Code compression techniques using operand field

remapping

K.Lin and C.-P.Chung

Abstract: Dictionary-based code compression stores the most frequently used instruction
sequences in a dictionary, and replaces the occurrences of these sequences in the program with
codewords. The large dictionary size is due mainly to many instruction sequences which are
different only in operands, but are otherwise the same. The operand factorisation technique
divides the expression tree into tree-pattern (opcode sequence) and operand-pattern (operand
sequence) to reduce this redundancy; instruction sequences with the same opcodes but different
operands may thus share the same tree-pattern dictionary entry. The paper proposes an operand
field remapping method to further reduce dictionary size. The key idea is to explore the relations
between the current operand to be compressed with those already compressed. The operand-
pattern dictionary is therefore divided into an operand remapping dictionary and an operand list
dictionary. Each entry in the operand remapping dictionary indicates whether the operand (register
or immediate value) to be compressed is the most used operand, the same as the destination
register of the previous instructions, or otherwise. With this remapping technique, the operand
dictionary size is greatly reduced. An average 46% compression ratio can be achieved where

compression ratio = (dictionary size + compressed code size)/(original program size).

1 Introduction

Embedded processors are highly constrained by cost, size,
and power. Reducing the program size of the embedded
systems is important to reduce system size, cost and power
consumption, and to speed-up program execution.
Compression methods fall into two categories: statistical
[1, 2] and dictionary [3—5]. Statistical compression takes
advantage of replacing frequently used instructions with
smaller codewords to reduce the code size. Dictionary-
based compression methods store frequently used instruc-
tion sequences in a dictionary and replace the occurrences
with shorter codewords. Classification is made based on
compression granularity: Program-based methods [6]
compress the whole program and expand it back before
execution, while Procedure-based methods [7] reduce the
granularity to a procedure. These two methods avoid the
difficulties of branch target re-addressing, and provide
the software with an opportunity to help the systems to
execute the compressed code directly, at the cost of
execution speed and a larger decompression buffer.
Instruction-block-based [1-4] or instruction-based [5—10]
methods achieve effective decompression and execution
with a much smaller decompression buffer. A front-end
decompression engine is used to decompress the instruc-
tions and send them to the CPU on the fly, thus speeding up
the execution.

© IEE, 2002
IEE Proceedings online no. 20020157
DOI: 10.1049/ip-cdt:20020157

Paper first received 2nd October 2000 and in revised form 2nd October
2001

The authors are with the Department of Computer Science & Information
Engineering, National Chiao Tung University, 1001 Ta Hsueh Rd.,
HsinChu, Taiwan, 300

IEE Proc.-Comput. Digit. Tech., Vol. 149, No. 1, January 2002

This paper proposes an instruction-block, dictionary-
based compression technique named ‘operand field remap-
ping’. This method divides the operand-pattern dictionary
into an operand remapping dictionary and an operand list
dictionary to reduce its size. The entries in the operand
remapping dictionary indicate whether the operand (regis-
ter or immediate value) to be compressed is the most used
operand, the same as the destination register of the
previous instruction, or otherwise. With this remapping
technique, the operand dictionary size is reduced signifi-
cantly and the compression ratio is improved.

2 Related code compression work

One way to achieve a reduction in codes is to restrict the
size of instructions. This is the approach adopted in the
design of the Thumb [9] and MIPS16 [10] for ARM7 [11]
and MIPS-III [10] processors, respectively. Shorter instruc-
tions are achieved mainly by restricting the number of bits
that encode registers and immediate values. This results in
30—40% smaller programs running 15-20% slower than
programs using a standard RISC instruction set [10, 12].

Another way to reduce the size of a program is to
compress the codes by general compression methods.
Lefurgy [3] proposed a dictionary-based compression
method named Compressed Program Processor (CPP).
This method simply stores one copy of common instruction
sequences in the dictionary and replaces the occurrences
with codewords. Average compression ratios of 61%, 66%
and 74% were reported for the PowerPC, ARM and i386
processors respectively.

