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Neural Network Forecast Model in Deep Excavation
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Abstract: Diaphragm wall deflection is an important field measurement in deep excavation. The monitoring data are applied to evaluat
the construction performance to avoid a supporting system failure or damages incurred to adjacent structures. Despite the numerous ¢
histories of construction projects and several forecasting methods, no method accurately forecasts the performance of construction du
the complicated geotechnical and construction factors affecting the behavior of the diaphragm wall. This work predicts the diaphragm wa
deflection by using the adaptive limited memory—Broyden-Fletcher-Goldfarb-Shanno supervised neural network. Eighteen case histori
of deep excavations with four to seven excavation stages are selected for training and verification. In addition, the knowledge represe
tation adopts measured wall deflections of previous excavation stages as inputs to the network. Doing so substantially reduces t
importance of soil parameters, which are often extremely fluctuating and difficult to assess. Simulation results indicate that the artificie
neural network can reasonably predict the magnitude, as well as the location, of maximum deflection of the diaphragm wall.
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Introduction Li (1991 employed finite element analyses to investigate the ef-

In urban areas, braced diaphragm walls are generally applied tofects of soil/wall/prop stiffness and the preexcavation earth pres-

deep excavations in soft soil. A satisfactorily braced diaphragm sure coefficient. Hashash and Whitkd96 conducted a series of

wall not only provides for a safe excavation but also minimizes numerical e?(perinjents, that applied nonlinear finite element
deformations in the surrounding ground, which are of utmost im- anglyses to mvesUga}e how th? embedment Iength, support con-
portance in avoiding costly damages to adjacent buildings. Obser-d.'t'ons’ and stress hlstqry profile aﬁegt the undrained dgforma—
vational methods are frequently employed in deep excavation tions around a braced diaphragm wall in a d.ee.p excavatlon: .
projects to ensure safe construction. PEL869H first compiled The accuracy of grqund movement predlcthn Fhrough f'.n'te
the observational data in deep excavations and tunneling in Softelement analyses heavily depends on the constitutive behavior of

grounds. By adopting various construction methods, he summa—the soil. The soil parameters applied in constitutive models are
rized the feasibility of excavations. Pe¢k969a also’ recom- generally obtained from laboratory tests. However, the test results

mended the observational method not be adopted unless the dere often not representative of the in situ soil behavior due to

signer has a plan of action for every unfavorable situation that factors such as sample_d|sturbar_lc_e, _change of in situ environment
may arise and effects of construction. To minimize the effects of soil param-

The estimation of lateral wall deflections and ground settle- eters and construction factors, Gioda and Sakia87 proposed

ments has received substantial attention from practicing engineer&P ack ?]ntilys%'_ft_ proc;edures tt% Obtlfldn med'ft'_ed soil d ;f)_a:gmeters
and researchers. Finite element analyses are extensively applieé'1r0ug ¢ eFI ing 0 Colmp\;'vﬁ.mwa ¢ 590;;??‘ |or|15 an ¢ |§ ;pea—
to estimate wall deflections in deep excavations. Clough and surements. For example, e e impiemented a fi-

Hansen(1981) demonstrated how anisotropy clay affects braced nite element analygis with an MIT-E3 soil model to simula.te the
wall systems by performing finite element analyses. Powrie and top-down constru_ctlon ofa S(_even-story, underground _parkmg ga-
rage on Post Office Square in Boston, Mass. According to their

results, soil deformation measurements provide valuable informa-
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and unsupervised neural network learning algorithms have been
developed and explored in a number of various doméiueli
and Hung 1995; Haykin 1994ANN learning models can effec-

tively deal with qualitative, uncertain, and incomplete informa- X B
tion. Therefore, ANN is highly promising for modeling compli-

cated problems in which the governing equations are difficult to *2 72
define. Flood and Kartar994a,b provided a discourse on the

understanding, usage, and potential for application of artificial : : :

neural networks in civil engineering. According to their study, )

artificial neural networks can be implemented in mapping, transi-

tory, and optimization problems, as well as model dynamic pro- X, Ym

cesses. Based on supervised learning algorithms, several other
researchers have applied neural network learning models in civil
engineeringHajela and Berke 1991; Ghaboussi et al. 1991; Kang
and Yoon 1994; Stephen and Vanluchene 1994; Elkordy et al.
1994. In geotechnical engineering, Ni et #.996 applied ANN

