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Hybrid Finite-Difference Scheme for Solving
the Dispersion Equation

Tung-Lin Tsai'; Jinn-Chuang Yang, M.ASCE?; and Liang-Hsiung Huang, A.M.ASCE?

Abstract: An efficient hybrid finite-difference scheme capable of solving the dispersion equation with general Peclet conditions is
proposed. In other words, the scheme can simultaneously deal with pure advection, pure diffusion, and/or dispersion. The propos
scheme linearly combines the Crank—Nicholson second-order central difference scheme and the Crank—Nicholson Galerkin finite-elem:
method with linear basis functions. Using the method of fractional steps, the proposed scheme can be extended straightforwardly frc
one-dimensional to multidimensional problems without much difficulty. It is found that the proposed scheme produces the best results,
terms of numerical damping and oscillation, among several non-split-operator schemes. In addition, the accuracy of the proposed sche
is comparable with a well-known and accurate split-operator approach in which the Holly—Preissmann scheme is used to solve the pt
advection process while the Crank—Nicholson second-order central difference scheme is applied to the pure diffusion process. Since
proposed scheme is a non-split-operator approach, it does not compute the two processes separately. Therefore, it is simpler and n
efficient than the split-operator approach.
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Introduction the TVD schemegWang and Windhopf 1989 In addition, the
characteristic-based Holly—Preissmann two-point sché#adly
The dispersion equation is one of the governing equations in sol-and Preissmann 19Yi& one of the best in terms of less numerical
ute transport and water quality models in rivers, lakes, and oscillation and damping in modeling the advection process along
oceans. It involves two types of processes, advection and diffu-a river channel or coastal area. Although the split-operator ap-
sion. Generally, the numerical schemes available for solving the proach clearly has considerable advantages, it is computationally
dispersion equation could be classified into two types: split- more intensive and complicated when applied to multidimen-
operator and non-split-operator approaches. By the split-operatorsjonal flow problems because the advection and diffusion pro-
approach, the advection and diffusion processes are separatel¢esses must be handled separatelyet al. 1992; Chen and Fal-
computed using different numerical schemes, whereas the nongner 1994,
split-opgrator approach simulates the dispersion equation without  he non-split-operator approach offers an alternative to the
separating the two processes. o split-operator approach due to its simplicity and efficiency. To
In the split-operator approach, the diffusion process can be y5cye the numerical oscillation problem and to eliminate exces-
accurately computed by sev_eral numerical schemes, such as th§ive numerical damping, several nonsplit, high-order upwind-type
C_rank—N|ch0Ison_ cgn_tral difference scheme and the Crank- explicit finite-difference methods have been proposed, such as the
Nlcholson Ga_llerkln_ flnlte-element method. Thus, the accuracy of QUICKEST schemédLeonard 1979and the third-order convec-
solving the dispersion equation mainly depends on the computed,: PP .
results of the advection process. Among the procedures for solv-tlon ;econd-order_dlffgs_lorﬁTCSD) scheme@radley and Mis-
: saghi 1988 Some implicit forms of the modified QUICK scheme

ing the pure advection equation, several accurate monotonic
scghemesphave been proposqed, such as the MPL soivemé.eer (Leonard and Noye 1990; Chen and Falconer 1988d the

1977, the MSOU scheméRoe 1981, the SHARP schemé._e- TCSD schemgChen and Falconer 199have also been pro-

onard 1988 the SMART scheméGaskell and Lau 1988 and posed. These schemes, however, could not accurately compute
pure advection, pure diffusion, and dispersion simultaneously.
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examples, includingl) pure advection and dispersion in 1D uni-
form flow; (2) 1D viscous Burgers equatiof3) pure advection
and dispersion in two-dimension&D) uniform flow; (4) pure
advection in 2D rigid-body rotating flow; and5) three-
dimensional(3D) diffusion in a shear flow, are used to examine
the capabilities of the proposed scheme.