Wolfe [2] proposed a statistical compression method in
a Compressed Code RISC Processor (CCRP) using
Huffman-encoding [13]. A Line Address Table (LAT) is
used to map the original program instruction addresses

25

to the compressed code instruction addresses. The size of
the LAT is approximately 3% of the original program size.
A cache-like hardware called the Cache Line Address
Lookaside Buffer (LCB) stores the most recent referenced
LAT entries, so the cache refill engine can rapidly translate
the addresses and fill the instructions. An average compres-
sion ratio of 73% on MIPS R2000 is reported.

Araujo [4] finds that most frequently used instruction
sequences are identical with either opcode sequences or
operand sequences, but not both, so that he separates the
dictionary into a tree-pattern dictionary and an operand-
pattern dictionary. The decompression engine reassembles
the instruction sequence by combining the entries in both
dictionaries indexed by the codeword pair of opcode and
operand. The average compression ratio for this scheme is
43% using Huffman [13] and 48% using MPEG-2 VLC
[14].

A language grammar-based code compression method
[15, 16] accepts a grammar for programs written using a
simple bytecoded, stack-based instruction set, as well as a
training set of sample programs. The system transforms the
grammar, creating an expanded grammar that represents
the same language as the original grammar. An average
compression ratio of about 36% [15] is reported.

3 Operand field remapping

The key idea in this paper involves the transformation of
the operands to reduce the dictionary size, and the follow-
ing subsections describe the detailed operand field remap-
ping method.

3.1 Instruction reformatting

To establish the compression model, consider first the
instruction formats (Appendix, Section 8.1) of the
embedded processor ARM7TDMI [11]. All fields in
the instruction format except opcodes (in conjunction
with some fixed bits) are considered operands. The condi-
tion field, registers and immediate values are manipulated
as multiples of 4 bit operand fields (OF) for simple
hardware decompression. For example, Fig. 1a shows a

31 2827 2019 1615 1211 43 0 bit
a | Cond 000 [opcode[S| RN. | RD. | Shiftvalue | RM.]

b | OF; | newopcode | OF, | OF; | OF, | OF; [OFg |

Fig. 1 instruction reformatting

a Original ARM7TDMI instruction format
b New compression/decompression format

shift instruction, which can be reformatted as Fig. 15: a 4
bit conditional field as an OF, the opcode with some fixed-
value bits (‘000’and S) as the new opcode, RN, RD and
RM as three OFs, and an 8 bit shift value as two OFs.

3.2 Operand factorisation

The opcode sequences were extracted by factorising all of
the OFs from the instruction sequences and storing them
into the opcode dictionary (OPD). All the OFs are removed
from the instructions sequence to form the operand field
dictionary (OFD). For example, the instruction sequence in
Fig. 2a is factorised as shown in Figs. 2b and 2c. An
occurrence of the instruction sequence is now replaced
with a codeword consisting of two parts: Idxopp and
Idxopp indexing to the OPD and to the OFD, respectively,
as shown in Fig. 3.

3.3 Operand field remapping

Note that there are many dependencies among the operands
in an instruction sequence, e.g. a destination register may
immediately be used as the source operand of the following
instructions, or a source operand may be re-used. There-
fore, if we could use fewer bits than that of OF to record
the dependencies instead of storing the OF itself, further
reduction in OFD size may be achieved. To use this
advantage, the OFD is transformed into an operand remap-
ping dictionary (ORD) and an operand list dictionary
(OLD). The former records the dependency relations and
the latter records the modified operand lists after remap-
ping. This method is termed the ‘operand field remapping’
technique.

