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Hybrid Finite-Difference Scheme for Solving
the Dispersion Equation

Tung-Lin Tsai1; Jinn-Chuang Yang, M.ASCE2; and Liang-Hsiung Huang, A.M.ASCE3

Abstract: An efficient hybrid finite-difference scheme capable of solving the dispersion equation with general Peclet condit
proposed. In other words, the scheme can simultaneously deal with pure advection, pure diffusion, and/or dispersion. The
scheme linearly combines the Crank–Nicholson second-order central difference scheme and the Crank–Nicholson Galerkin finit
method with linear basis functions. Using the method of fractional steps, the proposed scheme can be extended straightforwa
one-dimensional to multidimensional problems without much difficulty. It is found that the proposed scheme produces the best r
terms of numerical damping and oscillation, among several non-split-operator schemes. In addition, the accuracy of the propose
is comparable with a well-known and accurate split-operator approach in which the Holly–Preissmann scheme is used to solve
advection process while the Crank–Nicholson second-order central difference scheme is applied to the pure diffusion process.
proposed scheme is a non-split-operator approach, it does not compute the two processes separately. Therefore, it is simple
efficient than the split-operator approach.

DOI: 10.1061/~ASCE!0733-9429~2002!128:1~78!

CE Database keywords: Dispersion; Damping; Oscillations; Finite-difference method.
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Introduction

The dispersion equation is one of the governing equations in
ute transport and water quality models in rivers, lakes, a
oceans. It involves two types of processes, advection and di
sion. Generally, the numerical schemes available for solving
dispersion equation could be classified into two types: sp
operator and non-split-operator approaches. By the split-oper
approach, the advection and diffusion processes are separ
computed using different numerical schemes, whereas the n
split-operator approach simulates the dispersion equation with
separating the two processes.

In the split-operator approach, the diffusion process can
accurately computed by several numerical schemes, such as
Crank–Nicholson central difference scheme and the Cran
Nicholson Galerkin finite-element method. Thus, the accuracy
solving the dispersion equation mainly depends on the compu
results of the advection process. Among the procedures for s
ing the pure advection equation, several accurate monoto
schemes have been proposed, such as the MPL scheme~Van Leer
1977!, the MSOU scheme~Roe 1981!, the SHARP scheme~Le-
onard 1988!, the SMART scheme~Gaskell and Lau 1988!, and
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the TVD scheme~Wang and Windhopf 1989!. In addition, the
characteristic-based Holly–Preissmann two-point scheme~Holly
and Preissmann 1977! is one of the best in terms of less numerica
oscillation and damping in modeling the advection process alo
a river channel or coastal area. Although the split-operator a
proach clearly has considerable advantages, it is computationa
more intensive and complicated when applied to multidime
sional flow problems because the advection and diffusion pr
cesses must be handled separately~Li et al. 1992; Chen and Fal-
coner 1994!.

The non-split-operator approach offers an alternative to t
split-operator approach due to its simplicity and efficiency. T
tackle the numerical oscillation problem and to eliminate exce
sive numerical damping, several nonsplit, high-order upwind-typ
explicit finite-difference methods have been proposed, such as
QUICKEST scheme~Leonard 1979! and the third-order convec-
tion second-order diffusion~TCSD! scheme~Bradley and Mis-
saghi 1988!. Some implicit forms of the modified QUICK scheme
~Leonard and Noye 1990; Chen and Falconer 1992! and the
TCSD scheme~Chen and Falconer 1994! have also been pro-
posed. These schemes, however, could not accurately comp
pure advection, pure diffusion, and dispersion simultaneously.

This article proposes a hybrid finite-difference scheme capab
of solving the dispersion equation without Peclet number limita
tions. In other words, the proposed scheme can simultaneou
deal with pure advection, pure diffusion, and dispersion. Based
the fact that both the Crank–Nicholson second-order central d
ference~CNSOCD! scheme and the Crank–Nicholson Galerki
finite-element method with linear basis functions~CNGFEMLF!
are excellent for solving the pure diffusion process, the propos
scheme linearly combines the two to solve the dispersion equ
tion. Using the method of fractional steps~Yanenko 1971!, the
proposed scheme, originally developed for one-dimensional~1D!
flow problems, can be extended straightforwardly to multidimen
sional flow problems without much difficulty. Several numerica
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examples, including~1! pure advection and dispersion in 1D uni
form flow; ~2! 1D viscous Burgers equation;~3! pure advection
and dispersion in two-dimensional~2D! uniform flow; ~4! pure
advection in 2D rigid-body rotating flow; and~5! three-
dimensional~3D! diffusion in a shear flow, are used to examin
the capabilities of the proposed scheme.

