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Neural Network Forecast Model in Deep Excavation
J. C. Jan1; Shih-Lin Hung, M.ASCE2; S. Y. Chi3; and J. C. Chern4

Abstract: Diaphragm wall deflection is an important field measurement in deep excavation. The monitoring data are applied to
the construction performance to avoid a supporting system failure or damages incurred to adjacent structures. Despite the num
histories of construction projects and several forecasting methods, no method accurately forecasts the performance of construc
the complicated geotechnical and construction factors affecting the behavior of the diaphragm wall. This work predicts the diaphra
deflection by using the adaptive limited memory–Broyden-Fletcher-Goldfarb-Shanno supervised neural network. Eighteen case
of deep excavations with four to seven excavation stages are selected for training and verification. In addition, the knowledge
tation adopts measured wall deflections of previous excavation stages as inputs to the network. Doing so substantially red
importance of soil parameters, which are often extremely fluctuating and difficult to assess. Simulation results indicate that the
neural network can reasonably predict the magnitude, as well as the location, of maximum deflection of the diaphragm wall.

DOI: 10.1061/~ASCE!0887-3801~2002!16:1~59!

CE Database keywords: Neural networks; Excavation; Geotechnical engineering; Sensitivity analysis; Algorithm; Diaphragm w
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Introduction

In urban areas, braced diaphragm walls are generally applie
deep excavations in soft soil. A satisfactorily braced diaphra
wall not only provides for a safe excavation but also minimiz
deformations in the surrounding ground, which are of utmost
portance in avoiding costly damages to adjacent buildings. Ob
vational methods are frequently employed in deep excava
projects to ensure safe construction. Peck~1969b! first compiled
the observational data in deep excavations and tunneling in
grounds. By adopting various construction methods, he sum
rized the feasibility of excavations. Peck~1969a! also recom-
mended the observational method not be adopted unless the
signer has a plan of action for every unfavorable situation t
may arise.

The estimation of lateral wall deflections and ground set
ments has received substantial attention from practicing engin
and researchers. Finite element analyses are extensively ap
to estimate wall deflections in deep excavations. Clough
Hansen~1981! demonstrated how anisotropy clay affects brac
wall systems by performing finite element analyses. Powrie
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Li ~1991! employed finite element analyses to investigate the
fects of soil/wall/prop stiffness and the preexcavation earth p
sure coefficient. Hashash and Whittle~1996! conducted a series o
numerical experiments, that applied nonlinear finite elem
analyses to investigate how the embedment length, support
ditions, and stress history profile affect the undrained defor
tions around a braced diaphragm wall in a deep excavation.

The accuracy of ground movement prediction through fin
element analyses heavily depends on the constitutive behavi
the soil. The soil parameters applied in constitutive models
generally obtained from laboratory tests. However, the test res
are often not representative of the in situ soil behavior due
factors such as sample disturbance, change of in situ environ
and effects of construction. To minimize the effects of soil para
eters and construction factors, Gioda and Sakurai~1987! proposed
back analysis procedures to obtain modified soil parame
through the fitting of computed wall deformations and field m
surements. For example, Whittle et al.~1993! implemented a fi-
nite element analysis with an MIT-E3 soil model to simulate
top-down construction of a seven-story, underground parking
rage on Post Office Square in Boston, Mass. According to t
results, soil deformation measurements provide valuable infor
tion on how to evaluate the constitutive model for describing s
behavior. In addition, several mathematical optimization
proaches have been utilized to determine modified soil par
eters. Ou and Tang~1994! employed optimization techniques t
determine soil parameters for finite element analysis in deep
cavation. Chi et al.~1999! developed an information constructio
approach for deep excavation. Their investigation applied an
timization process to calculate back analyzed soil parame
which were then used to predict the wall deflection of subsequ
excavation stages. Although back analysis combined with fi
element analysis provides an effective numerical approach
engineers to estimate wall deflections and surface settlemen
excavations, the back analysis technique is limited to the num
of soil parameters and the soil model applied.