The Idxorp in the original codeword is now split into
two parts: Idxorp and Idxorp, indexing to an ORD entry
and an OLD entry, respectively. Each entry in the ORD
contains six fields, called mapping tags, to specify the six
OFs of an instruction. The tag provides two kinds of
operation: load and mapping. When a load operation is
specified, an operand is loaded from the OLD entry
indexed by Idxorp into the corresponding OF of the
instruction. The load operation then also pushes the
loaded operand into a mapping queue (MQ) such that
other tags can map to this operand. When a mapping
operation is specified, an operand in the MQ at a position
specified by the value of the tag is loaded. So, if an operand
depends on an operand in the previous instruction, which
was loaded from the OLD by a previous load tag, then the
latter tag can load it from the MQ. This reduces the
repetitions in OFD. For a 2 bit mapping tag as an example,

Cond Opcode RN RD Shift Imm

cmp r1, #1 1110 ([00110101| 0001 0000 | 0000 | 0000 0001
a

beq OxE 0000 (10101111| 0000 | 0000 | 0000 | 0000 1110

addeq r3, r1, #0xEO 0000 |00101001| 0001 | 0011 [0000 | 1110 0000
b 00110101 10101111 | 00110101

1110 | 0001 | 0000 | 0000 | 0000 | 0001
c 0000|0000 | 0000|0000 | 0000|1110

0000 | 0001|0011 | 0000|1110 | 0000

Fig. 2 Operand factorisation

a Instruction sequences and their formats

b Opcode sequences
¢ Factorised operand fields

26

IEE Proc.-Comput. Digit. Tech., Vol. 149, No. 1, January 2002

opcode dictionary

, 00110101

10101111 | 00110101

inst memory

uncompressed inst

uncompressed inst

uncompressed inst

operand field dictionary

L ldopp dorp oo J/1110|0001 /0000|0000 |0000|0001
. 0000|0000 |0000|0000[{0000|1110

uncompressed inst
0000|0001 |0011|0000|1110|0000

uncompressed inst

Fig. 3 Codewords consisting of ldxppp and Idxorp indexing to the OPD and OFD

‘00’ means a load operation, and ‘01-11" signify mapping
operations that index to the first, second, or third operand
in the MQ. When the MQ is full and a further operand is
pushed into it, the oldest MQ entry is pushed out and
disappears. Further reference to this operand will need a
load tag to load it from the OLD again.

Fig. 4 illustrates the operand remapping technique using
the example in Fig. 2. First, the three opcodes of the
instruction sequence are stored into OPD. Next, notice
that the first three operands of the first instruction are
different, that three load tags ‘00’ are required to load three
operands ‘1110, ‘0001” and ‘0000°’. Since the fourth and
fifth operands are the same as the third one, these are
simply mapped to the third operand. Two mapping tags
‘11’ are used to indicate the operand in the MQ at position
3. The last operand is the same as the second operand, a
mapping tag ‘10’ is needed. These six tags form one entry
to the ORD. The second and third instructions are coded in
the same way.

3.4 Use of operand majority

An operand sequence usually contains some value that
appears more frequently. The most frequently used operand
is termed the first majority, the second most frequent, the
second majority, and so on. Use of the majorities in
remapping is extremely efficient, and can reduce the
OLD size. These majorities are stored in majority registers
(MRs) and include tags to map the OF's to these majorities
(refer to the example in Fig. 4). The value ‘1110° is
assumed to be the majority operand in the OLD. Fig. 5

illustrates the remapping technique applied to the original
code in Fig. 4. The mapping tag 11 is assigned to the
majority. Here the tag 00 still implies a load operation, and
tags 01-10 are mapping operations.

3.5 Size of mapping tag

In this Section, OFD size reduction is evaluated when
various sizes of mapping tags are applied. The benchmarks
tested come from the MediaBench [17]. MediaBench
contains applications culled from available image proces-
sing, communications and DSP applications. Appendix,
Section 8.2 provides a summary of the programs in
MediaBench. The benchmark programs are compiled for
ARMT7TDMI [11] using the ARM’s Software Development
Toolkit (SDT) ARMCC [18]. All the experimental
programs are compiled with ‘-O2’ optimisation.