to evaluate failure potential of slopes, and G&B94) introduced Layer Layer Layer
the application of neural networks to evaluate liguefaction poten-
tial. Juang et al(1999 presented a technique of training ANNs
with the aid of fuzzy sets theory. The technique involved modules
LOJH?JE p_rl%c;ys S|Ir?dg| C:tzudt &jtaﬁiteffzf; ds ;?S;ng e}ils\llrlllg r:ggg?; I(the preceding layerg j=thr9§hold value of nodgin the curre_nt
could be trained with greater efficiency. layer; o;=output of nodej in the current layer; and function

This work attempts to predict the diaphragm wall deflection in f_=actiyation f_uncFion, which has to_be _differenti_able. He_rein, _the
deep excavation using a supervised limited memory—Broydon- sigmoid function is used as the activation function and is defined
Fletcher-Goldfarb-Shann@-BFGS) ANN learning modelHung as
and Lin 1994. The training data are collected from the construc-
tion projects in the Taipei basin. For comparison, the conventional f) =1 (3)
finite element analysis, which involves optimization back analysis

to calculate soil parameters, is also applied to evaluate these dia- The second stage is error back-propagation and adjustment of
phragm wall deflections in deep excavation. the weights through the network. In the training process, system

error function is used to monitor the performance of the network.
This system error function is defined as

Input Hidden Output

Fig. 1. Feedforward network with one hidden layer

Artificial Neural Networks  (ANNSs)

P K
The ANNs form a class of systems that are derived from biologi- E= % Z 2 (dpk—opk)2 4)
cal neural networks. The topology of an ANN model consists of a p=1k=1

number of simple processing elements, called nodes, that are inwhereP=number of instances in the training set; ahygl as well
terconnected to each other. Interconnection weights that represengsopk:desired and calculated output of tkéh output node for

the information stored in the system are used to quantify the the pth instance, respectively. The standard BP algorithm uses a
strength of the interconnections; these weights hold the key to thegradient descent approach with a constant step ledgétning
functioning of an ANN. ANNs have been used in a broad range of ratio) to train the network

applications, including classification, pattern recognition, function

k+1) _\ask

approximation, optimization, prediction, and automatic control. Wi(j )*Wi(j)JFAWii (%)

Among the many different types of ANN, the feedforward, mul- 9E

tilayered, supervised neural network with the error back- AWjj=—n W (6)
i]

propagation(BP) algorithm, the so-called BP netwofRumelhart

et al. 1988, is by far the most commonly applied neural network wherem=learning ratio, which is a constant in the rangd @ftL].

learning model owing to its simplicity. The architecture of BP The superscript indek denotes théth learning iteration.

networks, displayed in Fig. 1, consists of an input layer, one or  BP supervised neural network learning models, however, al-

more hidden layers, and an output layer. ways take a long time to learn. Moreover, the convergence of a
Before an ANN can be used in the application, it needs to learn BP neural(BPN) network is highly dependent upon the use of a

or be trained from an existing training set that consists of pairs of learning rateym. Thus, several different approaches developed to

input-output elements. The training of a supervised neural net-enhance the learning performance of the BP learning algorithm

work using BP learning algorithm usually involves two stages. have been applied. One approach is to develop more effective

The first stage is the data feed forward. The output of each nodelearning algorithms with the objective of reducing the learning

is defined as time. Moller (1993 developed a scaled conjugate gradient algo-
n rithm for fasting the supervised learning. Adeli and HU&§94
netizz Wi;0;+ 6 (1) developed an adaptive conjugate gradient neural netv_(t@d(_
i=1 CGN) learning algorithm and applied it to structural engineering.