Development of Proposed Scheme

Consider the transient 1D dispersion equation with constant co
ficients as

F t1UFx5DFxx (1)

where the scalar functionF(x,t) may represent, for example,
temperature or concentration at positionx and timet with flow
velocity U and diffusion coefficientD. This article proposes a
finite-difference scheme to solve Eq.~1! using a linear combina-
tion of the CNSOCD scheme and the CNGFEMLF. The compa
sons of the two schemes for solving the dispersion equation h
been discussed in detail by Gersho and Sani~1998!. From the
viewpoint of the finite-element method, the only difference be
tween the two schemes is the treatment of the mass term, whe
it is lumped or consistent. A brief review of the two schemes w
be given prior to the introduction of the proposed finite-differenc
scheme.

Crank –Nicholson Second-Order Central Difference
Scheme

By the Crank–Nicholson second-order central differenc
~CNSOCD! scheme, the discretized equation of Eq.~1! can be
written as

S 2
c

4
2

s

2DF i 21
n111~11s!F i

n111S c

4
2

s

2DF i 11
n112S c

4
1

s

2DF i 21
n

2~12s!F i
n2S 2

c

4
1

s

2DF i 11
n 50 (2)

where c5UDt/Dx is the Courant number;s5DDt/Dx2 is the
diffusion number;Dt5time step;Dx5grid size; andF i

n115the
value ofF at grid pointi for time levelt5(n11)Dt. The modi-
fied equation~Warming and Hyett 1974! corresponding to Eq.~2!
is

F t1UFx2DFxx1U
Dx2

12
~21c2!Fxxx1O@Dx2#50. (3)

Crank –Nicholson Galerkin Finite-Element Method

The discretized form of Eq.~1! by the Crank–Nicholson Galerkin
finite-element method with linear basis functions~CNGFEMLF!
can be expressed as

S 1

6
2

c

4
2

s

2DF i 21
n11S 2

3
1sDF i

n111S 1

6
1

c

4
2

s

2DF i 11
n11

2S 1

6
1

c

4
1

s

2DF i 21
n 2S 2

3
2sDF i

n

2S 1

6
2

c

4
1

s

2DF i 11
n 50 (4)

Similarly, the modified equation corresponding to Eq.~4! can be
written as
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F t1UFx2DFxx1U
Dx2

12
c2Fxxx1O@Dx2#50 (5)

As shown in Eqs.~3! and~5!, it is clearly seen that the errors
of these two numerical schemes for solving the dispersion equ
tion are dominated by the third-order derivative terms. If the lea
ing truncation error term in the modified equation is an odd d
rivative, the numerical solution will exhibit dispersive errors. In
other words, these two numerical schemes will produce numeri
oscillations when the dispersion equation is solved. Thus, a n
merical scheme without error term dominated via the third-ord
derivative would be desirable. This can be simply achieved by
linear combination of the two schemes. In addition, the propos
scheme, as shown later, preserves the capability of solving a p
diffusion process since the coefficients of the third-order deriv
tive in Eqs.~3! and ~5! involve the Courant number but not the
diffusion number.

A mathematical proof for a general two-level numerica
scheme is given in Appendix I to show that the equation resultin
from a linear combination of two discretized equations, which a
each consistent with the dispersion equation, is still consiste
with the dispersion equation. In addition, the relations betwe
the modified equations corresponding to the proposed scheme
any selected two-level numerical schemes are also shown in A
pendix I. There, one can observe that the coefficients of not on
the first- and second-order spatial derivatives, but also the fir
order time derivative in the modified equation corresponding
the proposed scheme, are the sum of those in the two selec
numerical schemes. Furthermore, the coefficient of the third-ord
spatial derivative can be obtained in the same manner unde
sufficient condition, i.e., 2a11a22a422a552c11c22c4

22c5 , wherea1 , c1 ; a2 , c2 ; a4 , c4 ; and a5 , c5 are, respec-
tively, the weights at nodesi 22, i 21, i 11, andi 12 for the new
time step in the two discretized equations@see Eq.~52! in the
Appendix#.