Figs. 68 show the ratios of the size of ORD plus OLD
over the size of the original OFD using 3 bit, 2 bit and 1 bit
mapping tags, respectively. The x-axis categorises the
benchmark programs and the y-axis shows the size reduc-
tion ratio. In Fig. 6, each program has eight lines, indicat-
ing 0-7 majorities, respectively. It was found that
introducing the first majority reduces the OFD most, but
the greater the number of majorities, the smaller the
reduction in OLD size and the larger the increment in
ORD size. The best case is to use one tag 000 for load
operation, four tags 001-100 for mapping and three tags
101-111 for majorities. This tag assignment saves about
70% of the OFD size. In Fig. 7, each program has four
lines, indicating 0—3 majorities, respectively. The best case

opcode dictionary

00110101/1010111100110101

operand remapping dictionary

CTTTTTTTTTTTTT T "loo |00 |00 [11 |11 |10
1

: 11 |11 [11 {11 [11 |01

ldxopp IdXoRp ldxorp 11 |10 [00 |10 |00 |01
codeword

operand list dictionary

111o|ooo1 |oooo|oo11 |111o|

Fig. 4 Codeword consisting of Idxopp, ldxorp and Idxopp indexing into the OPD, ORD and OLD, respectively

IEE Proc.-Comput. Digit. Tech., Vol. 149, No. 1, January 2002

27

opcode dictionary

,|/00110101

1010111100110101

operand remapping dictionary

11

00 (00|10 |10 |O1

10

10 |10 |10 |10 |11

10

01 |00 |01 |11 [O1

majority register

operand list dictionary

--------- + 0001 [0000 | 0011 |

Fig. 5 Majority remapping method

ratio to OFD

gggggggge.gegeg
2 6 2 6 § 5= & & 8 8% 8 & 8§ <«
o O T © D 9O O ¥ ™ o € O
@ c & @ <
o 5 a v © 2 % 2 =2 g
S8 8§ F T S
g g & ¢F
Qa o
€ E
benchmark

Fig. 6 Dictionary size reduction using a 3 bit mapping tag

H ORD
[JOLD

is one tag 00 for load operation, the other tags 01-11 for
majorities. In Fig. 8 the best case is one tag 0 for load
operation and one tag 1 for the majority. However, Figs. 7
and 8 show that the size reductions are minor. The reason
for this unsatisfactory result is that the mapping tag is too
small to take advantage of the remapping. It is concluded
that a 3 bit mapping tag is needed to achieve the best
compression ratio.

0.7 p
0.6k -
.llll.- e .
a 0571
[
O 0.4 H
[e]
iei
203
©
0.2 H
0.1 H
0
28 282588 g8 EgcEQ
S 6 & o § 5 6 06 8§83 8 & 8 <
c Q9 T © D 0 0 ¥ ¥ S £ B
< S e & 5§ 9 v & 53 a
S ¢ 8§88 :%: 5 %
o o ©8 & = 2
o @
Q a
g E
benchmark

Fig. 7 Dictionary size reduction using a 2 bit mapping tag

H ORD
[JOLD

28

09
0.8k
0.7
2 o6
(@]
90.5
° 0.4
‘50.3
0.2
0.1
0
2 2 » g 2 5 8 8 00 £ 2 E D
2 ¢ 2 9 8§ 5 8 g 33 8 8 8 <
o 8§ T 2 2 8 28 8 3 © £ ©
° @ 8 3 8 g s = S5 2
> S 8 83 B 5
(9] (]
[oR Q
g E
benchmarks
Fig. 8 Dictionary size reduction using a 1 bit mapping tag
B ORD

[J OLD

3.6 Identities of the condition field

All ARM instructions contain a condition field (Cond in
Fig. 1) which controls the instruction to be executed
depending on the N (Negative), Z (Zero), C (Carry), and
V (oVerflow) flags in the current program status register
(CPSR) [11]. Experiments reveal that the values in the
condition fields of 82% of instructions depend on the
previous or the following instructions. Only 18% of
instructions have a different condition value from those
of their neighbours. Therefore, when building the OPD, a
restriction is made that the instruction sequence must have
the same condition code. We can then remove the condition
field from the OLD. A condition code new stands for all
instructions of a sequence and is encoded separately.

