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Dynamic Optimal Groundwater Management with Inclusion
of Fixed Costs

Chin-Tsai Hsiao® and Liang-Cheng Chang?

Abstract: Obtaining optimal solutions for groundwater resources planning problems, while simultaneously considering both fixed costs
and time-varying pumping rates, is a challenging task. Application of conventional optimization algorithms such as linear and nonlinea
programming is difficult due to the discontinuity of the fixed cost function in the objective function and the combinatorial nature of
assigning discrete well locations. Use of conventional discrete algorithms such as integer programming or discrete dynamic programmi
is hampered by the large computational burden caused by varying pumping rates over time. A novel procedure that integrates a gene
algorithm (GA) with constrained differential dynamic programmif@DDP) calculates optimal solutions for a groundwater resources
planning problem while simultaneously considering fixed costs and time-varying pumping rates. The GA determines the number an
locations of pumping wells with operating costs then evaluated using CDDP. This study demonstrates that fixed costs associated w
installing wells significantly impact the optimal number and locations of wells.
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Introduction over, and mutation. GAs have found diverse applications in water
resources management. Wardlaw and Sh@®09 evaluated a

Groundwater, as an underground reservoir, is a valuable waterGA for optimal reservoir system operations. Morshed and Kalu-
resource with many diverse domestic, agricultural, and industrial arachchi(2000 introduced three potential methods to enhance
uses. Owing to its importance, ensuring the sustainable use ofGAs. The fitness reduction methd&RM), search bound sam-
groundwater has been extensively studi@brelick 1983; Lin pling method(SBSM), and optimal resource allocation guideline
and Yang 1991; Yeh 1992; Pezeshk et al. 1994; Takahashi and ORAG). According to the results, an FRM increases the effi-
Peralta 1995 Many optimization techniques have been employed ciency of a GA in handling constraints; an SBSM enhances the
in the planning stages of groundwater management, including lin- accuracy of a GA in solving problems with fixed costs; and an
ear programming(Aquado and Remson 1974; Molz and Bell ORAG enhances the reliability of a GA by providing some con-
1977, nonlinear programmingMurtagh and Saunders 1982; vergence guarantee for a given computational resource. Earlier,
Gorelick et al. 1984; Ahlfeld et al. 1988a),lmixed-integer pro- Mckinney and Lin(1994 optimized groundwater management
gramming (Rosenwald and Green 1974genetic algorithms  using a GA, and Cieniawski et &l1995 addressed the problem
(McKinney and Lin 1994; Wang and Zheng 1998&nd differen- of how to select a system of monitoring wells with a GA.
tial dynamic programmingDDP) (Jones et al. 1987 Among For groundwater management, total cost generally includes
these methods, DDP significantly reduces the dimensionality dif- well installation (fixed cost$ and pumpage(operating cosis
ficulties associated with nonlinear dynamic groundwater manage-Since the fixed cost function is discontinuous, fixed costs are
ment problemgJones et al. 1987, Chang et al. 1992; Culver and frequently neglected in application of gradient-based optimization
Shoemaker 1992 algorithms. The omission of fixed costs can lead to designs that
Genetic algorithm$GAs) are heuristic programming methods rely on a large number of wells pumping at small rates over long
capable of locating near-global optimal solutions for complex time periods(McKinney and Lin 1995 Therefore, considering
problems(Goldberg 1988 A single GA cycle, known as a “gen-  fixed costs significantly affects the optimal design of groundwater
eration,” includes three genetic operators: reproduction, cross-withdrawal systems, particularly when planning periods are short.
Although a GA can easily incorporate the fixed costs associated
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The writers are unaware of any investigations reported in the B\ 1
scientific literature that simultaneously consider the fixed costs of z=— (A+ A_t) R (3d)
installation wells and operating costs of time-varying pumping
rates. Culver and Shoemak@©97 applied quasi-Newtonian dif- ~ whereA, B, arenXn matrices, which generally contain the hy-
ferential dynamic programmingQNDDP) to optimal groundwa- drogeological parameters and are produced by the numerical pro-
ter reclamation, for which the treatment capital cost was related cedure;R represents1x 1 vectors associated with the boundary
linearly to the extraction rate. However, their investigation did not conditions;P is annXm permutation matrix and is employed to
include fixed costs for well installation. Although McKinney and map the well number onto the model global node numbering sys-
Lin (1994, 1995 considered both fixed and operating costs in tem;F denotes amXn matrix; G represents anx m matrix; z is
their objective function and applied GAs and mixed-integer non- &n n vector; andn and m denote the total number of hydraulic
linear programming to solve the problem, they only assumed heads and control variables, respectively. The matrix equédjon
time-invariant pumping rates and steady-state conditions. Zhengis embedded in the management model and serves as a linear
and Wang(1999 integrated tabu search and linear programming transfer function. The management model is then formulated as
for optimal design of groundwater remediation by accounting for follows:

both fixed and operating costs, but only time-invariant pumping T

rates were considered. min J(1)= evicD+ S coul (DIl (1
Wang and Zheng1998 applied a GA and simulated anneal- o Ico ) |Ee| () ;1 2h(DIL (D

ing, coupled with the MODFLOW finite-difference groundwater ug.ielt=1,.T

flow model, for optimal groundwater remediation design over

multiple management periods, including both fixed and operating i

costs. However, this study limited the maximum number of plan- ~ha(D)] )
ning periods to four. This limitation was likely due to the expo- .

nential increase in computational expense of GAs and simulatedSubject to

annealing, with an increasing number of planning periods and he 1 =Fh+G(Du()+z t=12,.T (5)
corresponding decision variables and pumping rates. In this study,

a novel management model is proposed that combines CDDP and hiy1=hginy t=1,2,..T (6)
GA to optimize groundwater basin development and manage-

ment. By exploiting the advantages of both methods, the proposed E u=d;; t=1.2..T @)
model solves a groundwater supply problem that simultaneously iet

considers both the fixed costs of well installation and the operat o<u(h=ul_; t=12,.7.1CQ ®)

ing costs of time-varying pumping.

where(} is an index set defining all the candidate well locations
. within the aquifer, andl is a subset of) and is a possible network
Formulation of Proposed Management Model alternative(design. The upper index denotes a well in the net-
. . . . work design. The dimension @(l), u,(l), L,(1), andh ()
The management moc_iel contaln_s an aquifer, th‘?‘t is a 2D confine s adjusted according to the pattern IofEq. (4) represents the
system. The governing equation that describes groundwatertotal cost associated with network alternativ& he first term in
movement is the objective function(4) represents the fixed costs of the well
d dh d oh d network in whichc, represents the unit cost of well installation,;
a_x(TXXa_x) + W(Tyya_x + % ud(xi.yi)=Sor (@) L, (1) are the distances between the ground surface and the lower
datum of the aquifer for each well; and(l) equal the depth of
whereh denotes the hydraulic head,, and T,, represent the  each well. The second term embodies the operational costs where
principal components of transmissivity aligned along thendy c, denotes the cost coefficient of pumpage and is expressed as
coordinate axed; represents the set of pumping welgenotes  ¢,=vXxcyx At, with At the duration of pumpingy the specific
the storage coefficient); represents the pumping rate located at gravity, andc; the unit cost of electric power. Thel(l) are
(xi,yi); and 8(x;,y;) is the Dirac delta function evaluated at variable pumping rates at time and h!_ ,(1) denote hydraulic
(Xi !yi)' Eq (l) is SUbjeCt to the appropriate initial and boundary heads for each node at time+1. The expressionLi*U)
conditions. The simulator used herein is ISOQUAPInder _hiH—l(I) simply represents drawndown at pumping wielEq.
1978, where the numerical solution is obtained by applying the (5) "as derived from Eq(3), represents the system dynamics re-
Galerkin finite-element method for the space derivative and an |ation in the optimization. Eq(6) defines lower limits on hydrau-
implicit finite-difference scheme for the time derivative. The cor- |ic head to avoid damage caused by overpumping.(BExrepre-