Proposed Scheme

Referring to Eqs.~3! and ~5!, the coefficients of the third-order
spatial derivatives areUDx2(21c2)/12 andUDx2c2/12, respec-
tively. Taking the linear combination of Eqs.~2! and ~4! as
0.5@Eq. (4)3(21c2)2Eq. (2)3c2# yields a new finite-
difference scheme without an error term that is dominated by t
third-order derivative. Hence, the discretized equation of the pr
posed scheme for solving the dispersion equation can be
pressed as
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1
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2DF i 21
n111S 2
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6
1sDF i

n11
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1
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12
1

c

4
1

s
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2S 2

3
2

c2

6
2sDF i

n2S 1

6
1
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12
2

c

4
1

s

2DF i 11
n 50 (6)

The corresponding modified equation is

F t1UFx2DFxx1U
Dx2

12
~122c2!Fxxxx1O~Dx4!50 (7)

The only difference between Eqs.~4! and~6! is the presence of
the Courant-number-squared terms in the weights. The effect
these new weights is to eliminate the dominant error term ass
ciated with the third-order derivative from Eq.~4! to reduce the
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numerical oscillation in solving the dispersion equation. In ad
tion, the proposed scheme is identical to Eq.~4! when the Courant
number is equal to zero. In other words, it preserves the ability
solve a pure diffusion process. One can observe from Eq.~7! that
the proposed scheme has fourth-order accuracy for the pure
vection process, whereas Eq.~4! only has second-order accurac

The proposed scheme can be applied directly to cases of n
constantU, D, and Dx by adopting the representative velocity
diffusion coefficient, and grid space as follows:

U5Ui , D5Di (8)

and

Dx5
Dxi 21,i1Dxi ,i 11

2
(9)

whereDxi 21,i5xi2xi 21 ; Ui , andDi represent the velocity and
diffusion coefficient of flow field at grid pointi, respectively.

Extension to Multidimensional Problems

The above derivation for 1D problems can be extended by
method of fractional steps~Yanenko 1971! to multidimensional
problems without much difficulty. The 2D dispersion equatio
can be written as

F t1UFx1VFy5DxFxx1DyFyy (10)

where U, V, Dx , and Dy represent the velocity and diffusion
coefficient in thex andy directions, respectively. Dividing the 2D
dispersion process into two successive steps in thex andy direc-
tions, respectively, Eq.~10! can be approximated with a series o
1D dispersion equations as

F t1UFx5DxFxx (11)

and

F t1VFy5DyFyy (12)

Eqs. ~11! and ~12! can each be solved by the proposed schem
The 3D problems can also be formulated and solved in the sa
manner by addingz-directional dispersion as an additional term

Stability Analysis

The stability of any numerical scheme must be examined befor
can be considered for application. The matrix and von Neuma
methods are two commonly used ways for analyzing the stab
of any numerical scheme. In this study, the von Neumann stab
analysis is applied.

Analysis of Amplification Factor
Suppose that the solution to Eq.~1! can be expressed as a com
plex Fourier series~Komatsu et al. 1997!, that is,

F~x,t !5 (
m52`

`

Wm exp~2 j smt !exp~ jkmx! (13)

where sm ,km5angular frequency and wave number of anmth
wave component, respectively;j 5 imaginary unit. Because Eq
~1! is linear, each component of Eq.~13!, that is,

F~x,t !5W exp~2 j st !exp~ jkx! (14)

is also a solution of Eq.~1!. Substituting Eq.~14! into ~6!, one
obtains
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Z11 jZ2

Z̄11 j Z̄2

(15)

where

Z15~21coskDx!/32c2~12coskDx!/62s~12coskDx!

Z̄15~21coskDx!/32c2~12coskDx!/61s~12coskDx!