4 Compression algorithm

First, the benchmark programs are compiled to the execu-
tables using ARMCC [18]. Instruction sequences with the
same opcode sequence are extracted from the basic blocks
to avoid the branch instructions jumping within them. The
opcode sequences are put in the OPD. Each OPD entry has
two fields: an opcode field (8 bits) and a boundary field
(1 bit). The opcode field contains the opcode of an
instruction and the boundary bit indicates whether this
instruction is the end of a sequence. The OF sequence is
separated into the OF mapping sequence and operand list
using 3 bit mapping tags. The OF mapping sequences
make up the ORD and the operand lists make up the OLD.
It is assumed that the first OPD, ORD and OLD entries of

IEE Proc.-Comput. Digit. Tech., Vol. 149, No. 1, January 2002

the first instruction of a sequence must be aligned to the
byte boundary, while the following entries are arranged
side by side.

As all dictionary entries are defined, the occurrences of
the instruction sequence are replaced with codewords. A
variable-length codeword is used in our compression
method to give a better compression ratio. A codeword
consists of four parts: a condition code encoding (CC), an
index to OPD (Idxopp), an index to ORD (Idxorp) and an
index to OLD (Idxorp). All of these four parts are coded
separately using Huffman coding [13]. An instruction

Table 1: Detail compression ratio for all benchmarks

sequence is coded into the form [CC Ildxgpp Idxorp
Idxp;pl, and the compressed program consists of a list
of quadruple: [CC] [dePD] [deRDI [deLDI CCZ]dePDZ
IdeRDZ IdeLDZ ce CC,, IdePDn [deRDn IdeLDn]- The
codewords are allowed to be split at the byte boundary.
One obvious side effect of code compression is that it
alters the addresses of the instructions. To overcome this
problem, all branch targets must be a codeword. The
branch instruction (B) and the branch and link instruction
(BL) use the offset addressing that could be simply
corrected according to the compressed memory locations

Program Size, Compression Dic/OPD/ RegDic/ Uncomp/ Comp. Comp.
name bytes method OPD (%) ORD (%) ImmDic/ code (%) ratio (%)
OLD (%)
cjpeg 44471 % 4 Traditional 22.08 16.34 23.28 61.7
Od Fact 1.41 12.5 7.48 23.03 44.42
Of Remap 1.24 2.08 4.63 35.05 43
decoder 9485 x 4 Traditional 21.92 22.98 23.08 67.98
Od Fact 2.82 14.86 9.55 22.29 49.52
Of Remap 2.65 5.16 7.33 32.93 48.07
djpeg 50252« 4 Traditional 21.59 16.37 23.44 61.4
Od Fact 1.52 12.53 7.74 22.93 44.72
Of Remap 1.21 1.95 4.27 34.91 42.34
encoder 9473 x4 Traditional 21.72 23.33 22.92 67.97
Od Fact 2.82 14.85 9.5 22.29 49.46
Of Remap 2.63 5.15 7.25 32.99 48.02
epic 25579 x4 Traditional 20.77 19.64 23.83 64.24
Od Fact 1.7 12.7 10.44 23.42 48.26
Of Remap 1.31 2.83 5.05 36.1 45.29
jpegtran 42555 % 4 Traditional 21.85 16.65 23.21 61.70
Od Fact 1.11 11.93 7.24 23.61 43.44
Of Remap 1.22 2.02 4.19 33.91 41.34
mpeg2dec 322254 Traditional 21.57 20.02 23.51 65.11
Od Fact 2.1 13.07 12 23.36 50.53
Of Remap 1.28 2.83 5.73 36.03 45.87
mpeg2enc 46415+ 4 Traditional 22.25 18.66 23.45 64.37
Od Fact 1.74 13.3 10.05 24.2 49.29
Of Remap 1.2 2.2 4.86 35.15 43.41
rawcaudio 6979 x4 Traditional 19.77 25.4 22.7 67.87
Od Fact 2.71 15.27 11.51 21.59 51.08
Of Remap 1.75 5.64 8.23 32.94 48.56
rawdaudio 6975 4 Traditional 19.81 25.32 22.74 67.85
Od Fact 2.69 15.25 11.47 21.57 50.98
Of Remap 1.78 5.65 8.24 32.95 48.62
rdjpgcom 6995 x 4 Traditional 20.1 23.32 22.99 67.01
Od Fact 2.1 14.19 10.3 21.8 48.7
Of Remap 1.79 5.6 8.78 33.25 49.42
unepic 22557 x 4 Traditional 22.73 19.98 23.84 66.55
Od Fact 2.05 13.53 9.05 22.88 47.51
Of Remap 1.34 3.21 5.15 34.23 43.93
wrjpgcom 7603 x4 Traditional 20.82 22.01 22.85 65.68
Od Fact 2.26 13.47 9.43 21.94 471
Of Remap 1.73 5.43 8.9 33.62 49.68
Average 23504 % 4 Traditional 21.35 20.77 23.22 65.34
Od Fact 2.1 13.65 9.67 22.65 48.08
Of Remap 1.62 3.83 6.35 34.16 45.97
IEE Proc.-Comput. Digit. Tech., Vol. 149, No. 1, January 2002 29