Development of Proposed Scheme

Consider the transient 1D dispersion equation with constant coef-

ficients as
¢, +UdP,=Dd,, Q)

where the scalar functiod(x,t) may represent, for example,
temperature or concentration at positiorand timet with flow
velocity U and diffusion coefficientD. This article proposes a
finite-difference scheme to solve Ed) using a linear combina-
tion of the CNSOCD scheme and the CNGFEMLF. The compari-

sons of the two schemes for solving the dispersion equation have

been discussed in detail by Gersho and S4898. From the
viewpoint of the finite-element method, the only difference be-

tween the two schemes is the treatment of the mass term, whethe
| the modified equations corresponding to the proposed scheme and

it is lumped or consistent. A brief review of the two schemes wil
be given prior to the introduction of the proposed finite-difference
scheme.

Crank—Nicholson Second-Order Central Difference
Scheme

By the Crank—Nicholson second-order central difference
(CNSOCD scheme, the discretized equation of Ef). can be
written as

c S Cc s
(—Z——)<b{‘+11+(1+s)¢>"“+(4 2><1>|“j11 (4+§)q>i”,l

S n
2 ¢, ,=0 2

—(1—s)¢>i”—<—§+

wherec=UAt/Ax is the Courant numbeis=DAt/Ax? is the
diffusion numberAt=time step;Ax=grid size; andb!**=the
value of® at grid pointi for time levelt=(n+1)At. The modi-
fied equationWarming and Hyett 1974corresponding to Eq2)
is

Ax?
By UD,— Ayt U - (24 62) Dyt O[AXP] =0, (3)

Crank —Nicholson Galerkin Finite-Element Method

The discretized form of Eq1) by the Crank—Nicholson Galerkin
finite-element method with linear basis functiof@NGFEMLF)
can be expressed as

1 ¢ s 2 1
6 4 2)¢P+11(3+5 ‘DPHJ’(UZ_E)@PE
1 ¢ s 2
— 6 Z —)(I)inl—(g—S)(Din
1 c N
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Similarly, the modified equation corresponding to E4). can be
written as

2
O +UD,— DD+ U —= 5 C 20, +O0[AX%]=0 (5)

As shown in Egs(3) and(5), it is clearly seen that the errors
of these two numerical schemes for solving the dispersion equa-
tion are dominated by the third-order derivative terms. If the lead-
ing truncation error term in the modified equation is an odd de-
rivative, the numerical solution will exhibit dispersive errors. In
other words, these two numerical schemes will produce numerical
oscillations when the dispersion equation is solved. Thus, a nu-
merical scheme without error term dominated via the third-order
derivative would be desirable. This can be simply achieved by a
linear combination of the two schemes. In addition, the proposed
scheme, as shown later, preserves the capability of solving a pure
diffusion process since the coefficients of the third-order deriva-
tive in Egs.(3) and (5) involve the Courant number but not the
diffusion number.

A mathematical proof for a general two-level numerical
scheme is given in Appendix | to show that the equation resulting
from a linear combination of two discretized equations, which are
each consistent with the dispersion equation, is still consistent
ywth the dispersion equation. In addition, the relations between

any selected two-level numerical schemes are also shown in Ap-
pendix I. There, one can observe that the coefficients of not only
the first- and second-order spatial derivatives, but also the first-
order time derivative in the modified equation corresponding to
the proposed scheme, are the sum of those in the two selected
numerical schemes. Furthermore, the coefficient of the third-order
spatial derivative can be obtained in the same manner under a
sufficient condition, i.e., &;+a,—a;—2a5=2C;+Cy—C4
—2cs, whereay, cq; a,, Cy; a4, C4; @andas, Cs are, respec-
tively, the weights at nodes-2,i—1,i+1, andi + 2 for the new

time step in the two discretized equatioisee Eq.(52) in the
Appendix.

Proposed Scheme

Referring to Eqs(3) and (5), the coefficients of the third-order
spatial derivatives ar&) Ax?(2+c?)/12 andUAx?c?/12, respec-
tively. Taking the linear combination of Eq$2) and (4) as
0.5Eq. (4)X (2+c?) —Eq. (2)Xc?] vyields a new finite-
difference scheme without an error term that is dominated by the
third-order derivative. Hence, the discretized equation of the pro-
posed scheme for solving the dispersion equation can be ex-
pressed as

1czcs
61242

2

SJori+ 2%

+s)<l>i”+l

l 02 c s 02
n+1 n
et g 2)‘1)'+l (6 2zt 2)(1" 1
2 ¢c? | 1 c? c |
37 s % gt g 2 ®i,=0 ©)