o,=f(net) @ Sanossian and Eva§995 used a gradient range-based heuristic
] method for accelerating neural network. Another approach is to

whereW;; =weight associated with thigh node in the preceding  develop a parallel algorithm on multiprocesser computers with

layer to thejth node in the current layeo; =output ofith node in the objective of reducing the overall computing time. For in-
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stance, Adeli and Hungl993 presented a concurrent Ad-CGN w
learning algorithm to a large-scale pattern recognition problem. Ground Surface e| Ie
Significant improvement for the BPN algorithm in computing
time was reported in their work. The third approach is the devel-
opment of hybrid neural network learning algorithms. Hung and
Adeli (1999 presented a parallel hybrid genetic/neural network
learning algorithm. They reported a superior convergence prop-
erty of the parallel hybrid neural network learning algorithm as
compared with a BPN learning algorithm. Besides, the perfor-
mance of neural networks in engineering applications can be sig- N
nificantly improved by selecting a suitable representational frame- 1.8H R=0.56
work to present the training input/output pattern pairs.
Gunaratnam and Gerd 994 discussed the effect of representa-
tion of input/output pairs for training instances on the learning
performance of the BPN learning algorithm in the problems of
structural design. The dimensionless representation is reported to
result in a simpler mapping function and makes it possible to train RA R=1
network on a small training set and still have the capability for
reasonable accurate predictions.

Hung and Lin (1994 developed a more effective adaptive
L-BFGS learning algorithm based on the approach of a L-BFGS
quasi Newton second-order meth@ddbcedal 198Dwith an inex- VE(Wy+ady) Tdcs1)<0 (12)
act line search algorithm. In the conventional BFGS method, the
approximationH,, ; to the inverse Hessian matrix of function
E(W) is updated by

His 1= (1= piseyi) Hil I = piyiest) + pisesi = Vi H Vi + prsest
(7)

where pi= 1S Vel = pist: S Wi = Wi Y= Gkt
—0; and ge=9dE/dW. Instead of forming the matribH, in
BFGS method, we save the vectgsandy, . These vectors first
define and then implicitly and dynamically update the Hessian
approximation using information from the last few iterations, say
m in the work. Therefore, the final stage of the adjusting weights
in a BP-based ANN is modified as

“ Temporary Excavation Surface

Diaphragm wall

Final excavation Surface

0.8H
Embedment

A

Fig. 2. lllustration of diaphragm wall structure

Hence, the problem of trial and error selection of a learning ratio
in the BP algorithm was circumvented in the adaptive L-BFGS
learning algorithm.

Knowledge Representation of Wall Deflection
Problem

Deep excavations are widely conducted in the construction of
underground structures and the foundations of high-rise buildings.
Therefore, a large amount of monitoring data has been accumu-
lated. However, due to the complexity of factors that affect the

behavior of deep excavation, the information cannot be applied
WD = WK + o, dy (8) effectively to solve new problems. Herein, supervised ANN with

adaptive L-BFGS learning models are adopted to accurately pre-

The search direction is given by dict the diaphragm wall deflections employing accumulated moni-

di=—H 0+ Brde—1 (9) toring data. The measurement data and wall deflections from deep
T T excavations, are collected for training purposes. The underlying
whereB=[Y - 1)Hxk-1)9k-1)/[Y(k-1ydk-1)] notion of applying ANN model to predict staged construction

The step lengtha, is adapted during the learning process problems is that during an excavation, an accurate prediction of
through a mathematical approach—the inexact line search algo-the succeeding stage can be derived from the information of two
rithm. This is used in the L-BFGS learning algorithm instead of a or more previous stages as input to the network. In doing so, the
constant learning ratigHung and Lin 1994 The inexact line causes and effects of factors that determine the behavior of the
search algorithm is based on three sequential approaches—modeled problems do not need to be fully understood.
bracketing, sectioning, and interpolation. The bracketing ap-  Fig. 2 depicts a wall structure system, where the wall length is
proach brackets the potential step lengthpetween two points,  assumed to be 1.8 times the final excavation détty, an index
through a series of function evaluations. The sectioning approachof the observation point, is the normalized depth of the measuring
then uses the two points of the bracket as the initial points, reduc-point; andW andD denote the thickness of the diaphragm wall
ing the step size piecemeal, and locating the minimum betweenand the depth of the current excavation, respectively. Combining
points, e.g.o; anda,, to a desired degree of accuracy. Finally, the aforementioned terms with monitored data, each instance con-
the quadratic interpolation approach uses the three paints, sists of seven inputs and one output.

a,, and (@, +a,)/2, to fit a parabola to determine the step length,
a. Consequently, the step length, is required to satisfy the

. e . . . . Input
following conditions in each iteratiofHung and Lin 1994 .np\sl\/;” thicknesswW
E(Wy+ o d) <E(Wy) +Bay [ VE(W) Td,]; » Depth of excavation surfac®

» Equivalent SPT-N value between the depthDof 0.25H and

Be(0,) anda,>0 (20) D+0.2%H: N

VE(W, + a,dy) Tde=0[ VE(W,) Tdy ]; * Index of observation poinR - .