of targets. The 24 bit offset of B (BL) instruction is divided
into two parts: the first 21 bits indicate byte offset, and the last
three bits are treated as bit offset. The call-return instructions
need not be patched because these instructions load the
contents of the link register, which contains the compressed
address during execution. Note that the indirect branch is a
branch and exchange instruction (BX). The BX instruction
uses an address register to identify the boundary location
between the ARM and Thumb codes. When modifying this
type of instruction, we must backtrack the contents of the
address register and modify the contents before storing the
address into the register.

5 Experiment results

Compression ratios using the traditional [3], operand factor-
isation [4] and operand field remapping compression methods
are compared. In the traditional compression method, the
undefined instruction (refer to Appendix, Section 8.1) is used
to store the codewords. Since the undefined instruction
occupies only 4 bits (bit 27 to 24 and bit 4), at most two
codewords can be packed into an undefined instruction if
there are consecutive codewords. The maximal number of
dictionary entries is 2'*. In the operand factorisation method,
expression trees [19] are factorised into opcode sequences
and operand sequences. The condition field is treated as the
immediate value and the instruction sequence is factorised
into new opcode (refer to Fig. 1) sequence and the operand
field sequence, then the occurrences are encoded with code-
word pairs using Huffman encoding. The first entries of both
the opcode sequence and the operand sequence are also
aligned to the byte boundary. Figure 9 shows the final
compression ratios. The x-axis categorises the benchmarks
tested and the y-axis shows the final compression ratio. Each
benchmark has three lines, indicating the compression ratios
using traditional, operand factorisation and operand field
remapping methods, respectively. The average compression
ratio using the traditional compression method is 65%,
ranging from 61% to 67%. The compression ratio is
constrained since there are still 16% to 25% of instructions
uncompressed. The reason is that these instructions are
unique and are not selected into the dictionary, and there
are not enough dictionary entries to include them.

The compression ratio using operand factorisation is
about 48%, ranging from 43% to 51%. It was found that
the RGEN (operand sequence dictionary) and the

0.8
o 0.7
§ 06 -
S 05 | :
204 I
8 nn
go.a i ; i i
0.2 I
50 (150000 gEt il ol il
, LB g B BRI | i % %l
o 0 O o O c © © o o g o € o
28 883 % £83 8 8 8 8 ¢ 8§ =@
c g © g 8 &8 ® ®m © £ O
o 5] &a3c & g2 % 2 ° g
TS 5 8 & B s
3 3
£ E
benchmark
B orp M orD
B ow RGEN
O b B pic
O Comp Bl Uncomp

Fig. 9 Final compression ratios using traditional, operand factorisation
and operand field remapping methods

30

compressed code are the major two parts that contribute
to the compression ratio. The average compression ratio
using the operand field remapping compression method is
46%, ranging from 41% to 50%. This result is better than
that of operand factorisation, if the dictionaries of both
methods are aligned to the byte boundary. The better result
is because the mapping sequence can exploit more repeti-
tions than the operand sequence does, and omitting the
conditional codes can reduce the dictionary size in
advance. Table 1 shows the percentages of all components
of the compressed program. Table 1 indicates that the
average reduction of RGEN and IMD to ORD and OLD
is about 13%, although the compressed code increases by
about 12%. This is the main advantage over the operand
remapping method.