Artificial neural networks~ANNs! form a class of systems tha
are derived from biological neural networks. Learning is an
portant feature of artificial neural networks. Several supervi
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and unsupervised neural network learning algorithms have b
developed and explored in a number of various domains~Adeli
and Hung 1995; Haykin 1994!. ANN learning models can effec-
tively deal with qualitative, uncertain, and incomplete inform
tion. Therefore, ANN is highly promising for modeling compli
cated problems in which the governing equations are difficult
define. Flood and Kartam~1994a,b! provided a discourse on the
understanding, usage, and potential for application of artific
neural networks in civil engineering. According to their stud
artificial neural networks can be implemented in mapping, tran
tory, and optimization problems, as well as model dynamic p
cesses. Based on supervised learning algorithms, several o
researchers have applied neural network learning models in c
engineering~Hajela and Berke 1991; Ghaboussi et al. 1991; Ka
and Yoon 1994; Stephen and Vanluchene 1994; Elkordy et
1994!. In geotechnical engineering, Ni et al.~1996! applied ANN
to evaluate failure potential of slopes, and Goh~1994! introduced
the application of neural networks to evaluate liquefaction pot
tial. Juang et al.~1999! presented a technique of training ANN
with the aid of fuzzy sets theory. The technique involved modu
for preprocessing input parameters and postprocessing netw
output. They indicated that the fuzzy set-based ANN mod
could be trained with greater efficiency.

This work attempts to predict the diaphragm wall deflection
deep excavation using a supervised limited memory–Broyd
Fletcher-Goldfarb-Shanno~L-BFGS! ANN learning model~Hung
and Lin 1994!. The training data are collected from the constru
tion projects in the Taipei basin. For comparison, the conventio
finite element analysis, which involves optimization back analy
to calculate soil parameters, is also applied to evaluate these
phragm wall deflections in deep excavation.

Artificial Neural Networks „ANNs …

The ANNs form a class of systems that are derived from biolo
cal neural networks. The topology of an ANN model consists o
number of simple processing elements, called nodes, that are
terconnected to each other. Interconnection weights that repre
the information stored in the system are used to quantify
strength of the interconnections; these weights hold the key to
functioning of an ANN. ANNs have been used in a broad range
applications, including classification, pattern recognition, functi
approximation, optimization, prediction, and automatic contr
Among the many different types of ANN, the feedforward, mu
tilayered, supervised neural network with the error bac
propagation~BP! algorithm, the so-called BP network~Rumelhart
et al. 1986!, is by far the most commonly applied neural netwo
learning model owing to its simplicity. The architecture of B
networks, displayed in Fig. 1, consists of an input layer, one
more hidden layers, and an output layer.

Before an ANN can be used in the application, it needs to le
or be trained from an existing training set that consists of pairs
input-output elements. The training of a supervised neural n
work using BP learning algorithm usually involves two stage
The first stage is the data feed forward. The output of each n
is defined as

netj5(
i 51

n

Wi j oi1u j (1)

oj5 f ~netj ! (2)

whereWi j 5weight associated with theith node in the preceding
layer to thejth node in the current layer;oi5output ofith node in
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the preceding layer;u j5threshold value of nodej in the current
layer; oj5output of nodej in the current layer; and function
f5activation function, which has to be differentiable. Herein, th
sigmoid function is used as the activation function and is defin
as

f ~x!5
1

11e2x (3)

The second stage is error back-propagation and adjustmen
the weights through the network. In the training process, syst
error function is used to monitor the performance of the netwo
This system error function is defined as

E5
1

2 (
p51

P

(
k51

K

~dpk2opk!
2 (4)

whereP5number of instances in the training set; anddpk as well
as opk5desired and calculated output of thekth output node for
the pth instance, respectively. The standard BP algorithm use
gradient descent approach with a constant step length~learning
ratio! to train the network

Wi j
~k11!5Wi j

~k!1DWi j (5)

DWi j 52h
]E

]Wi j
(6)

whereh5learning ratio, which is a constant in the range of@0,1#.
The superscript indexk denotes thekth learning iteration.

