test Development Subsystem

ViewTestCase()

Test Case Viewer

In
v
o
k
e

Access

Fig. 11. A class diagram of the test development subsystem.

3.5 The Test Execution Subsystem (TES)

The Test Case Executor (TCE) executes test cases automatically or manually by

following the parameters specified by the tester and retrieving the appropriate informa-
tion from the Test Suite/Case Repository. Each execution is checked by either the Test
Oracle or the tester in order to determine whether the execution matches the Web appli-
cation specifications. Test data in normal software testing environments are input into
tested software via a standard input (stdin). However, there are two kinds of test data
input for Web applications: user-input data and user-caused GUI events. The Data Filler
and GUI Event Generator are designed to automatically input test data and send GUI
events into the Web applications.

Fig. 12 shows a test script sample. The grammar of the sample script defines the ac-
tions: (1) input of data into HTML forms, such as text boxes, text areas, list boxes, toggle
buttons; (2) verification of the Web server’s response, such as a URL, text and image
contained in the HTML response. To obtain details about GUI operations that are indi-
rectly related to the HTML form of the Web application, testers can import traditional
GUI testing tools and augment the testing script’s grammar to enhance Web application
testing environments.

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

72

#----------------------------------
Test Case Description:
user001 fails login at the first
time, and then passes at next try
#----------------------------------
#set the base directory of the
#application
set $URLBase http://dsslnt/webapp/
set $URL1 "login.html"
#set variables URL1, URL2
set $URL2 "checkLogin.asp"
#------- HTTP requests begin ------
HTTPGet $URL1
#login.html contains a form with two
#fields user and pass
set $form1.user "user001"
set $form1.pass "wrongPass"
#user001 login with wrongPass
HTTPPost $URL2, $form1
#expect an HTTP-redirect command,
#which redirect the browser
#to errorMessage.html
expect URL "errorMessage.html"
……
press button “Reload”
press link “Registration”
move mouse 400 400
select list “File” “Open”
……
expect FORM “registration_form”
Text "UserName" "Sharon"
Text "Age" "23"
……
expect GRAPHIC "result1.bmp"

Fig. 12. A test script sample. (NOTE: the key words are shown in bold type.)

 The keyword set is employed to indicate the user-input data. For example, set
form1.user “user001” denotes that the user has entered user001 in the text field user with
form1 while the Data Filler fills the text field as it executes the line. Some keywords
such as press and move represent user-caused events. For example, the GUI Event Gen-
erator generates a button clicked event while executing this line if the user presses the
Reload button.

Fig. 13 depicts the TES class diagram. The Test Script Interpreter analyzes the Test
Script and dispatches commands to the Data Filler or GUI Event Generator for execu-
tion.

CONSTRUCTING AN OBJECT-ORIENTED ARCHITECTURE FOR WEB APPLICATION TESTING

73

nextLine()

Test Script

fetchNextLine()

analyze()

dispatchCommand()

Test Script Interpreter

executeCommand()

GUI Event Generator

executeCommand()

Data Filler

send user-cause

event to

send user-input

data to
analyze

Fig. 13. A class diagram of the test execution subsystem.

The commands in the test script are dispatched to the applicable targets. For example,
press and move are commands for user-caused events, so they are dispatched to the GUI
Event Generator.

The section describes only the test execution tools that are directly related to Web
application testing. If necessary, traditional test execution tools [20] can also be added
into the subsystem are used to conduct the testing process jointly, with the tools de-
scribed here.

3.6 The Test Failure Analysis Subsystem (TFAS)

Test Failure Analysis includes behavior validation and analysis of the test execution
pass/failure statistics [12]. The Test Oracle [21] analyzes the execution results of the test
cases in order to determine which ones are correct before generating a Test Failure Re-
port. The Test Suite Summary Generator reads all the test cases and test results belonging
to one test suite, and generates a Test Suite Summary that reveals what percentage of test
cases passed the test.