The corresponding modified equation is
Ax?
D+ UDy = DDyt U 5 (126 Dyt O(AXH) =0 (7)

The only difference between Eq4) and(6) is the presence of
the Courant-number-squared terms in the weights. The effect of
these new weights is to eliminate the dominant error term asso-
ciated with the third-order derivative from E¢g) to reduce the
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numerical oscillation in solving the dispersion equation. In addi- Z,+iZ,

tion, the proposed scheme is identical to &t.when the Courant glodt=— (15)
number is equal to zero. In other words, it preserves the ability to Z,1+jZ,
solve a pure diffusion process. One can observe from(Bghat where
the proposed scheme has fourth-order accuracy for the pure ad-
vection process, whereas H¢g) only has second-order accuracy. Z,=(2+coskAx)/3—c?(1—coskAx)/6—s(1—coskAx)
The proposed scheme can be applied directly to cases of non-
constantU, D, and Ax by adopting the representative velocity, Z,=(24coskAx)/3— c?(1—coskAx)/6+s(1— coskAx)
diffusion coefficient, and grid space as follows: )
Z,=(—c?sinkAx)/2
U= Ui y D= Di (8) o
and Z,=(c?sinkAx)/2
AXi 1+ AX (g Therefore, the amplification factor of the proposed scheme is
AX= ——F—F—"— 9)
2 , 72+72
_ : ; le7loat = (16)
whereAx;_;;=X;—X;_1; U;, andD; represent the velocity and 72,72
1 2

diffusion coefficient of flow field at grid point, respectively.

The amplification factor depends on three quantities: Courant
number,c; diffusion numbers; and wavelength to the grid size
ratio, L/Ax. One can clearly see from Eq45) and(16) that the
The above derivation for 1D problems can be extended by the amplification factor of the proposed scheme is less than or equal
method of fractional stepévanenko 1971 to multidimensional  to unity when the Courant number is less than or equal to unity. In
problems without much difficulty. The 2D dispersion equation Other words, it is a conditionally stable scheme when the Courant

Extension to Multidimensional Problems

can be written as number is less than or equal to unity. Fig& and B compare the
amplification factor of the proposed scheme with that of several
Qi+ UD+ VO =D, D)+ Dydy, (10) schemes for the pure advection case with0.8, and the disper-

where U, V, D,, and D, represent the velocity and diffusion sion case withc=0.65=0.06, respectively. Fig. (8 indicates
coefficient in thex andy directions, respectively. Dividing the 2D that the proposed scheme, the Noye schemye 1990, and the

dispersion process into two successive steps irxtaedy direc- CNGFEMLF have no numerical damping for the pure advection
tions, respectively, Eq10) can be approximated with a series of Process, whereas the fully time-centered implicit QUIGKIC-
1D dispersion equations as QUICK) scheme and the fully time-centered implicit TCSD
(FTC-TCSD scheme produce large numerical diffusion. In addi-
D+ UD,=DyDyy (11) tion, Fig. 1b) shows that the proposed scheme and the

and CNGFEMLF scheme have less numerical damping than all other
schemes considered to solve the dispersion equation.
& +VP, =D D, (12)

Analysis of Phase Error Factor
Egs.(11) and(12) can each be solved by the proposed scheme. Substituting the complex angular frequency

The 3D problems can also be formulated and solved in the same

manner by adding-directional dispersion as an additional term. o=Reo)+jIm(c) (17)

B ‘ into Eq. (6) and considering the real parts of both sides, the
Stability Analysis propagation velocity of the proposed scheme is
The stability of any numerical scheme must be examined before it Re(o) 1 Z 5 7
can be considered for application. The matrix and von Neumann &o) _ T tan1| 2L T2 (18)
methods are two commonly used ways for analyzing the stability k kKAX lel"‘zzzz
of any numerical scheme. In this study, the von Neumann stability ] ) )

iS i - e phase error factor, defined as the ratio of the propagation

analysis is applied. The ph f defined h f th

velocity of the proposed scheme to the real velodityof the

Analysis of Amplification Factor analytical solution, becomes

Suppose that the solution to E@.) can be expressed as a com- — —
plex Fourier seriegkomatsu et al. 1997 that is, Re(o) _ 1 L a 1( 2221= 2127 (19)
w kU 2mc AX 2,2,+27,7,
(D(X't):m;_m Wiy €Xp(— o t) expl(jKmX) 13) Like the amplification factor, the phase error factor is also

dependent on Courant number, diffusion number, and the wave-

where o, ky=angular frequency and wave number of rth length to grid size ratio. The phase error factors of some schemes

wave _component, respectively;=imaginary _un|t. Because Eq. considered for the pure advection equation with0.8 and the