BP supervised neural network learning models, however,
ways take a long time to learn. Moreover, the convergence o
BP neural~BPN! network is highly dependent upon the use of
learning rate,h. Thus, several different approaches developed
enhance the learning performance of the BP learning algorit
have been applied. One approach is to develop more effec
learning algorithms with the objective of reducing the learnin
time. Moller ~1993! developed a scaled conjugate gradient alg
rithm for fasting the supervised learning. Adeli and Hung~1994!
developed an adaptive conjugate gradient neural network~Ad-
CGN! learning algorithm and applied it to structural engineerin
Sanossian and Evans~1995! used a gradient range-based heurist
method for accelerating neural network. Another approach is
develop a parallel algorithm on multiprocesser computers w
the objective of reducing the overall computing time. For in

Fig. 1. Feedforward network with one hidden layer
2
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stance, Adeli and Hung~1993! presented a concurrent Ad-CGN
learning algorithm to a large-scale pattern recognition problem
Significant improvement for the BPN algorithm in computing
time was reported in their work. The third approach is the deve
opment of hybrid neural network learning algorithms. Hung an
Adeli ~1994! presented a parallel hybrid genetic/neural networ
learning algorithm. They reported a superior convergence pro
erty of the parallel hybrid neural network learning algorithm a
compared with a BPN learning algorithm. Besides, the perfo
mance of neural networks in engineering applications can be s
nificantly improved by selecting a suitable representational fram
work to present the training input/output pattern pairs
Gunaratnam and Gero~1994! discussed the effect of representa
tion of input/output pairs for training instances on the learnin
performance of the BPN learning algorithm in the problems o
structural design. The dimensionless representation is reported
result in a simpler mapping function and makes it possible to tra
network on a small training set and still have the capability fo
reasonable accurate predictions.

Hung and Lin ~1994! developed a more effective adaptive
L-BFGS learning algorithm based on the approach of a L-BFG
quasi Newton second-order method~Nocedal 1980! with an inex-
act line search algorithm. In the conventional BFGS method, t
approximationHk11 to the inverse Hessian matrix of function
E(W) is updated by

Hk115~ I2rkskyk
T!Hk~ I2rkyksk

T!1rksksk
T[Vk

THkVk1rksksk
T

(7)

where rk51/yk
Tsk ; Vk5I2rkyksk

T ; sk5Wk112Wk ; yk5gk11

2gk ; and gk5]E/]W. Instead of forming the matrixHk in
BFGS method, we save the vectorssk andyk . These vectors first
define and then implicitly and dynamically update the Hessia
approximation using information from the last few iterations, sa
m in the work. Therefore, the final stage of the adjusting weigh
in a BP-based ANN is modified as

W~k11!5W~k!1akdk (8)

The search direction is given by

dk52Hkgk1bkdk21 (9)

wherebk5@y(k21)
T H(k21)g(k21) /@y(k21)

T d(k21)#

The step lengthak is adapted during the learning proces
through a mathematical approach—the inexact line search al
rithm. This is used in the L-BFGS learning algorithm instead of
constant learning ratio~Hung and Lin 1994!. The inexact line
search algorithm is based on three sequential approache
bracketing, sectioning, and interpolation. The bracketing a
proach brackets the potential step length,a, between two points,
through a series of function evaluations. The sectioning approa
then uses the two points of the bracket as the initial points, redu
ing the step size piecemeal, and locating the minimum betwe
points, e.g.,a1 anda2 , to a desired degree of accuracy. Finally
the quadratic interpolation approach uses the three points,a1 ,
a2 , and (a11a2)/2, to fit a parabola to determine the step length
ak . Consequently, the step lengthak is required to satisfy the
following conditions in each iteration~Hung and Lin 1994!:

E~Wk1akdk!<E~Wk!1bak@¹E~Wk!Tdk#;

bP~0,1! and ak.0 (10)

¹E~Wk1akdk!Tdk>u@¹E~Wk!Tdk#;

uP~b,1! and ak.0 (11)
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¹E~Wk1akdk!Td~k11!,0 (12)

Hence, the problem of trial and error selection of a learning rat
in the BP algorithm was circumvented in the adaptive L-BFG
learning algorithm.