The expectation part of the test script (i.e., the script line containing the command
expect) is employed to specify the expected results of test cases. The test script
interpreter directs the obtained Web application results to the Test Oracle, which
determines the correctness of the results. There appear to be three different Test Oracles:
the URL Oracle, Form Field Oracle, and Graphic Oracle. The URL Oracle assumes that
one test result is correct if the URL of the returned Web page matches the expected URL
of the test case. This method is suitable for static Web pages whose representation will
not change. The Form Field Oracle assumes that one test result is correct if the value of
each form field or table cell matches the expected value. This procedure is suitable for
dynamic Web pages whose representation depends on database queries. The Graphic
Oracle is suitable for ActiveX and Java Applet testing because it assumes that one test
result is correct if the graphical representation matches the expected one. It is the strictest
definition and is generally based on pixel comparison.

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

74

nition and is generally based on pixel comparison.
There are three object expectations specified by the keyword expect as shown in Fig.

12. The first occurrence of ‘expect’ specifies a kind of URL Oracle. It indicates that after
executing the HTTP Post command, the URL of the returned Web page is errorMes-
sage.html. The second occurrence of ‘expect’ is a kind of Form Field Oracle. It verifies
that the returned page contains two CGI form inputs of the Text type. Moreover, their
names are User Name and Age while their values are Sharon and 23, respectively. The
last occurrence of ‘expect’ is a kind of Graphical Oracle. It verifies that the returned im-
age is the same as the result1.bmp.

Fig. 14 depicts a TFAS class diagram. It analyzes the Test Result and creates a Test
Failure Report, which represents the validation result if the validation of the Test Result
created by the TES is performed by the Test Oracle. A tester can use a Test Result Re-
porter to create a Test Failure Report if he performs the validation manually. A tester can
use a Test Suite Summary Generator to summarize the set of previously executed and
validated test cases in order to determine how many test cases pass or fail the validation.

isCorrect()

getErrorMsg()

createReport()

setErrorCond()

Test Oracle

getErrorMsg()

setErrorMsg()

Test Failure Report

readFailureReport()

analyze()

getSummary()

Test Suite Summary

Generator

Test Suite Summary

create

analyzed by

URLMatch()

URL Oracle

fieldMatch()

Form Field Oracle

pixelCompare()

Graphic Oracle

generate

Abstract class

Concrete class

Legend

Test Result
analyzed by

setResult()

setErrorMsg()

createReport()

Test Result Reporter

create

Fig. 14. A class diagram of the test failure analysis subsystem.

3.7 The Test Measurement Subsystem (TMES)

The TMES includes test coverage measurement and analysis. The Test Coverage
Analyzer determines whether and how much of a test criterion is adequately satisfied.
Traditional software white-box testing programs are modeled to control or manage data

CONSTRUCTING AN OBJECT-ORIENTED ARCHITECTURE FOR WEB APPLICATION TESTING

75

flow, and the coverage is the percentage of statements or branches that a set of test cases
covers if the all-statements or all-branches criterion are employed. The author in [17]
modeled Web pages or programming modules as statements and modeled hyperlinks as
execution flow in traditional software testing. The coverage criterion in traditional soft-
ware testing can also be applied here.

Test coverage can be defined in an inter-module or intra-module manner in Web ap-
plications. Each Web page and programming module is modeled as statements when the
inter-module definition is applied. Test coverage should also consider the control flows
of the server-side or client-side script fragments inside Web pages and programming
modules according to the intra-module definition.

Fig. 15 depicts the structure of the TMES. The test coverage of the Web application
is computed by the Test Coverage Analyzer (TCA) based on the following two factors: (1)
the test case execution history, collected by the TES, is information regarding the mod-
ules/statements/branches executed for each test cases; (2) the information, provided by
the SDAS, includes, for example, control-flow information consisting of modules, state-
ments and branches contained in the Web application. In object-oriented Web application
testing, information about object-relations and object-states can be added in to improve
above coverage computation. This is done by constructing tools in the SDAS and TES
that keep track of the object-relation and states information of the application.

Test Case

Execution

History

Application

Information

createReport()

Test Coverage

Analyzer Test Coverage

Report

analyzed by

analyzed by

create

Fig. 15. A Class Diagram of the Test Measurement Subsystem.