Z25~2c2 sinkDx!/2

Z̄25~c2 sinkDx!/2

Therefore, the amplification factor of the proposed scheme is

ue2 j sDtu5AZ1
21Z2

2

Z̄1
21Z̄2

2
(16)

The amplification factor depends on three quantities: Cour
number,c; diffusion number,s; and wavelength to the grid size
ratio, L/Dx. One can clearly see from Eqs.~15! and~16! that the
amplification factor of the proposed scheme is less than or eq
to unity when the Courant number is less than or equal to unity.
other words, it is a conditionally stable scheme when the Cour
number is less than or equal to unity. Figs. 1~a and b! compare the
amplification factor of the proposed scheme with that of seve
schemes for the pure advection case withc50.8, and the disper-
sion case withc50.6,s50.06, respectively. Fig. 1~a! indicates
that the proposed scheme, the Noye scheme~Noye 1990!, and the
CNGFEMLF have no numerical damping for the pure advecti
process, whereas the fully time-centered implicit QUICK~FTC-
QUICK! scheme and the fully time-centered implicit TCSD
~FTC-TCSD! scheme produce large numerical diffusion. In add
tion, Fig. 1~b! shows that the proposed scheme and t
CNGFEMLF scheme have less numerical damping than all ot
schemes considered to solve the dispersion equation.

Analysis of Phase Error Factor
Substituting the complex angular frequency

s5Re~s!1 j Im~s! (17)

into Eq. ~6! and considering the real parts of both sides, t
propagation velocity of the proposed scheme is

Re~s!

k
5

1

kDx
tan21S Z̄2Z12Z̄1Z2

Z̄1Z11Z̄2Z2
D (18)

The phase error factor, defined as the ratio of the propaga
velocity of the proposed scheme to the real velocityU of the
analytical solution, becomes

Re~s!

kU
5

1

2pc

L

Dx
tan21S Z̄2Z12Z̄1Z2

Z̄1Z11Z̄2Z2
D (19)

Like the amplification factor, the phase error factor is als
dependent on Courant number, diffusion number, and the wa
length to grid size ratio. The phase error factors of some schem
considered for the pure advection equation withc50.8 and the
dispersion equation withc50.6,s50.06 are displayed in Figs. 1~c
and d!, respectively. One can observe from Figs. 1~c and d! that
the phase performance of the proposed scheme is the best am
the schemes considered. In addition, the Noye scheme gene
leading phase errors, whereas the others have lagging ones.
2002.128:78-86.
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Fig. 1. ~a! Amplification factor portraitsc50.8; ~b! amplification factor portraitsc50.6, s50.006; ~c! phase error factor portraitsc50.8; and
~d! phase error portraitsc50.6, s50.06
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Numerical Results

To investigate the computational performances of the propose
scheme, the dispersion equation in various dimensions is solv
and compared with other existing numerical schemes.

One-Dimensional Examples

Pure Advection in Uniform Flow
A Gaussian concentration distribution is advected for 10,000
with a uniform velocityU50.8 m/s. A grid space of 100 m and
time interval of 100 s are used in this example. The domain o
simulation is long enough so that the boundary effect can b
ignored. The computed results of various numerical schemes a
the exact solution are depicted in Fig. 2 and Table 1 in terms o
the maximum and minimum values and the rms errors. From Fig
2 and Table 1, one can observe that the simulated results by t
proposed scheme and the Holly–Preissmann scheme are alm

Fig. 2. Comparison of various schemes for 1D pure advection o
Gaussian concentration distribution
J. Hydraul. Eng. 2
d
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identical to the exact solution. On the other hand, the ot
schemes produce large numerical oscillation. Furthermore,
Noye scheme yields leading phase error as shown in the prev
stability analysis. The FTC-TCSD scheme and the FTC-QUIC
scheme appear to induce large numerical damping.

Dispersion in Uniform Flow
The dispersion of a Gaussian concentration distribution with
velocity U50.8 m/s and a diffusion coefficientD50.8 m2/s is
simulated for 10,000 s with a grid space of 100 m and tim
interval of 100 s. Fig. 3 and Table 2 show the proposed sche
produces comparable results compared with a split-operator
proach in which the Holly–Preissmann scheme is applied to so
the advection process while the CNSOCDC scheme is applie
the diffusion process. The split-operator CNSOCDC approa
used has no numerical oscillation, but its numerical diffusion
larger than that of the proposed scheme. In addition, in comp
son with the other schemes, the proposed scheme has the
computational results.