responding matrix equatiofl) can be expressed as follows: sents the requirement that total demand for groundwater supply
B B must be satisfied. The upper limits of E§) denote the capacity
(A+ At ht+1:Eht+ Pu—R (2) of each well, while the lower limits can be applied to avoid well
installation that has small pumping rates, which are obviously
which can be further expressed as infeasible.
hi,,=Fh+Gu+z (3a) The groundwater mar]agement model defin_ed by E)s(8)
has two key elements. First, the search for optimal network alter-
B\"1B natives is a discrete combinatorial optimization problem, thereby
F:(A+ H) INE (3b) prohibiting the application of general gradient-based algorithms.
. Second, the system is dynamic and continuous, as indicated by
G=( At E p- (30) Eq. (5) for each network alternative, and may cause excessive
At ' computational loads when applying a discrete-based algorithm
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Fig. 1. Flowchart for groundwater management model

such as integer programming or discrete dynamic programming.
Notably, combining the two elements makes the problem difficult
to solve using conventional schemes.

Integration of GA and CDDP

tive (chromosomg These features are clarified by a sequential
explanation of the algorithm as follows:

Step 0: Initialization

Encode the network alternatives as chromosomes and randomly
generate an initial population. The population size in this study
ranges from 50 to 100. A chromosonle,js a binary string rep-
resenting a network alternative, as indicated by Fig. 2. The length
of the binary string is the total number of candidate wells. Each
bit within the binary string corresponds to a candidate well. For a
particular network alternative represented by a chromosome, a
well is selected when the value of the correspondingibit one.
Since the selection of wells is binary in nature, the encoding and
decoding of the chromosome is straightforward. For example, the
chromosome in Fig. 2 represents a network design that selects
only three wells, and the well numbers are 3, 10, and 30.

Step 1: Evaluate Total Cost and Fitness Value for Each
Chromosome

The chromosome described in step 0 can be represented math-
ematically in the form ,=X;,X5,..., Xy Wherel, denotes a chro-
mosome in the population arM is the number of total candidate
wells. Since each element has a binary value of 1 or 0, the
number of wells in this chromosome can be calculated as follows:

M
Nyen= 21 X ©)

When the number and locations of pumping wells are deter-
mined, the fixed costs are readily calculated and the problem then
involves evaluating the optimal operating costs for the network
design. According to Eqg4)—(8), when a network alternative is
selected, the discrete and inseparable nature of the problem is
eliminated and the optimization model can then be rewritten as
follows:

-
min J(I)=E
leQ iel | t=
ubiell=1,.T

, CoU(DILL (D =ty (D]} +Cre

(10)
subject to Eqgs(5), (6), (7), and(8) whereC;,=a constant repre-

When locations of pumping wells are predetermined, the CDDP senting the fixed costs and does not affect the operating costs.
algorithm is an efficient procedure for determining optimal pump- Therefore, the CDDP can be used to evaluate the optimal operat-
ing rates for each well. However, the optimal pumping rates are ing costs for the selected network design.

not a complete optimization in the management model because The CDDP algorithm exceeds conventional dynamic program-
the number of wells and locations are prespecified. In terms of theming (DP) and mathematical programming algorithms in compu-
problems with fixed costs where the number of wells and loca- tational efficiency(Murray and Yakowitz 1979; Jones et al. 1987
tions are considered as decision variables, CDDP has difficulty in and does not require discretization of the state and control vector.
solving the problem owing to the discontinuity of the fixed cost Accordingly, CDDP overcomes the “curse of dimensionality,” a
function. Therefore, this study integrates GA and CDDP to de- serious limitation for conventional DPBellman and Dreyfus
velop the groundwater management model defined by &js. 1962. The CDDP enables a significant reduction in the “work-
(8), as illustrated in Fig. 1. The algorithm is a simple GA with ing” dimensionality of the algorithm over that of mathematical
CDDP embedded in the total cost evaluation and exhibits two key programming algorithms by taking advantage of the dynamic na-
features. First, the discrete nature of searching for optimal well ture of groundwater hydraulic or water quality optimization prob-
location network alternatives is accomplished by the GA. Second, lems through stagewise decomposition. On the contrary, math-
the CDDP algorithm is used to calculate optimal operating costs ematical programming algorithms do not exploit the sequential
for time-varying pumping associated with each network alterna- time structure of these probleni3ones et al. 1997