» Wall deflection of observation point ini {3)th excavation

0e(B,1) and >0 (11) stage:AR *
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@ verification. Fig. 4 presents the forecasted maximum deflections
of the 57 sets of wall deflection. The correlation coefficient be-
Fig. 3. Flow chart of verification tween predicted and measured maximum wall deflections is

0.9081. The number of cases with relative error of predicted
maximum wall deflection in the range {,10%4, [10,20%, and
» Wall deflection of observation point ini £ 2)th excavation  greater than 20% are 28, 16, and 13, respectively. If we define

stage:Aj 2 that the prediction is failed as the relative percentage error ex-
+ Wall deflection of observation point ini { 1)th excavation  ceeds 20, then 77% of cases are acceptable predictions.
stage:Ai ! Furthermore, the average error of wall deflection for all veri-

fication instances is 5.3 mm. The average error of the seven larg-
est deflection points of each excavation stage of case histories is

Output 6.4 mm. The average error of wall deflection of embedded points
Wall deflection of observation point iith excavation stagAiR. is 4.8 mm. As a result, the largest prediction error occurs near the
Notably, in these instances,iiequals 1A% *, Ak, 2 andAl 2 are maximum wall deflection nodal point. Additionally, for maximum
zero; ifi equals 2Ak% 2 andAl; 2 are zero; and if equals 3A} 3 wall deflection, 38.6% of computed case histories occur at the
is also zero. same nodal point, as compared with measured case histories;

In this study, 18 case histories of deep excavation with 4—7 49.1% of maximum wall deflection of computed case histories are

excavation stages each, resulting in a total of 93 sets of wall only inaccurate by one nodal point. These results imply that more
deflection, are used to establish the instance base. Each diathan 87% of the predicted maximum deflection point is less than
phragm wall is discretized into 18 uniform subintervals with 19 ©one nodal point from the observed location. Furthermore, the wall
nodal points. Therefore, a total of 1,7693x19) instances are shape of predicted wall deflection resembles that of the measured

generated and employed to train and verify the learning perfor- wall deflection.
mance of the network. For comparison, the finite element analysis involving optimi-

zation back analysis calculating soil parameters, proposed by Chi

et al. (1999, is employed as a reference. The hyperbolic stress-
Computational Results strain relationship and Mohr-Coulomb plasticity are adopted for

the soil model. Four most important soil parameters are obtained
A hidden layer feed-forward network with 7 input nodes, 15 hid- by optimization back analysis calculation. The four soil param-
den nodes, and 1 output node was used to solve the diaphragngters are the ratio of Young's modulus of clay over undrained
wall deflection problem. Fig. 3 displays the flow chart of the shear strength, the ratio of Young's modulus of sand over 8PT-
verification process, as summarized in the following: the variation of undrained shear strength, and the undrained shear
1. Select a case history for verification; strength at ground level.
2. Train the neural network with other case histories; Three excavation projects are adopted to compare the compu-
3. Predict the wall deflection of subsequent excavation stage; tational performances of ANN prediction model and the reference
4. After the excavation stage is completed, append the mea-approach. Both Cases A and B applied a 0.6-m thick diaphragm

sured wall deflection of the excavation stage to the training wall, however, the depths of the wall were 23 and 21.5 m, respec-

instances; tively. Furthermore, the walls were constructed with the
5. Retrain the neural network; and bottom-up construction method. The third case, Taipei National
6. Repeat Steps 3-5 until the prediction is complete. Enterprise CentefTNEC) Case, is the construction project in

The 18 case histories of deep excavation in the Taipei Basin Taiwan. Ou et al(1998 studied this case, and Chi et 81999
are sequentially used to verify the prediction accuracy of a neural investigated optimization of back analysis by incorporating it into
network. Herein, only the third to seventh excavation std§&s a finite element analysis. Case TNEC used a 0.9-m thick and
sets of wall deflectionare of concern, because engineering fail- 35-m depth diaphragm wall as the earth-retaining structure. Dif-
ures seldom occur in the first and second excavation stagesfering from the other cases, however, a top-down construction
Hence, a total number of 1,0837x19) instances are adopted for method was applied.