Advection or Dispersion with Variable Velocity
For flow fields with variable velocity, two examples are show
The first is from Morton and Parrott~1980! with the following
pure advection equation:

f

Table 1. Performances of Various Schemes in 1D Pure Advect
Test

Scheme Max. Min. rms error

Exact solution 11.81 0.0 0.0
Proposed 11.77 20.002 0.0046
Holly–Preissmann 11.59 20.003 0.0056
Noye 11.03 21.540 0.0961
CNGFEMLF 10.24 22.666 0.1692
FTC-QUICK 8.78 22.098 0.1948
FTC-TCSD 8.88 21.324 0.1374
JOURNAL OF HYDRAULIC ENGINEERING / JANUARY 2002 / 81
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]F

]t
1

]

]x S F

112xD50 xP@0,p# (20)

With the following initial and boundary conditions:

F~0,t !50; F~x,0!5~112x! sin 9x, xP@0,p/3#;

F~x,0!50, xP@p/3,p# (21)

the exact solution for Eq.~20! can be derived as

F~x,t !5~112x!sin 9$@x21x2t1 1
4#1/22 1

2%,

for 0<x21x2t<@p/3~11p/3!#

F~x,t !50, for elsewhere (22)

With Dx5p/180 andDt50.3Dx, simulation results of 80 time
steps from the proposed scheme and the CNSOCD scheme, a
with the exact solution, are displayed in Fig. 4. Fig. 4 reveals th
despite of little numerical oscillation, the computed results by
proposed scheme are better than those of the CNSOCD sch

A second example considers the viscous Burgers equation

F t1FFx5DFxx (23)

Under the initial and boundary conditions of

F~x,0!51 x<0

F~x,0!50, x.0 (24)

F~2`,t !51, F~`,t !50, t.0

the exact solution to Eq.~23! is

F~x,t !5H 11expF 1

2a S x2
1

2
t D G erfc~2x/2ADt !

erfc@~x2t !/2ADt#
J 21

(25)

Fig. 3. Comparison of various schemes for 1D dispersion of Gau
ian concentration distribution

Table 2. Performances of Various Schemes in 1D Dispersion Tes

Scheme Max. Min. rms error

Exact solution 13.91 0.0 0.0
Proposed 13.81 20.057 0.0123

Holly–Preissmann1CNSOCD 13.75 0.0 0.0065

Noye 11.32 21.401 0.1127
CNGFEMLF 11.31 23.996 0.2648
FTC-QUICK 9.38 22.680 0.2490
FTC-TCSD 9.48 21.755 0.1837
82 / JOURNAL OF HYDRAULIC ENGINEERING / JANUARY 2002
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in which erfc represents the complementary error function. Afte
linearization, the Burgers equation can be solved by the propos
scheme and the numerical simulation results at timet52 s are
shown in Fig. 5 underDx50.01 m, Dt50.01 s, and D
50.01 m2/s. Fig. 5 shows that the proposed scheme has satisfa
tory simulation results despite small deviations from the exa
solution. It is clearly seen, from the above two numerical ex
amples, that the proposed scheme performs well in flow field
with variable velocity.

Two-Dimensional Examples

Pure Advection in Uniform Flow
A Gaussian concentration distribution with a peak value of 10 an
a standard deviation of 220 m is advected for 10,000 s under
constant velocity U50.5 m/s and V50.5 m/s in a two-
dimensional infinite domain. The initial central position of this
Gaussian distribution is at (x,y)5(1,400 m,1,400 m). A grid size
of 100 m3100 m and time step of 100 s are used to conduct th
simulation. Figs. 6~a–h! show the bird’s-eye view of the com-
puted results from several numerical schemes. Table 3 displa
the maximum and minimum values and the rms errors for ea
scheme used. In addition, the computed concentration profiles
different schemes along the liney5x are shown in Fig. 7. It is
observed that the computed results by the proposed scheme@Fig.
6~a!# and the Holly–Preissmann scheme@Fig. 6~g!# almost agree
with the exact solution. The Holly–Preissmann scheme has t

- Fig. 4. Computational results of pure advection equation with varia
tion of velocity

Fig. 5. Computational results of 1D viscous Burgers equation usin
the proposed scheme
002.128:78-86.
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least numerical oscillation among all the schemes consider
however, its numerical damping is larger than that of the propos
scheme. The CNSOCD scheme@Fig. 6~c!# produces very severe
numerical oscillation that rapidly spreads over the modeling d
main. The ADI-QUICK scheme~Chen and Falconer 1992! @Fig.
6~e!#, the ADI-TCSD scheme~Chen and Falconer 1994! @Fig.
6~f!#, and the MOSQUITO scheme@Fig. 6~d!# ~Balzano 1999!
seem to produce results with large numerical damping. T
CNGFEMLF scheme@Fig. 6~b!# has smaller numerical diffusion
than those of the ADI-QUICK scheme, the ADI-TCSD schem
and the MOSQUITO scheme. However, its numerical oscillati
is large in comparison with the other three schemes.