6 Conclusions

The paper proposes an operand remapping compression
method to compress embedded system programs for an
ARM processor. The key idea of this method is to map
later occurrences of an operand to the previous same one in
the same operand field sequence. The best compression
ratio obtained using this method was 41.34%, with an
average of 45.9%. This can be further improved in several
ways. First, compressing the OPD, ORD and OLD by
utilising recursive pointers [20] to reuse the dictionary
entries can further reduce dictionary sizes. Pointers in the
dictionaries will cause the decompression engine to be
much more complicated, but will produce a denser code.
Second, the compiler could attempt to produce identical
instruction sequences for the same expression tree [19] so
that the more common instruction sequences become more
compressible [21]. One way to accomplish this is to
allocate the same registers [21, 22] for the same expression
tree. Finally, the compression algorithm could be improved
by finding more relations between operands, such as the
register allocation rules.

7 References

1 KOZUCH, M., and WOLFE, A.: ‘Compression of embedded system
programs’. IEEE international conference on Computer design, 1994

2 WOLFE, A., and CHANIN, A.: ‘Executing compressed programs on an
embedded RISC architecture’. Proceedings of the 25th annual interna-
tional symposium on Microarchitecture, December 1992

3 LEFURGY, C., BIRD, P, CHEN, L-C., and MUDGE, T.: ‘Improving
code density using compression techniques’. Proceedings of the 30th
annual international symposium on Microarchitecture, December
1997

4 ARAUIJO, G., CENTODUCATTE, P, CORTES, M., and PANNAIN, R.:
‘Code compression based on operand factorization’. 31st Annual ACM/
IEEE international symposium on Microarchitecture, 1998

5 YOSHIDA, Y., SONG, B.-Y., OKUHATA, H., ONOYE, T, and
SHIRAKAWA, I.: ‘An object code compression approach to embedded
processors’. Proceedings of international symposium on Low power
electronics and design, 1997, pp. 265-268

6 CATE, V, and GROSS, T.: ‘Combining the concepts of compression and
caching for a two-level filesystem’ Architectural Support for Program-
ming Languages and Operating Systems, 1991

7 KIROVSKI, D., KIN, J., and MANGIONE-SMITH, W.H.: ‘Procedure
based program compression’. Proceedings of Microarchitecture, 1997

8 IBM: ‘CodePack: PowerPC code compression utility user’s manual’.
Version 3.0, International Business Machines (IBM) Corporation, 1998

9 Advanced RISC Machines Ltd., ‘An introduction to Thumb’, 1995

10 KISSELL, K.: “‘MIPS16: high-density MIPS for the embedded market’
(Silicon Graphics MIPS Group, 1997)

11 Advanced RISC Machines Ltd.: ‘ARM architecture reference manual’,
1996

12 ‘Thumb squeezes ARM code size’, Microprocessor Report, 1995, 9, (4)

13 HUFFMAN, D.A.: ‘A method for the construction of minimum redun-
dancy codes’, Proc. IEEE, 1952, 40, pp. 1089—-1101

14 HASKELL, B.G., PURI, A., and NETRAVALI, A.N.: ‘Digital video: an
introduction to MPEG-2’ (Chapman & Hall)

15 FRASER, C.W,, and EVANS, W.: ‘Bytecode compression via profiled
grammar rewriting’. Proceedings of international conference on
Programming languages design and implementation, June 2001

IEE Proc.-Comput. Digit. Tech., Vol. 149, No. 1, January 2002

16 HOOGERBRUGGE, J., AUGUSTEIIN, L., TRUM, J., and VAN DE
WIEL, R.: ‘A code compression system based on pipelined interpreters’,
Softw.—Pract. Exp., 1999, 29, (11), pp. 1005-1023