4. APPLYING THE ARCHITECTURE

A Web application testing environment prototype was implemented based on the
Web application testing architecture to establish its practicality as discussed in Section
2.4. Fig. 16 is an overview of the Web application testing environment. The tools inside
the tool set are controlled by the WWW control interface, to which authorized Web
browsers can connect via HTTP. Although the sample testing environment does not apply
all of the testing artifacts in the architecture, it can perform fundamental testing tasks on
Web applications. To apply the architecture, the Web application testing environment
constructors can divide the construction process into five phases: (1) planning, (2) selec-
tion, (3) specialization, (4) integration, and (5) implementation.

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

76

Fig. 16. The web application testing environment.

Planning
The tasks that the sample testing environment should perform include: (1) testing

Web applications written in Microsoft ASP, (2) construction and composition of test
cases, (2) execution of test cases, and (3) generation of test failure and coverage reports.
Both the tested application and the testing environment are operated under the Web en-
vironment. The sample environment only needs to provide semi-automatic and manual
test case construction. In addition, the control flow information of the source program is
needed and aids the test case design. Therefore, the six subsystems SDAS, TDS, TMS,
TES, TFAS, and TMES are all employed.

Selections

The Active Server Page analyzer in the SDAS is selected and used to analyze the
tested Web application, which consists of *.asp files. The TCR, TCC, and TSCMT from
the TDS are selected since the sample testing environment supports semi-automatic and
manual test case generation and test case maintenance. The Test Script Interpreter and
the Data Filler from the TES are selected because the sample testing environment sup-
ports user-input data as input while test cases are being executed. The TCA in the TMES
is used to compute the test coverage. The Test Result Composer and the Test Suite Sum-
mary Generator from the TFAS were favored because the sample testing environment
supports user determination of the correctness of test cases while the test failure report is
being generated. Finally, the Test Suite/Case Repository, Application Information Re-
pository, and the manager from the TMS are used to manage the testing artifacts.

CONSTRUCTING AN OBJECT-ORIENTED ARCHITECTURE FOR WEB APPLICATION TESTING

77

Specialization
After the domain components from the subsystems are selected, they are altered to

fit the demands of the sample testing environment. For example, the Test Suite/Case Re-
pository and Application Information Repository are stored in a file system instead of a
database system for the sake of simplicity.

Integration

The interfaces of each component and the communication among these components
can be defined since all domain components have been specialized. Incompatible inter-
faces can be modified, or an Adapter [9] pattern can be applied to convert the interfaces
of one component into the interfaces expected by another component if some compo-
nents are incompatible.

Implementation

A concrete design architecture is built after the above phases are completed, and it is
implemented based on the specification of each component as well as through commu-
nication among components. The details of the finished sample testing environment are
given in the following subsection. The whole environment need not be implemented
from scratch in most cases as some domain components can be employed in the selection
phase if they are available. Moreover, the interface compatibility of the newly developed
components can be checked against that of existing components in the integration phase.

The ASP Script Analyzer in the SDAS implements the following features: (1) it re-
trieves the source document of the Web application from the Web server; (2) it extracts
the executable source code buried in the HTML contents; (3) it parses the ASP script and
constructs the control-flow diagram for the script; (4) it analyzes the data fields in the
HTML form embedded in the source module; (5) based on the control-flow information,
it suggests a possible set of testing paths which satisfies the all-statement coverage crite-
ria for the analyzed module. The testing environment can guide the testing staff as they
use the TCC tool to fill proper values into each data field in the HTML form which will
serve as part of the test data. The environment provides TCR or TCC tools which can be
used to construct test cases. The tools guide the staff by suggesting testing paths that can
be used to derive proper input data. On the other hand, the data allow the tested program
to execute by following the suggesting path. Fig. 17 shows a run-time snap shot of the
ASP Script Analyzer. As shown in the figure, the testing staff can specify the source
document, related database. The tool then analyzes the source document and then dis-
plays the suggested test paths, the extracted data fields inside the HTML forms as well as
other information about the source document. (Note: when the lines are counted, the
non-executable HTML lines in the source document are also counted.)