(1) is linear, each component of E(L3), that is, dispersion equation witb=0.6s=0.06 are displayed in Figs(d

(14) and d, respectively. One can observe from Fig& and d that

the phase performance of the proposed scheme is the best among
is also a solution of Eq(l). Substituting Eq(14) into (6), one the schemes considered. In addition, the Noye scheme generates
obtains leading phase errors, whereas the others have lagging ones.

O (x,t)=Wexp —jot)expjkx)
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Fig. 1. (a) Amplification factor portraitx=0.8; (b) amplification factor portraite = 0.6, s=0.006; (c) phase error factor portraits=0.8; and

(d) phase error portraits=0.6, s=0.06

Numerical Results

identical to the exact solution. On the other hand, the other
schemes produce large numerical oscillation. Furthermore, the

To investigate the computational performances of the proposedNoye scheme yields leading phase error as shown in the previous
scheme, the dispersion equation in various dimensions is solvedstability analysis. The FTC-TCSD scheme and the FTC-QUICK

and compared with other existing numerical schemes.

One-Dimensional Examples

Pure Advection in Uniform Flow

A Gaussian concentration distribution is advected for 10,000 s

with a uniform velocityU=0.8 m/s. A grid space of 100 m and

time interval of 100 s are used in this example. The domain of
simulation is long enough so that the boundary effect can be
ignored. The computed results of various numerical schemes an
the exact solution are depicted in Fig. 2 and Table 1 in terms of
the maximum and minimum values and the rms errors. From Fig.
2 and Table 1, one can observe that the simulated results by th
proposed scheme and the Holly—Preissmann scheme are almos

6r - Proposed
-—— Exact solution
~~-Noye

1o L -~ CNGFEMLF
o -~- FTC-QUICK A
3 -~ FTC-TCSD ;.ﬁﬂ\.‘
E -+ Holly-Preissmann o
s 8 ];'l.\\ |
o il Wil
= %

AR

o l‘ it ‘\'
@] ;/ i !

4t oy

y
i
0 i ! “715;-\' vl/lf{" \\Cx J
WA ‘ 1 ' I’
% 40 60 g0y 100 120
4 L Space - x (x 100 m)

Fig. 2. Comparison of various schemes for 1D pure advection of
Gaussian concentration distribution

(S

scheme appear to induce large numerical damping.

Dispersion in Uniform Flow

The dispersion of a Gaussian concentration distribution with a
velocity U=0.8m/s and a diffusion coefficieri®=0.8 n¥/s is
simulated for 10,000 s with a grid space of 100 m and time
interval of 100 s. Fig. 3 and Table 2 show the proposed scheme
produces comparable results compared with a split-operator ap-
proach in which the Holly—Preissmann scheme is applied to solve
he advection process while the CNSOCDC scheme is applied to
he diffusion process. The split-operator CNSOCDC approach
used has no numerical oscillation, but its numerical diffusion is
larger than that of the proposed scheme. In addition, in compari-
on with the other schemes, the proposed scheme has the best
computational results.

Advection or Dispersion with Variable Velocity

For flow fields with variable velocity, two examples are shown.
The first is from Morton and Parroftl980 with the following
pure advection equation:

Table 1. Performances of Various Schemes in 1D Pure Advection
Test

Scheme Max. Min. rms error
Exact solution 11.81 0.0 0.0
Proposed 11.77 —0.002 0.0046
Holly—Preissmann 11.59 —0.003 0.0056
Noye 11.03 —1.540 0.0961
CNGFEMLF 10.24 —2.666 0.1692
FTC-QUICK 8.78 —2.098 0.1948
FTC-TCSD 8.88 —-1.324 0.1374
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Concentration