Knowledge Representation of Wall Deflection
Problem

Deep excavations are widely conducted in the construction
underground structures and the foundations of high-rise building
Therefore, a large amount of monitoring data has been accum
lated. However, due to the complexity of factors that affect th
behavior of deep excavation, the information cannot be appli
effectively to solve new problems. Herein, supervised ANN wit
adaptive L-BFGS learning models are adopted to accurately p
dict the diaphragm wall deflections employing accumulated mon
toring data. The measurement data and wall deflections from de
excavations, are collected for training purposes. The underlyi
notion of applying ANN model to predict staged constructio
problems is that during an excavation, an accurate prediction
the succeeding stage can be derived from the information of tw
or more previous stages as input to the network. In doing so, t
causes and effects of factors that determine the behavior of
modeled problems do not need to be fully understood.

Fig. 2 depicts a wall structure system, where the wall length
assumed to be 1.8 times the final excavation depth,H; R, an index
of the observation point, is the normalized depth of the measuri
point; andW and D denote the thickness of the diaphragm wa
and the depth of the current excavation, respectively. Combini
the aforementioned terms with monitored data, each instance c
sists of seven inputs and one output.

Inputs
• Wall thickness:W
• Depth of excavation surface:D
• Equivalent SPT-N value between the depth ofD20.25H and

D10.25H: N̄
• Index of observation point:R
• Wall deflection of observation point in (i 23)th excavation

stage:DR
i 23

Fig. 2. Illustration of diaphragm wall structure
RNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 2002 / 61
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• Wall deflection of observation point in (i 22)th excavation
stage:DR

i 22

• Wall deflection of observation point in (i 21)th excavation
stage:DR

i 21

Output

Wall deflection of observation point inith excavation stageDR
i .

Notably, in these instances, ifi equals 1,DR
i 21, DR

i 22 andDR
i 23 are

zero; if i equals 2,DR
i 22 andDR

i 23 are zero; and ifi equals 3,DR
i 23

is also zero.
In this study, 18 case histories of deep excavation with 4

excavation stages each, resulting in a total of 93 sets of w
deflection, are used to establish the instance base. Each
phragm wall is discretized into 18 uniform subintervals with 1
nodal points. Therefore, a total of 1,767~93319! instances are
generated and employed to train and verify the learning per
mance of the network.

Computational Results

A hidden layer feed-forward network with 7 input nodes, 15 hi
den nodes, and 1 output node was used to solve the diaphr
wall deflection problem. Fig. 3 displays the flow chart of th
verification process, as summarized in the following:
1. Select a case history for verification;
2. Train the neural network with other case histories;
3. Predict the wall deflection of subsequent excavation stag
4. After the excavation stage is completed, append the m

sured wall deflection of the excavation stage to the train
instances;

5. Retrain the neural network; and
6. Repeat Steps 3–5 until the prediction is complete.

The 18 case histories of deep excavation in the Taipei Ba
are sequentially used to verify the prediction accuracy of a neu
network. Herein, only the third to seventh excavation stages~57
sets of wall deflection! are of concern, because engineering fa
ures seldom occur in the first and second excavation sta
Hence, a total number of 1,083~57319! instances are adopted fo

Fig. 3. Flow chart of verification
62 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 20
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verification. Fig. 4 presents the forecasted maximum deflectio
of the 57 sets of wall deflection. The correlation coefficient b
tween predicted and measured maximum wall deflections
0.9081. The number of cases with relative error of predict
maximum wall deflection in the range of@0,10%#, @10,20%#, and
greater than 20% are 28, 16, and 13, respectively. If we defi
that the prediction is failed as the relative percentage error e
ceeds 20, then 77% of cases are acceptable predictions.

Furthermore, the average error of wall deflection for all ver
fication instances is 5.3 mm. The average error of the seven la
est deflection points of each excavation stage of case historie
6.4 mm. The average error of wall deflection of embedded poin
is 4.8 mm. As a result, the largest prediction error occurs near
maximum wall deflection nodal point. Additionally, for maximum
wall deflection, 38.6% of computed case histories occur at t
same nodal point, as compared with measured case histor
49.1% of maximum wall deflection of computed case histories a
only inaccurate by one nodal point. These results imply that mo
than 87% of the predicted maximum deflection point is less th
one nodal point from the observed location. Furthermore, the w
shape of predicted wall deflection resembles that of the measu
wall deflection.