The TCR is used by testers to semi-automatically create test cases, and its initializa-
tion procedure is depicted in Fig. 18. The TCR is ready to record HTTP transactions after
the TCR daemon starts to operate. To configure the Web browser so that it will redirect
all Web-related actions through the TCR, testers set the Web browser’s HTTP proxy
property by providing the hostname and port where the TCR resides. The execution sce-
nario and input data are recorded while the tested Web application is running. After each
step in an execution scenario for the tested Web application is executed, the tester can
click on the ‘Finish Recording’ button to instruct the TCR to organize and store the re-

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

78

Fig. 17. Execution of the source document analysis subsystem.

Fig. 18. Initialization of the test case recorder.

CONSTRUCTING AN OBJECT-ORIENTED ARCHITECTURE FOR WEB APPLICATION TESTING

79

corded data. The tester needs to provide an identifier and testing description for the re-
corded test case. The recorded execution steps can be directly replayed during the test
case execution period. The recorded execution steps can also be modified by the TCC if
necessary.

The TCC is an editor that refines existing test cases and manually creates test cases.
Fig. 19 shows a sample window of the TCC. Testers can handcraft test scripts so as to
specify test cases in a more flexible manner. Test designers can change test cases by
modifying test scripts using the TCC because the testing environment stores the results of
the test case recorders and test case generators in the test repository in the form of test
scripts.

Fig. 19. The test case composer.

The Test Case Executor shown in Fig. 20 interprets designated test scripts and sends

corresponding HTTP requests according to the contents of the test script. The test execu-
tion results are stored in the testing log of the Test Suite/Case Repository, based on which
the Test Suite Summary Generator summarizes the testing reports.
Testers can select test cases from the list in the testing environment Web interface for
execution. They can choose to run the test cases in batch mode or in interactive mode.
The test cases are executed in the background without rendering of the HTML docu-
ments, and some string patterns in the returned HTML documents validate the test cases
in batch mode. However, with complicated Web applications, staff must validate the test
cases and fill in the test execution result in interactive mode.
 Fig. 21 shows the testing result of test case 6. The screen displays the test case No., ID
of the test path and the result returned by the Web server. The test oracle tool (e.g., the

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

80

Fig. 20. The test case executor.

Fig. 21. The test execution result viewer.

Graphic oracle, form-field oracle and URL oracle) in the TFAS subsystem also con-
tributes information to the testing result by comparing the expected content with the ac-
tual one. In the example, test case No.6 defines a text oracle ‘45+15=60’, so the text ora-
cle tool searches the result for the text string ‘45+15=60’ to verify the correctness of the

CONSTRUCTING AN OBJECT-ORIENTED ARCHITECTURE FOR WEB APPLICATION TESTING

81

test case. The figure shows that the text ‘45+15=60’ is found and is indicated by an arrow.
The fact that the test oracle for test case No. 6 is correct is also displayed on the
screen.tem).

Fig. 22 displays the test report produced by the Test Suite Summary Generator,
which is a tool selected from the TFAS subsystem. In the test report, testing staff can
examine the test result of each test case and compute the statement-level coverage of
executed or selected test cases. The coverage percentage shown in the report is contrib-
uted by the TCA tool of the TMES subsystem. The TCA utilizes control-flow information
from the ASP script analyzer of the SDAS as well as the log of executed statements kept
by the Application Information Repository in the TMS to compute the coverage percent-
age.

Fig. 22. The test suite summary generator.

5. CONCLUSIONS

This work has proposed a reusable architecture which can be used to construct a
Web application testing environments by extending an well-evaluated architecture and
applying some design patterns. With the architecture, an Web application testing envi-
ronment can be constructed by reusing existing tools and constructing new tools under
the following six subsystems: SDAS (source document analysis subsystem), TMS (test
management subsystem), TDS (test development subsystem), TES (test execution sub-
system), TFAS (test failure analysis subsystem) and TMES (test measurement subsys-
tem).