Space - x (x 100 m)

Fig. 3. Comparison of various schemes for 1D dispersion of Gauss-
ian concentration distribution

)

0P J
ot 1+2x

ot =0 xe[0m] (20)

With the following initial and boundary conditions:
d(0t)=0; P(x,00=(1+2x)sin%, xe[0m/3];

®d(x,00=0, xe[w/37] (21)

the exact solution for Eq20) can be derived as
D (x,t)=(1+2x)sin Y[ x2+x—t+3]2— 3,

for 0<x2+x—t<[w/3(1+mw/3)]

d(x,t)=0,
With Ax==/180 andAt=0.3Ax, simulation results of 80 time

for elsewhere (22)

~~~~~ Proposed

Exact solution

+« CNSOCD
2
0 2 gpelte, ’V/n\ L L ! 2 :
o o
0.2 0.4 6 0.8 1 1.2 14

Space — x (m)
4 L

Fig. 4. Computational results of pure advection equation with varia-
tion of velocity

in which erfc represents the complementary error function. After
linearization, the Burgers equation can be solved by the proposed
scheme and the numerical simulation results at ttme s are
shown in Fig. 5 underAx=0.01 m, At=0.01s, andD
=0.01 nt/s. Fig. 5 shows that the proposed scheme has satisfac-
tory simulation results despite small deviations from the exact
solution. It is clearly seen, from the above two numerical ex-
amples, that the proposed scheme performs well in flow fields
with variable velocity.

Two-Dimensional Examples

Pure Advection in Uniform Flow
A Gaussian concentration distribution with a peak value of 10 and
a standard deviation of 220 m is advected for 10,000 s under a

steps from the proposed scheme and the CNSOCD scheme, alonggstant velocity U=0.5m/s and V=0.5m/s in a two-

with the exact solution, are displayed in Fig. 4. Fig. 4 reveals that,
despite of little numerical oscillation, the computed results by the

dimensional infinite domain. The initial central position of this
Gaussian distribution is ak(y) = (1,400 m,1,400 m). A grid size

proposed scheme are better than those of the CNSOCD schemegs 100 mx 100 m and time step of 100 s are used to conduct the

A second example considers the viscous Burgers equation
O+ dD,=Db,, (23)
Under the initial and boundary conditions of
d(x,00=1 x=<0
d(x,00=0, x>0 (24)
O(—o»,t)=1, P(x,t)=0, t>0
the exact solution to Eq23) is

1 1
d(x,t)=1 1+ex Z(X_ Et

erfa —x/2\Dt) | "
erfd (x—1t)/2y/Dt]

(25)

Table 2. Performances of Various Schemes in 1D Dispersion Test

Scheme Max. Min. rms error
Exact solution 13.91 0.0 0.0
Proposed 13.81 -0.057 0.0123
Holly—Preissman#t CNSOCD 13.75 0.0 0.0065
Noye 11.32 -1.401 0.1127
CNGFEMLF 11.31 —3.996 0.2648
FTC-QUICK 9.38 —2.680 0.2490
FTC-TCSD 9.48 —1.755 0.1837

simulation. Figs. G—h show the bird’'s-eye view of the com-
puted results from several numerical schemes. Table 3 displays
the maximum and minimum values and the rms errors for each
scheme used. In addition, the computed concentration profiles by
different schemes along the line=x are shown in Fig. 7. It is
observed that the computed results by the proposed scHeme
6(a)] and the Holly—Preissmann scheffitég. 6(g)] almost agree
with the exact solution. The Holly—Preissmann scheme has the

1 + Proposed
— Exact solution
08
(o)
0.6
04
02
0 . . 1 ) .
0.5 0.7 09 1.1 1.3 1.5
Space — x(m)

Fig. 5. Computational results of 1D viscous Burgers equation using
the proposed scheme
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Fig. 6. Comparison of various schemes for 2D pure advection with
uniform flow

least numerical oscillation among all the schemes considered,

however, its numerical damping is larger than that of the proposed
scheme. The CNSOCD scherfféig. 6(c)] produces very severe