For comparison, the finite element analysis involving optim
zation back analysis calculating soil parameters, proposed by
et al. ~1999!, is employed as a reference. The hyperbolic stres
strain relationship and Mohr-Coulomb plasticity are adopted f
the soil model. Four most important soil parameters are obtain
by optimization back analysis calculation. The four soil param
eters are the ratio of Young’s modulus of clay over undraine
shear strength, the ratio of Young’s modulus of sand over SPT-N,
the variation of undrained shear strength, and the undrained sh
strength at ground level.

Three excavation projects are adopted to compare the com
tational performances of ANN prediction model and the referen
approach. Both Cases A and B applied a 0.6-m thick diaphra
wall, however, the depths of the wall were 23 and 21.5 m, resp
tively. Furthermore, the walls were constructed with th
bottom-up construction method. The third case, Taipei Nation
Enterprise Center~TNEC! Case, is the construction project in
Taiwan. Ou et al.~1998! studied this case, and Chi et al.~1999!
investigated optimization of back analysis by incorporating it in
a finite element analysis. Case TNEC used a 0.9-m thick a
35-m depth diaphragm wall as the earth-retaining structure. D
fering from the other cases, however, a top-down constructi
method was applied.

Fig. 4. Computational results of predicted maximum wall deflectio
02
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Figs. 5~a and b! depict the back analysis results and AN
prediction model of Case A, where the back analysis results
curve fittings rather than predictions of measured wall deflectio
According to these figures, the optimization back analysis h
acceptable convergence in fitting measured wall deflections. A
the ANN model performs acceptable predictions. Similarly, Fig
6~a and b! illustrate the back analysis results and ANN predictio
model of Case B. The optimization back analysis in this case
a poor convergence in fitting measured wall deflections. For
ample, the magnitudes of maximum wall deflections of exca
tion stages 4 and 5 are visibly larger than the measured res
and the deflection shapes of excavation stages 3, 4, and 5
markedly dissimilar to the measured wall deflections. Howev
the predicted wall deflections from the ANN model are acce
able.

In Case TNEC, the back analyzed soil parameters from pre
ous excavation stages are applied for finite-element analysi
predict wall deflections of the subsequent excavation stage

Fig. 5. ~a! Back analysis results and artificial neural network~ANN!
prediction of case A~excavation stages 1–4! and ~b! Back analysis
results and ANN prediction of case A~excavation stage 5!
JOU

J. Comput. Civ. En
re
s.
s
o,
.

as
x-
-

lts,
are
r,
t-

i-
to
In

doing so, the prediction begins at the second excavation sta
For comparison, soil parameters based on local empirical form
las are also employed herein. Figs. 7~a and b! display the com-
puted wall deflections from ANN prediction model and the finite
element analysis. The ANN model gives acceptable prediction
wall deflections, except for excavation stages 2 and 3. Analys
results obtained from finite-element analysis, based on local e
pirical formulas, markedly differ from those of measured wal
deflection in all excavation stages. In addition, analysis resu
obtained from the finite-element analysis, using back analyz
soil parameters, satisfactorily predict the maximum wall deflec
tion except for excavation stages 2 and 3. However, the predict
wall deflections of the embedded points are inaccurate except
excavation stages 2 and 7.

Sensitivity Analysis

After an ANN model is successfully trained, the relative strengt
of effect for input element on output data can be derived based

Fig. 6. ~a! Back analysis results and artificial neural network~ANN!
prediction of case B~excavation stages 1–4! and ~b! Back analysis
results and ANN prediction of case B~excavation stage 5!
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the weights stored in the network~Yang and Zhang 1997!. This
work adopted an importance index,I ik , to express the degree o
sensitivity for each input parameterxi on one of data in output
ok . Hereinafter, the process of sensitivity analysis is summari
as follows:
1. ABP-based ANN model has been successfully trained. T

computed output for any node then can be yielded throu
the network and expressed as

ok5f~netk!, netk5(
jn

ojnWjn,k1uk (13)

ojn5f~netjn!, netjn5 (
jn21

ojn21Wjn21,jn1u jn (14)

]

~15!

oj15f~netj1!, netj15(
i

xiWi,j11uj1

Fig. 7. ~a! Comparison of back-analysis and artificial neural netwo
~ANN! predictions of the case of the Taipei National Enterprise Ce
ter ~TNEC! ~excavation stages 2–5! and ~b! Comparison of back
analysis and ANN predictions of case TNEC~excavation stages 6 and
7!
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wherexi is ith input parameter; andok , ojn , andoj 1 denote
the computed output for output nodej, hidden nodej n , and
input nodej 1 , respectively.