The Web application testing processes (e.g., test case design and execution) can be
conducted by employing the six subsystems contained within the architecture. To adapt

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

82

to the Web’s characteristics, several supplementary tools for testing Web applications
have been also proposed in this work, e.g., the test case recorder and player for Web ap-
plications. In addition, a tool integration interface for each subsystem is designed and
provided as shown in the class diagram of each subsystem. Constructors of software
testing environments for Web applications can utilize the architecture and reuse the pre-
pared tools in each subsystem to achieve their goals without designing them from
scratch.

To demonstrate its overall viability and practicality, a prototype Web application
testing environment has been built on the proposed architecture. The prototype contains
typical and necessary testing tools to achieve the required functionality in each subsys-
tem. In a prototype testing environment, the SDAS can analyze an application written in
Microsoft ASP. The TMS and the TDS work together to guide the testing staffs as they
develop test cases. The effort required to construct test cases for Web applications is re-
duced by the prototype environment’s ability to record application operating procedures
and data input in HTML Form via an Web browser. The TES and TFAS help the testing
staff execute test cases and verify the execution result. The TMES produces a test sum-
mary. The TES and TFAS can aid testing execution and reduce the effort required of the
testing staffs to automate application data input as well as result checking procedures in
the Web environments.

Because the scope of and techniques of employed Web application development are
still evolving, the Web application testing environment need to be upgraded when new
elements are added during Web application development. For example, a source codes
analyzer for Web applications may need to be used to separate program statements exe-
cuted by the Web server and browser that are mixed together in one source file. It may be
necessary to use the program analysis tools to analyze the of hyper-links navigation in
the Web application as well as the control-flow or data-flow buried in the program state-
ments. However, the architecture of the traditional software testing environment can still
be used to Web application testing after minor adaptation is done and additional en-
hanced tools are provided based on the integration interfaces defined in each subsystem.

ACKNOWLEDGEMENTS

The authors would like to thank Chunghwa Telecom Laboratories for financially
supporting this research under Contract No. TL-89-8701.

REFERENCES

1. P. Fraternali, “Tools and approaches for developing data-intensive web applications: a
survey,” ACM Computing Surveys, Vol. 31, 1999, pp. 227-263.

2. B. Fromme, “Web software testing – challenges and solutions,” InterWorks 98 Con-
ference, 1998. (Also available in http://www.interex.org/conference/sessions/home.
html)

3. Software Methods and Tools Company, “A collection of testing and testing manage-
ment tools,” in http://www.methods-tools.com/tools/testing.html.

4. Sun Microsystems, “SunTest suite,” in http://www.sun.com/suntest.
5. Softbridge Inc., “Web Analyst,” in http://www.softbridge.com.

CONSTRUCTING AN OBJECT-ORIENTED ARCHITECTURE FOR WEB APPLICATION TESTING

83

6. Mercury Interactive Corp., “Powerful test automation for enterprise – Mercury Inter-
active’s WinRunner,” in http://secure.merc-int.com/products/winrunner5/.

7. Mercury Interactive Corp., “Visual web site management – Mercury interactives’s
astra sitemanager,” in http://www.merc-int.com/products/astrasmguide.html.

8. Rational Software, “Visual test 4.0 white paper,” in http://www.rational.com/pro-
ducts/visual_test/prodinfo/whitepapers/dynamic.jtmpl?doc_key=100464.

9 E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Re-
usable Object-Oriented Software, Addison-Wesley, 1994.

10. R. Martin, D. Riehle, and F. Buschmann, Pattern Languages of Program Design 3,
Addison-Wesley, 1998.

11. D. J. Richardson, “TAOS: testing with analysis and oracle support,” in Proceedings
of ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
94), 1994, pp. 138-153.

12. N. S. Eickelmann and D. J. Richardson, “An evaluation of software test environment
architectures,” International Conference on Software Engineering (ICSE96), 1996,
pp. 353-364.