numerical oscillation that rapidly spreads over the modeling do-
main. The ADI-QUICK scheméChen and Falconer 1992Fig.
6(e)], the ADI-TCSD schemd&Chen and Falconer 1994Fig.
6(f)], and the MOSQUITO schemig=ig. 6(d)] (Balzano 1999
seem to produce results with large numerical damping. The
CNGFEMLF scheméFig. 6(b)] has smaller numerical diffusion
than those of the ADI-QUICK scheme, the ADI-TCSD scheme,
and the MOSQUITO scheme. However, its numerical oscillation
is large in comparison with the other three schemes.

Dispersion in Uniform Flow
Consider a 2D nondimensional dispersion equation with uniform
flow velocity as

D+ Py + Oy=D(Dyy+DPyy) (26)

Table 3. Performances of Various Schemes in 2D Pure Advection
Test

Scheme Max. Min. rms error
Exact solution 10.00 0.0 0.0
Proposed 9.87 —-0.010 0.0017
Holly—Preissmann 9.60 —0.008 0.0017
CNSOCD 5.94 -2.517 0.1000
CNGFEMLF 9.05 -1.719 0.0195
MOSQUITO 6.62 —0.959 0.0261
ADI-QUICK 6.96 —0.957 0.0278
ADI-TCSD 6.81 —-0.431 0.0173

----- Proposed

— Exact solution
-~~~ CNSOCD

10 + ~=~CNGFEMLF
--»-- MOSQUITO

- == ADI-QUICK
-~- ADI-TCSD

Tr - -~- Holly-Preissmann

Concentration

2 L
Space—x  (x 100 m)

Fig. 7. Comparison of various schemes for 2D pure advection with
uniform flow (along liney=x)

whereD =inverse of the Reynolds number. Under the initial con-
dition
D (x,y,0)=sin(wx)+sin(my). (27)
and the boundary conditions
®(0y,t)=[sin(—wt)+sinm(y—t)]exp —Dm?t)
®(Ly,t)=[sin(1—t)+sinm(y—t)]exp—Dw?t)
®(x,01)=[sin(x—t)+sin(—t)]Jexp — Dw?t)
®(x,11)=[sin(x—t)+sinmw(1—t)]exp —Dmw?t)
the exact solution to Eq26) is
d(x,y,t)=[sinw(x—t)+sinm(y—t)]exp —Dm?t) (29)

Numerical results by the proposed scheme and a split-operator
approach are shown in Figgia8and b att=2 andt=3 along the

line y=x with D=0.0002, a uniform grid size of 0.020.02, and

time step of 0.01. In the split-operator approach, the Holly—
Preissmann scheme and the Crank—Nicholson second-order cen-
tral difference scheme are used to solve the advection and the
diffusion processes, respectively. Figga8nd B demonstrate

that the simulated results by the proposed scheme and the split-
operator approach are almost identical to the exact solution. It
must be noticed that the use of the proposed scheme to the 2D
dispersion equation is straightforward by adopting the method of
fractional steps. However, the application of a split-operator ap-
proach is more expensive and complicated since the advection
and diffusion processes are computed separately. Furthermore, the
additional equations of spatial derivative must be computed in the
Holly—Preissmann scheme for solving the dispersion equation.

(28)

Pure Advection in Rigid-Body Rotating Flow

A pure advection of a Gaussian concentration distribution with a
rigid-body rotating flow in a two-dimensional infinite domain is
considered. This problem has a flow field of variable velocity. The
maximum value and the standard deviation of this Gaussian con-
centration distribution are unity and 250 m, respectively. The
rigid body spends 20,000 s rotating one turn. A grid size of
100 mx 100 m and time step of 50 s are used in numerical simu-
lation. After one rotation, the maximum and minimum values of
the computational results by the proposed scheme are 0.986 and
—0.012, respectively. This numerical example shows that the pro-
posed scheme also has good capability to accurately solve the
two-dimensional problem with variable velocity.
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®) s In the numerical simulation the following parameters are used:
t,=1000 s, V,=0.5 m/s, Q,=,=0.0003 1/s,D,=D,=D,
-2 * ! i =5.0 nf/s, At=100 s, and grid spacAx=Ay=Az=100 m.
0 0.2 04 0.6 0.8 ! Fig. 9 shows the contour plots of the proposed scheme and the
Space - x analytical solution at=3,000 and 5,000 s on the plaze=0,

respectively. The proposed scheme yields the results that are al-

Fig. 8. Computational results of 2D dispersion equatiafong line most in excellent agreement with the exact solution.
y=Xx): (@ t=2 and(b) t=3

Three-Dimensional Example Conclusions

Three-Dimensional Diffusion in A Shear Flow In this article, a hybrid finite-difference scheme capable of solv-
To investigate the capability of the proposed scheme for solving jng pure advection, pure diffusion, and dispersion processes is
three-dimensional problems, diffusion in a shear flow is consid- proposed. The proposed scheme combines two well-known
ered. The velocity shear in the diffusion of a patch of passive schemes, namely, the Crank—Nicholson second-order central dif-
contaminant from an instantaneous source plays an important rol&erence scheme and the Crank—Nicholson Galerkin finite-element
in groundwater flow or natural streams such as ocean, lake, antnethod with linear basis functions. The consistency and stability
estuaries. The governing equation for shear diffusion can be ex-of the proposed scheme are investigated. In addition, the relations
pressed as between the modified equations corresponding to the proposed
i+ (Vo+ Qyy+Q,2)0,=D,®,,+ D, d,,+D,P,, (30) scheme and the two selected schemes are obtained. Employing
o T the method of fractional steps, the proposed scheme that was
where Vo=mean velocity in thex direction; O, and Q, originally developed for one-dimensional problems can be ap-
=horizontal and vertical shear, respectively; and, Dy, and plied straightforwardly to multidimensional ones without much
D.=eddy diffusivities inx, y, andz directions, respectively. The gjtficulty. The proposed scheme has the best performance in sev-
analytical solution for an instantaneous point source of MMss g5 examples among some non-split-operator schemes. In addi-

released ax=y=z=0 was obtained by Carter and Okuti®63 tion, the proposed scheme yields comparable results in compari-

as son with a well-known and accurate split-operator approach in
M which the Holly—Preissmann scheme and the Crank—Nicholson
d(x,y,z,t)= =5 153 551 EXP second-order central difference scheme were used to solve advec-
8m~4D,D,D,)" L+p2t7) tion and diffusion processes, respectively. The proposed scheme
(x—VOt—O.S(ny+QZz)t)2 y2 22 is a non-split-operator approach an(_j,_therefore, it has_the advan-

— + + tage of being simpler and more efficient than the split-operator

4D, t(1+p%t?) 4Dyt 4Dt approach.
(31)
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Appendix: Consistency and Modified Equation

Consistency

Applying any two-level numerical schemes to Ef), one may
obtain the following discretization equations:

n+1 n+1 n+1 n+1 n+1
a®l, +adl tagd T Ttasdi tasdil;

=b;®! ,+by®! | +by®+byP],  +bsP!,,  (34)
and

n+1 n+1 n+1 n+1 n+1
CrP,+C® 1 +C3® T T+ P s Py,

:dlq)P_2+d2q) 1+d3q>n+d4q)l+l+d5(pl+2 (35)

wherea, +a,+az+a,+ag=C;+Cp+C3+Cq+Cs=1. Thed !
represents the value @b at grid pointi for time level t=(n
+1)At and At is the time step. The term®!/}!, &M, &M}
@7, ., and®] ; can be expanded in Taylor series as

©

1
N klAt
m=0 M

I+J:L

9 m
+JlAX (I)In kl,j1=—l,0,1
(36)

where Ax=grid size. Substitution of E¢(36) into Egs.(34) and