2. The variance of output with the change of each input para
eter can be derived. The variance is represented by the
lowing differential equation:

]ok

]xi
5

]ok

]netk

]netk
]oj

. . .
]neti

xi

5(
j n

(
j n21

. . . (
j 1

@Wj nkf 8~netk!Wj n21 j n

3 f 8~netj n
! . . . Wi j 1

f 8~netj 1
!# (16)

where j n , j n21 , . . . , andj 1 denote hidden nodes in thenth,
(n21)th, . . . , andfirst hidden layer, respectively;Wj nk de-
notes weight between thekth output node and hidden node
j n ; Wj n21 j n

denotes weight between the hidden nodesj n21

and j n ; Wi j 1
denotes weight between theith input node and

the hidden nodej 1 ; netk , netjn andnetj 1 denote weighted
sums ofkth output node, the hidden nodej n and j 1 , respec-
tively; and f 8 denotes differential function of the activation
function f.

3. The total variance of training instances as a temporary va
ableTik of xi andok

Tik5(
p
US]ok

]xi
D
p
U (17)

wherep denotespth training instances.
4. The importance index,I ik , of input parameterxi to output

dataok , therefore, can be calculated as

Iik5
Tik

Tmax
(18)

whereTmax is maximum sum of variance.
If the network converges, the termsI ik for each instance also

converge to constants. Obviously, a large value ofI ik indicates
more effect on the output data. A positive value ofI ik implies the
positive relation; i.e., the change of output data is proportional
the change of input variable. On the other hand, a negative va
of I ik specifies negative action. The output data have no relat
with the input variable when theirI ik equals zero. Herein, the
importance indexes for each input,W, D, N̄, R, DR

i 23, DR
i 22 and

DR
i 21, to the output,DR

i , are derived via the aforementioned sen
sitivity analysis process. They are 0.3204, 0.121, 0.1313, 0.1
0.271, 0.3759, and 1, respectively. Revealed from these resu
the input parametersD, N̄, and R have little influence in the
prediction of the diaphragm wall deflection. Alternately, the wa
deflection in the last excavation stage is the most important fac
for the prediction. Restated, incorporating the previous excavat
stages into the knowledge representation, which reflects both
soil and construction factors for the case to be predicted, has
important effect on the ANN prediction model.

Conclusions

In this work, the adaptive L-BFGS supervised neural network w
applied to predict the diaphragm wall deflection of deep excav
tions. Training data were collected from the construction projec
in the Taipei Basin. To compare, the conventional finite eleme
analysis involving optimization back analysis calculating soil p
rameters is also applied to evaluate these diaphragm wall defl
tions in deep excavation. The conclusions are summarized as
lows:
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1. This study presents a neural network prediction model
deep excavation in geotechnical engineering to assess
safety of retaining systems during construction. Due to t
historical information that is gathered during excavation
the limitation of understanding cause and effect, which
turn determines the behavior of the obstacles being mode
is avoided. The advantage of the ANN prediction model
that it does not require a rigorous understanding of cause
effect. Moreover, the soil models are not significant to th
predictions of wall deflections in deep excavations as co
pared with other factors.

2. In deep excavations, the artificial neural network can reas
ably predict the magnitude as well as the location of max
mum deflection of diaphragm wall. In addition, reliable pre
dictions on wall deflections in the embedded position a
also achieved. These results imply that the shape of the p
dicted wall matches that of the measured wall. As a resu
neural network prediction allows engineers to estimate t
wall structure system prior to the next excavation stage.

3. Input wall deflections of the three previous excavation stag
provides a more accurate prediction of the ensuing exca
tion stage. Also, as compared with other conventional a
proaches, the importance of soil parameters is markedly
duced. The simulation results indicate that the monitori
data involving various information reflects both the unce
tainty and the construction factors of field situations.
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