17 LEE, C., POTKONJAK, M., and SMITH, W.H.M.: ‘MediaBench: a tool

for evaluating and synthesizing multimedia and communications

systems’. 30th Annual ACM/IEEE international symposium on Micro-

architecture, 1997

Advanced RISC Machines Ltd., ‘ARM software development toolkit

version 2.50 user guide’, 1998

19 AHO, A., SETHIL R., and ULLMAN, J.: ‘Compilers, principles, tech-
niques and tools’ (Addison Wesley, Boston, 1988)

20 STORER, J.A.: ‘Data compression: methods and theory’ (Computer
Science Press, 1988)

21 DEBRAY, S., EVANS, W.,, and MUTH, R.: ‘Compiler techniques for
code compression’. Workshop on Compiler Support for System Soft-
ware, May 1999

22 COOPER, K.D., and MCINTOSH, N.: ‘Enhanced code compression for
embedded RISC processors’. Proceedings of conference on Program-
ming languages design and implementation, May 1999

1

o]

8 Appendix

8.1 ARM7TDMI instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

Data Processing/

Cond |0(0]|1 Op S Rn Rd Operand 2 PSR Transfer

Cond (0|0|O[{O[O|O]|A|S Rd Rn Rs 110]0|1f{ Rm |Multiply

Cond |0|0|0|0[1|U|A[S| RdHi RdLo Rn [1]/0{0|1| Rm |Multiply Long

Cond |0(0|0Of1]0(B|0O]O Rn Rd 0]10(0{0]|1|0{0|1| Rm |Single Data Swap

cond |ofofo[t]ofo]t]o[t]t]i]t[a[a]i]i]1]t]1]1]o[o]o]i] Rn |Branchand Exchange

cond [0|o]o|P|Ulo{W|L| Rn R |ofofo|o|1|s|n|1| Rm |Halfword DataTransfer:
Register offset

cond [0]o|o[P|U1|W|L| Rn Rd | Offset |1|S|H|1| Offset |Halfword Data Transfer:
Immediate offset

Cond |[Of1|1|P|U(B[W|L Rn Rd Offset Single Data Transfer

Cond |0[1]1 [1] Undefined

Cond |1]ofo[P[u[s|W[L] Rn | Register List Block Data Transfer

Cond (1|0|1]|L Offset Branch

Cond ([1|1{0|P UlNIWIL Rn CRd CP# Offset Coprocessor Data Transfer

Cond |[1]|1{1]0| CPOpc CRn CRd CP# CP |0 CRm [Coprocessor Data Operation

Cond (1]|1]1]0 CPOpc|L CRn Rd CP# CP |1| CRm [Coprocessor Register Transfer

Cond (1(1]1]1 Ignored by processor Software interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

8.2 The MediaBench benchmarks

Component name Description

JPEG JPEG is a standardised compression method for full-colour and grey-scale images. Two applications are
derived from the JPEG source code; cjpeg does image compression and djpeg, which does decompression

MPEG MPEG?2 is the current dominant standard for high-quality digital video transmission. Two applications used
are mpeg2enc and mpeg2dec for encoding and decoding respectively

GSM European GSM 06.10 provisional standard for full-rate speech transcoding, prl-ETS 300 036, which uses
residual pulse excitation/long term prediction coding at 13Kbit/s

G.721 Voice Reference implementations of the CCITT (International Telegraph and Telephone Consultative Committee)

Compression G.711, G.721, and G.723 voice compressions

PEGWIT A program for public key encryption and authentication. It uses an elliptic curve over GF(2°%®), SHA1 for
hashing, and the symmetric block cipher square

RASTA A program for speech recognition that supports the following techniques: PLP, RASTA, and Jah-RASTA

EPIC An experimental image compression utility

ADPCM Adaptive differential pulse code modulation is one of the simplest and oldest forms of audio coding

IEE Proc.-Comput. Digit. Tech., Vol. 149, No. 1, January 2002 31

	Abstract
	1 Introduction
	2 Related code compression work
	3 Operand field remapping
	4 Compression algorithm
	5 Experiment results
	6 Conclusions
	7 References
	8 Appendix