(35) yields

Di=A1 Dyt AgD i+ APy + AgP it AsDiir + AgPrix T A7Pixx
+AgD iyt 37)

and

D =B P+ By®y+ Ba®y+ ByPyyt Bs Py + Be®Pixxt B7Pixx
+Bg® iyt - (38)

where the superscript and the subscrigt for ® are eliminated.
The termsA;~Ag and B,~Bg are functions ofa;—as, b;—bs
andc,—cs, d;—ds, respectively. For examplé,, andA; can be
expressed as
—At —At
AZZT(a1+a3+a4+a5):T (39)
A3:AX(2a1+a2_a4_2a5) (40)

As far as the accuracy is concerned, bAthandB, are equal to
—U. In addition, because of the consistency, the teAps Ag
andB,~Bg, exceptA, andB,, are all equal to zeros wheft
andAx approach zero. Howeveh, andB, satisfy the following
condition:

A4:B4:D (41)

whereD = diffusion coefficient. Now, taking the linear combina-
tion of Egs.(34) and (35 as « [Eg. (34)]+B [Eq. (35)], one
obtains

(aay+Bc) DM+ (aa,+Bey) P+ (aag+Beg) dM Y
+(aay+Bcy) PN 1+ (aas+pes) S
=(aby+Bd) P ,+ (aby+Bdy) P!+ (abs+pdy) P
+(aby+Bdy) @], +(abs+pds) P, (42)

where a and B are constants. Similarly, substitution of Taylor
series expansiofB86) into Eq.(42) yields

®i=-Ud, s ——[(aAy+BB) P+ (aAg+ BB3) Py

B
+(aAs+ BB Pyt (aAs+ BBs) Pyii(Ag+ BBg) Py
+(aA7+ BB7) Dyt (aAg+BBg) D yyu] + (43)

One can clearly see from E¢3) that Eq.(42) is also consistent
with the dispersion equatiofi).

Modlfied Equation

By eliminating pure and cross time derivatives with repeatedly
differentiating Eqs.(37) and (38), the modified equation corre-
sponding to Eqs(37) and(38) can, respectively, be expressed as

D= —UD, +E, P+ EgDyyrt - (44)
and
O=—UD, +FoD, +Fa®yyyt-- (45)
where
E,=U2A,—UA3;+A,
Es=—2U3A3+3U2A,A;— 2UAA,— UAZ+ AzA,— USAg
+U2Ag—UA;+Ag (46)
and
F,=U?B,—UB3+B,
F3=—2U°%B3+3U%B,B;— 2UB,B,— UB3
+B3B,—U®Bs+U?Bg—UB,+Bg (47)

Similarly, the modified equation corresponding to E4) is

2 Gs
Dyt — D b (48)

G
¢>t=—UCI>X+m XX OL+B

where
Go=U(aAz+BBy) ~UlaAg+ BBy) +(ahat BBy (40

G3:

gl 2U3(aAy+BBy)2+3U%(aAy+BBy)

X (aAsz+BB3)—2U(aAs+BBs)(aAs+BBy)
—U(aAz+BB3)?+(aAg+BBs)(aAs+BBy)]
—U3(aAs+BBs)+U2(aAg+BBg)
—U(aA7+BB7) +(aAgtBBg)
It is obvious thatG,, E,, andF, satisfy
Gro=aE,+BF>, (50)

In addition, if A,, B,, A;, andB; satisfy the following condi-
tions:

Ax=B; (51)
and
Az;=Bj3 (52)
one can obtain
Gz=aE;+BF;3 (53)

In other words, Eq(48) can be rewritten as
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(a+B)P=—U(a+B)Py+ (aEs+BF2)Dyy
+(aEg+BF3)Pyyyt - (54)

It is necessary to point out that conditi¢bl) is always satisfied
due to Eq.(39). Eqg. (52) is a sufficient condition for Eq(53).
Although the above derivation is only up to the third-order de-
rivative, the higher-order derivative can also be executed in the
same manner.

Notation

The following symbols are used in this paper:
a17a3,b17 b3,
c,—C3,d;—d3 = coefficients of discretized
equation;
Al_AS!Bl_ Bs,
El_ E8’Fl_ FS = funCtlon Ofal_a3,bl
—bsz,c;—c3,dy—dg;
¢ = Courant number;
D,D4,D,,D, = diffusion coefficient or
the inverse of Rey-
nolds number;
G,G;5; = function of A;—Ag,B;
—Bg;
an imaginary unit;
wave number;
wavelength;
mass of concentration;
diffusion number;
velocity component;
amplitude of wave;
Z,,2,,2,,Z, = function ofc, s, k, and
AX;
a, B = constant;
At = time increment;
Ax = computational grid

E<m Zl_y\—-—
Il

interval;
d = temperature or concen-
tration; and
Q,,Q, = horizontal and vertical
shears.

Subscripts
i = x-directional computational point index; and
m = index of anmth wave component.

Superscripts
n = time step index.
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