Dispersion in Uniform Flow
Consider a 2D nondimensional dispersion equation with unifo
flow velocity as

F t1Fx1Fx5D~Fxx1Fyy! (26)

Fig. 6. Comparison of various schemes for 2D pure advection w
uniform flow

Table 3. Performances of Various Schemes in 2D Pure Advecti
Test

Scheme Max. Min. rms error

Exact solution 10.00 0.0 0.0
Proposed 9.87 20.010 0.0017
Holly–Preissmann 9.60 20.008 0.0017
CNSOCD 5.94 22.517 0.1000
CNGFEMLF 9.05 21.719 0.0195
MOSQUITO 6.62 20.959 0.0261
ADI-QUICK 6.96 20.957 0.0278
ADI-TCSD 6.81 20.431 0.0173
J. Hydraul. Eng. 2
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whereD5 inverse of the Reynolds number. Under the initial con
dition

F~x,y,0!5sin~px!1sin~py!. (27)

and the boundary conditions

F~0,y,t !5@sin~2pt !1sinp~y2t !#exp~2Dp2t !

F~1,y,t !5@sin~12t !1sinp~y2t !#exp~2Dp2t !
(28)

F~x,0,t !5@sin~x2t !1sin~2pt !#exp~2Dp2t !

F~x,1,t !5@sin~x2t !1sinp~12t !#exp~2Dp2t !

the exact solution to Eq.~26! is

F~x,y,t !5@sinp~x2t !1sinp~y2t !#exp~2Dp2t ! (29)

Numerical results by the proposed scheme and a split-opera
approach are shown in Figs. 8~a and b! at t52 andt53 along the
line y5x with D50.0002, a uniform grid size of 0.0230.02, and
time step of 0.01. In the split-operator approach, the Holly
Preissmann scheme and the Crank–Nicholson second-order c
tral difference scheme are used to solve the advection and
diffusion processes, respectively. Figs. 8~a and b! demonstrate
that the simulated results by the proposed scheme and the s
operator approach are almost identical to the exact solution.
must be noticed that the use of the proposed scheme to the
dispersion equation is straightforward by adopting the method
fractional steps. However, the application of a split-operator a
proach is more expensive and complicated since the advect
and diffusion processes are computed separately. Furthermore,
additional equations of spatial derivative must be computed in t
Holly–Preissmann scheme for solving the dispersion equation

Pure Advection in Rigid-Body Rotating Flow
A pure advection of a Gaussian concentration distribution with
rigid-body rotating flow in a two-dimensional infinite domain is
considered. This problem has a flow field of variable velocity. Th
maximum value and the standard deviation of this Gaussian co
centration distribution are unity and 250 m, respectively. Th
rigid body spends 20,000 s rotating one turn. A grid size o
100 m3100 m and time step of 50 s are used in numerical sim
lation. After one rotation, the maximum and minimum values o
the computational results by the proposed scheme are 0.986
20.012, respectively. This numerical example shows that the p
posed scheme also has good capability to accurately solve
two-dimensional problem with variable velocity.

Fig. 7. Comparison of various schemes for 2D pure advection wi
uniform flow ~along liney5x!
JOURNAL OF HYDRAULIC ENGINEERING / JANUARY 2002 / 83
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Three-Dimensional Example

Three-Dimensional Diffusion in A Shear Flow
To investigate the capability of the proposed scheme for solvi
three-dimensional problems, diffusion in a shear flow is consi
ered. The velocity shear in the diffusion of a patch of passi
contaminant from an instantaneous source plays an important
in groundwater flow or natural streams such as ocean, lake,
estuaries. The governing equation for shear diffusion can be
pressed as

F t1~V01Vyy1Vzz!Fx5DxFxx1DyFyy1DzFzz (30)

where V05mean velocity in thex direction; Vy and Vz

5horizontal and vertical shear, respectively; andDx , Dy , and
Dz5eddy diffusivities inx, y, andz directions, respectively. The
analytical solution for an instantaneous point source of massM
released atx5y5z50 was obtained by Carter and Okubo~1965!
as

F~x,y,z,t !5
M

8p3/2~DxDyDz!
1/2t3/2~11b2t2!1/2exp

2F ~x2V0t20.5~Vyy1Vzz!t !2

4Dxt~11b2t2!
1

y2

4Dyt
1

z2

4Dzt
G

(31)

where

b25
b~Vy

2Dy /Dx!1~Vz
2Dz /Dx!c

12
(32)