62 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING / JANUARY 2002

J. Comput. Civ. Eng. 2002.16:59-65.



Downloaded from ascelibrary.org by National Chiao Tung University on 04/30/14. Copyright ASCE. For personal use only; all rights reserved.

Wall Displacement (mm)

Wall Displacement (mm)

0 20 40 60 O 20 40 60 20 40 60 0O 20 40 60
[ AP IR B I NV I T M NP P T Sl PR S I
Stage 1 [} | Stage 2 Stage 1 ¢ Stage 2
104
i CASEA CASE B
20 = Measured — Measured
—5—  ANN Predicted —6—B. A. Result
— —o— B.A.Result o —o— ANN Predicted
£ £
o ] o’
'i;.;- ] lv.\ el | %— ! b al P I
o Stage 3 Stage 4 [a] Stage 4
Wall Displacement (mm) Wall Displacement (mm)
0 20 40 60 80 100 120 0 20 40 6C 80 100120
P TSI I T T
. 4, Stage 5
— = -
E g
A = 10
= =
L Q -
3 0
a o
14 CASE B
cﬁﬁ‘j&[‘;j 20¢ Measured
. —6— B. A. Result
1 o A e 1 —o— ANN Predicted

Fig. 6. (a) Back analysis results and artificial neural netwOhNN)
prediction of case Bexcavation stages 1)4nd (b) Back analysis
results and ANN prediction of case @xcavation stage)5

Fig. 5. (a) Back analysis results and artificial neural netwoihN)
prediction of case Aexcavation stages 1)4nd (b) Back analysis
results and ANN prediction of case (@xcavation stage)5

doing so, the prediction begins at the second excavation stage.
For comparison, soil parameters based on local empirical formu-
las are also employed herein. Figga@and b display the com-
puted wall deflections from ANN prediction model and the finite-
element analysis. The ANN model gives acceptable prediction of
wall deflections, except for excavation stages 2 and 3. Analysis
results obtained from finite-element analysis, based on local em-
pirical formulas, markedly differ from those of measured wall
deflection in all excavation stages. In addition, analysis results
obtained from the finite-element analysis, using back analyzed

Figs. Ha and b depict the back analysis results and ANN
prediction model of Case A, where the back analysis results are
curve fittings rather than predictions of measured wall deflections.
According to these figures, the optimization back analysis has
acceptable convergence in fitting measured wall deflections. Also,
the ANN model performs acceptable predictions. Similarly, Figs.
6(a and b illustrate the back analysis results and ANN prediction
model of Case B. The optimization back analysis in this case has

a poor convergence in fitting measured wall deflections. For ex- oil parameters. satisfactorily predict the maximum wall deflec
ample, the magnitudes of maximum wall deflections of excava- soip S, salls ly predi Ximum w )

tion stages 4 and 5 are visibly larger than the measured resultstlon except_for excavation stages 2 ?“d 3. quever, the predicted
and the deflection shapes of excavation stages 3, 4, and 5 aré(vall deflections of the embedded points are inaccurate except for

markedly dissimilar to the measured wall deflections. However, excavation stages 2 and 7.
the predicted wall deflections from the ANN model are accept-

able. _ ~ Sensitivity Analysis
In Case TNEC, the back analyzed soil parameters from previ-

ous excavation stages are applied for finite-element analysis toAfter an ANN model is successfully trained, the relative strength
predict wall deflections of the subsequent excavation stage. Inof effect for input element on output data can be derived based on
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Fig. 7. (a) Comparison of back-analysis and artificial neural network
(ANN) predictions of the case of the Taipei National Enterprise Cen-
ter (TNEC) (excavation stages 23%nd (b) Comparison of back
analysis and ANN predictions of case TNE&cavation stages 6 and
7)

the weights stored in the netwotkang and Zhang 1997 This
work adopted an importance inde,, to express the degree of
sensitivity for each input parametgr on one of data in output

wherex; is ith input parameter; andy, 0j,, ando;; denote
the computed output for output nogiehidden nodg,, and
input nodej,, respectively.