13. C. W. Krueger, “Software reuse,” ACM Computing Surveys, 1992, pp. 131-183.
14. R. V. Binder, “Testing object-oriented software: a survey,” Software Testing, Verifica-

tion and Reliability, Vol. 6, 1996, pp. 125-252.
15. D. C. Kung, J. Gao, P. Hsia, Y. Toyoshima, C. Chen, Y.-S. Kim, and Y.-K. Song,

“Developing an object-oriented software testing and maintenance environment,”
Communications of the ACM, Vol. 38, 1995, pp. 75-87.

16. D. C. Kung, P. Hsia, and J. Gao, Testing Object-Oriented Software, IEEE Computer
Society Press, Los Alamitos, California, 1998.

17. J.-T. Yang, J.-L. Huang, and F.-J. Wang, “A tool set to support web application test-
ing,” in Proceedings of the International Computer Symposium (ICS98), 1998.

18. C.-L. Hsu and F.-J. Wang, “A web database application model for software mainte-
nance,” Master Thesis, Dept. of Computer Science and Information Engineering, Na-
tional Chiao-Tung University, 1998.

19. T. Ostrand, A. Anodide, H. Foster, and T. Goradia, “A visual test development envi-
ronment for GUI systems,” in Proceedings of ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA 98), 1998, pp. 82-92.

20. M. Fewster and D. Graham, Effective Use of Test Execution Tools, Addison-Wesley,
Harlow, Essex, U.K., 1999.

21. B. Beizer, Software Testing Techniques, 2nd ed., Van Nostrand Reinhold, 1990.

Ji-Tzay Yang (楊基載) received his B.S., M.S. and Ph.D. in
Computer Science and Information Engineering from National
Chiao-Tung University, Hsinchu, Taiwan, in 1993, 1995 and
2000 respectively. From 1996 to 1997, he was an instructor of
National Chiao Tung University, where he taught network man-
agement and Internet services construction. Since 2000, he has
involved in a research project of National Chiao Tung University
on an Agent-based workflow system. His research involves
software engineering, Internet computing, software process mod-
eling and workflow system.

JI-TZAY YANG, JIUN-LONG HUANG, FENG-JIAN WANG AND WILLIAM CHENG-CHUNG CHU

84

Jiun-Long Huang (黃俊龍) received the B.S. and M.S. de-
grees in Computer Science and Information Engineering from
National Chiao Tung University, Hsinchu, Taiwan, R.O.C., in
1997 and 1999, respectively. He is currently working toward the
Ph.D. degree at Electrical Engineering Department in National
Taiwan University. His research interests include mobile com-
puting, database techniques and software engineering.

Feng-Jian Wang (王豐堅) got his B.S. degree from Na-
tional Taiwan University, 1980, and M.S. and Ph.D. degrees from
Northwestern University, U.S.A., 1986 and 1988 respectively.
He is currently a professor in the Department of Computer Sci-
ence and Information Engineering, National Chiao Tung Univer-
sity, Hsinchu. His research interests include software engineering,
OO & related techniques, the Internet, workflow and agent appli-
cations, and distributed software systems.

William Cheng-Chung Chu (朱正忠) received his M.S.
and Ph.D. degrees from Northwestern University, Evanston, Illi-
nois, in 1987 and 1989 respectively, all in computer science.
Since 1998, has been with the Department of Computer and In-
formation Science at the TungHai University, Taiwan, where he
is now a professor and department head. From 1994 to 1998, he
has been an Associate Professor at the Department of Information
Engineering at the Feng Chia University, Taiwan. Prior to join-
ing the Feng Chia University, he was a research scientist at Soft-
ware Technology Center of Palo Alto Research laboratories of

Lockheed Missiles and Space Company, Inc., where he served as a member of Software
Reverse Engineering and Software Reuse Projects and a principal investigator of Con-
verting Programming Languages to Ada project. He had received special contribution
awards from Lockheed both in the year of 1992 and 1993. In 1992, he was a Visiting
Scholar to Department of Engineering Economic System at Standford University, where
he was involved in projects related to the design and development of Intelligent Knowl-
edge Based Expert System. His current research interests include the fields of software
re-engineering, maintenance, reuse, software quality, and E-commerce.