Allowing numerical solution having an initial peak concentra
tion of unity, simulation begins at timet5t0 having the point
source of massM as

Fig. 8. Computational results of 2D dispersion equation~along line
y5x!: ~a! t52 and~b! t53
84 / JOURNAL OF HYDRAULIC ENGINEERING / JANUARY 2002
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M58p3/2~DxDyDz!
1/2t3/2~11b2t0

2!1/2 (33)

In the numerical simulation the following parameters are us
t051000 s, V050.5 m/s, Vy5Vz50.0003 1/s, Dx5Dy5Dz

55.0 m2/s, Dt5100 s, and grid spaceDx5Dy5Dz5100 m.
Fig. 9 shows the contour plots of the proposed scheme and
analytical solution att53,000 and 5,000 s on the planez50,
respectively. The proposed scheme yields the results that ar
most in excellent agreement with the exact solution.

Conclusions

In this article, a hybrid finite-difference scheme capable of so
ing pure advection, pure diffusion, and dispersion processe
proposed. The proposed scheme combines two well-kno
schemes, namely, the Crank–Nicholson second-order central
ference scheme and the Crank–Nicholson Galerkin finite-elem
method with linear basis functions. The consistency and stab
of the proposed scheme are investigated. In addition, the relat
between the modified equations corresponding to the propo
scheme and the two selected schemes are obtained. Emplo
the method of fractional steps, the proposed scheme that
originally developed for one-dimensional problems can be
plied straightforwardly to multidimensional ones without muc
difficulty. The proposed scheme has the best performance in
eral examples among some non-split-operator schemes. In a
tion, the proposed scheme yields comparable results in comp
son with a well-known and accurate split-operator approach
which the Holly–Preissmann scheme and the Crank–Nichol
second-order central difference scheme were used to solve ad
tion and diffusion processes, respectively. The proposed sch
is a non-split-operator approach and, therefore, it has the ad
tage of being simpler and more efficient than the split-opera
approach.
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Fig. 9. Comparison of contour plots of diffusion in shear flow o
planez50 at t53000 and 5000 s
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Appendix: Consistency and Modified Equation

Consistency

Applying any two-level numerical schemes to Eq.~1!, one may
obtain the following discretization equations:

a1F i 22
n111a2F i 21

n111a3F i
n111a4F i 11

n111a5F i 12
n11

5b1F i 22
n 1b2F i 21

n 1b3F i
n1b4F i 11

n 1b5F i 12
n (34)

and

c1F i 22
n111c2F i 21

n111c3F i
n111c4F i 11

n111c5F i 12
n11

5d1F i 22
n 1d2F i 21

n 1d3F i
n1d4F i 11

n 1d5F i 12
n (35)

wherea11a21a31a41a55c11c21c31c41c551. TheF i
n11

represents the value ofF at grid point i for time level t5(n
11)Dt andDt is the time step. The termsF i 11

n11, F i
n11, F i 21

n11,
F i 11

n , andF i 21
n can be expanded in Taylor series as

F i 1 j 1

n1k15 (
m50

`
1

m! S k1Dt
]

]t
1 j 1Dx

]

]xD m

F i
n k1 , j 1521,0,1

(36)

whereDx5grid size. Substitution of Eq.~36! into Eqs.~34! and
~35! yields

F t5A1Fx1A2F tt1A3F tx1A4Fxx1A5F ttt1A6F ttx1A7F txx

1A8Fxxx1¯ (37)

and

F t5B1Fx1B2F tt1B3F tx1B4Fxx1B5F ttt1B6F txx1B7F txx

1B8Fxxx1••• (38)

where the superscriptn and the subscripti for F are eliminated.
The termsA1;A8 andB1;B8 are functions ofa12a5 , b12b5

andc12c5 , d12d5 , respectively. For example,A2 andA3 can be
expressed as

A25
2Dt

2
~a11a31a41a5!5

2Dt

2
(39)

A35Dx~2a11a22a422a5! (40)

As far as the accuracy is concerned, bothA1 andB1 are equal to
2U. In addition, because of the consistency, the termsA2;A8

andB2;B8 , exceptA4 andB4 , are all equal to zeros whenDt
andDx approach zero. However,A4 andB4 satisfy the following
condition:

A45B45D (41)

whereD5diffusion coefficient. Now, taking the linear combina
tion of Eqs. ~34! and ~35! as a @Eq. ~34!#1b @Eq. ~35!#, one
obtains

~aa11bc1!F i 22
n111~aa21bc2!F i 21

n111~aa31bc3!F i
n11

1~aa41bc4!F i 11
n111~aa51bc5!F i 12

n11

5~ab11bd1!F i 22
n 1~ab21bd2!F i 21

n 1~ab31bd3!F i
n

1~ab41bd4!F i 11
n 1~ab51bd5!F i 12

n (42)

where a and b are constants. Similarly, substitution of Taylo
series expansion~36! into Eq. ~42! yields
J. Hydraul. Eng
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F t52UFx1
1

a1b
@~aA21bB2!F tt1~aA31bB3!F tx

1~aA41bB4!Fxx1~aA51bB5!F ttt~aA61bB6!F ttx

1~aA71bB7!F txx1~aA81bB8!Fxxx#1¯ (43)

One can clearly see from Eq.~43! that Eq.~42! is also consistent
with the dispersion equation~1!.

Modified Equation

By eliminating pure and cross time derivatives with repeated
differentiating Eqs.~37! and ~38!, the modified equation corre-
sponding to Eqs.~37! and~38! can, respectively, be expressed a

F t52UFx1E2Fxx1E3Fxxx1¯ (44)

and

F t52UFx1F2Fxx1F3Fxxx1¯ (45)

where

E25U2A22UA31A4

E3522U3A2
213U2A2A322UA2A42UA3

21A3A42U3A5

1U2A62UA71A8 (46)

and

F25U2B22UB31B4

F3522U3B2
213U2B2B322UB2B42UB3

2

1B3B42U3B51U2B62UB71B8 (47)

Similarly, the modified equation corresponding to Eq.~43! is

F t52UFx1
G2

a1b
Fxx1

G3

a1b
Fxxx1¯ (48)

where

G25U2~aA21bB2!2U~aA31bB3!1~aA41bB4!
(49)

G35
1

a1b
@22U3~aA21bB2!213U2~aA21bB2!

3~aA31bB3!22U~aA21bB2!~aA41bB4!

2U~aA31bB3!21~aA31bB3!~aA41bB4!#

2U3~aA51bB5!1U2~aA61bB6!

2U~aA71bB7!1~aA81bB8!

It is obvious thatG2 , E2 , andF2 satisfy

G25aE21bF2 (50)

In addition, if A2 , B2 , A3 , andB3 satisfy the following condi-
tions:

A25B2 (51)

and

A35B3 (52)

one can obtain

G35aE31bF3 (53)

In other words, Eq.~48! can be rewritten as
JOURNAL OF HYDRAULIC ENGINEERING / JANUARY 2002 / 85
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~a1b!F t52U~a1b!Fx1~aE21bF2!Fxx

1~aE31bF3!Fxxx1¯ (54)

It is necessary to point out that condition~51! is always satisfied
due to Eq.~39!. Eq. ~52! is a sufficient condition for Eq.~53!.
Although the above derivation is only up to the third-order de
rivative, the higher-order derivative can also be executed in t
same manner.

Notation

The following symbols are used in this paper:
a12a3 ,b12b3 ,
c12c3 ,d12d3 5 coefficients of discretized

equation;
A12A8 ,B12B8 ,
E12E8 ,F12F8 5 function of a12a3 ,b1

2b3 ,c12c3 ,d12d3;
c 5 Courant number;

D,Dx ,Dy ,Dz 5 diffusion coefficient or
the inverse of Rey-
nolds number;

G2G3 5 function of A12A8 ,B1

2B8;
j 5 an imaginary unit;
k 5 wave number;
L 5 wavelength;
M 5 mass of concentration;
s 5 diffusion number;

U,V 5 velocity component;
W 5 amplitude of wave;

Z1 ,Z2 ,Z̄1 ,Z̄2 5 function of c, s, k, and
Dx;

a, b 5 constant;
Dt 5 time increment;
Dx 5 computational grid

interval;
F 5 temperature or concen-

tration; and
Vy ,Vz 5 horizontal and vertical

shears.
Subscripts

i 5 x-directional computational point index; and
m 5 index of anmth wave component.

Superscripts
n 5 time step index.
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