2. The variance of output with the change of each input param-
eter can be derived. The variance is represented by the fol-
lowing differential equation:

90, 0, nef  ane
ax  onek a5 T X
ZE E .. 2 [ankf’(netk)aniljn
Jn Jn-1 J1
Xf’(net,—n)...Wijlf’(netjl)] (16)
wherej,, jn-1, - - ., andj; denote hidden nodes in thmgh,
(n—=1)th, ..., andfirst hidden layer, respectivelenk de-

notes weight between thdéh output node and hidden node
Jn: W ; denotes weight between the hidden nogies,
andj,; W;; denotes weight between thih input node and
the hidden nodg¢, ; net,, net, andnet; denote weighted
sums ofkth output node, the hidden noglgandj,, respec-
tively; and f’ denotes differential function of the activation
functionf.
3. The total variance of training instances as a temporary vari-
ableT;, of x; andoy
90,
w3 5]
P

wherep denotespth training instances.
4. The importance indeX;,, of input parametek; to output

datao,, therefore, can be calculated as

T
ik Tmax
whereT ., IS maximum sum of variance.
If the network converges, the ternhg for each instance also

converge to constants. Obviously, a large valud;pfindicates
more effect on the output data. A positive valud gfimplies the
positive relation; i.e., the change of output data is proportional to
the change of input variable. On the other hand, a negative value
of I, specifies negative action. The output data have no relation
with the input variable when their;,, equals zero. Herein, the
importance indexes for each inpW, D, N, R, Ak %, Ak 2 and
AiR‘l, to the outputAiR, are derived via the aforementioned sen-
sitivity analysis process. They are 0.3204, 0.121, 0.1313, 0.173,
0.271, 0.3759, and 1, respectively. Revealed from these results,
the input parameter®, N, and R have little influence in the
prediction of the diaphragm wall deflection. Alternately, the wall
deflection in the last excavation stage is the most important factor
for the prediction. Restated, incorporating the previous excavation

(17

(18)

o . Hereinafter, the process of sensitivity analysis is summarized stages into the knowledge representation, which reflects both the

as follows:

soil and construction factors for the case to be predicted, has an

1. ABP-based ANN model has been successfully trained. The important effect on the ANN prediction model.

computed output for any node then can be yielded through
the network and expressed as

o="f(net), net<=2 0jnWin k1 0k (13)
in
Ojn= f(neﬁn)a neﬁn: .nzl ojn—l\Njn—l,jn + 6jn (14)
in—

(15
Oj1=f(ne11‘-1), nel§1=2 XiV\/i’j1+6]-1
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Conclusions

In this work, the adaptive L-BFGS supervised neural network was
applied to predict the diaphragm wall deflection of deep excava-
tions. Training data were collected from the construction projects
in the Taipei Basin. To compare, the conventional finite element
analysis involving optimization back analysis calculating soil pa-
rameters is also applied to evaluate these diaphragm wall deflec-
tions in deep excavation. The conclusions are summarized as fol-
lows:
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1. This study presents a neural network prediction model for

interpretation of field measurements in geomechanilcg.”J. Numer.

deep excavation in geotechnical engineering to assess the Analyt. Meth. Geomechll, 555-583.

safety of retaining systems during construction. Due to the
historical information that is gathered during excavations,
the limitation of understanding cause and effect, which in

turn determines the behavior of the obstacles being modeled,

is avoided. The advantage of the ANN prediction model is

that it does not require a rigorous understanding of cause and

effect. Moreover, the soil models are not significant to the
predictions of wall deflections in deep excavations as com-
pared with other factors.

2. In deep excavations, the artificial neural network can reason-
ably predict the magnitude as well as the location of maxi-
mum deflection of diaphragm wall. In addition, reliable pre-
dictions on wall deflections in the embedded position are

also achieved. These results imply that the shape of the pre-

dicted wall matches that of the measured wall. As a result,
neural network prediction allows engineers to estimate the
wall structure system prior to the next excavation stage.

3. Input wall deflections of the three previous excavation stages
provides a more accurate prediction of the ensuing excava-
tion stage. Also, as compared with other conventional ap-
proaches, the importance of soil parameters is markedly re-
duced. The simulation results indicate that the monitoring
data involving various information reflects both the uncer-
tainty and the construction factors of field situations.
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