00100000010000000000000000000100000

Fig. 2. Chromosome representatioh
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The CDDP used herein is a procedure suggested by Murray parent | [T T[T AJII[1]1]
and Yakowitz(1979 and is a successive approximation technique
for solving optimal control problems, iteratively determining the parent 2 [0]ofofofafo]olo]olo]o]o]oT0]0]
optimal solution to the problem stated in E§0) subject to Egs. witdt [ IATololo]o]
(5)—(8). The CDDP algorithm requires a quadratic approximation
of the original problem. By substituting E¢p) into Eg. (10), the chitd 2 [oJoJo]olefofololololel1 1 1]1]
objective function becomes a function of control and state vari- One-point crossover
ables with identical time inde&). The second-order Taylor’s ex- _
pansion then approximates the objective function on the nominal Fig. 3. Crossover operator

policy. Since Eq(5) is linear, in this study the Hessian matrix of
the approximated objection function is positive definite. The ap-

proximated quadratic objective function and other linear con- e+ 1= Nin (16)

straints, Eqs(6)—(8), create a convex quadratic problem at every

time step. > ui=d, (17)
Quadratic programming in the backward and forward sweep is iel

employed to resolve the series of quadratic.problems. In the back- U $Uit(| y<u_1cQ (18)

ward sweep, the state variables are considered as unknown pa- min max

rameters, and the optimal control laws, which are a function of where h,=initial hydraulic heads; si(1)=hg (1) =L, (1)

the unknown parameters, are computed. While in the forward =yector of drawdowns. Incorporating EAL5) into Eq.(14) pro-
sweep, using the initial value of state variables and the transferduces a quadratic form in;. Because Eqg16)—(18) are linear
function, Eq(5), the value of the state variables can be SpeCiﬁed constraints, Eqd14)_(18) define a convex quadratic prob|em at
at each time step. The quadratic programming is reapplied toeach time step. Therefore, a standard quadratic programming can
solve the problem, which is moving forward, and the optimal pe used to obtain the decision variable vector. As stated previ-
policy is revealed. Notably, the computed optimal policy becomes ously, the quadratic problems are solved independently in the for-
the nominal policy for the next iteration. Since quadratic prob- ward direction for each time step,A series of decision vectors,
lems are only an approximation of the original problem, iterations \which is a nominal policy, can then be obtained. Bl implies

are required. A detailed discussion of the CDDP algorithm is pro- that the computed policy minimizes the drawdown and satisfies
vided in Murray and Yakowit1979, Chang(1986), Jones etal.  the constraints, Eqg15)—(18), for all stages(time steps Fur-
(1987, and Chang et al1992. thermore, the policy also satisfies the constraiBis-(8) of the

After the optimal total cost(l) for each chromosome is original problem. Therefore, if the network is designed ad-

calculated, the fitness for each chromosome can be evaluated asquately, the algorithm will produce a feasible solution. Other-
F(1)=CpJ(1) (11) wise, the fithess of this chromosome is assigned a small value,
max and the CDDP procedure is omitted. The quadratic programming
whereC,,,, denotes an arbitrarily large number. The procedure is technique used herein is a heuristic procedure for determining the
repeated for all chromosomes in each generation. Therefore, thenominal policies.
CDDP is embedded in the GA to calculate the optimal operating
costs as also indicated in Fig. 1.

Several computational issues related to the application of GA
are worth mentioning. First, the capacity limitation in E®) Reproduction is implemented in this study by using the roulette
requires that the number of wells for each chromosome must bewheel approach. In roulette wheel reproduction, each chromo-
within the maximum and minimum number of wells; otherwise, Some has the probability;(I) of being selected.

Step 2: Reproduce Best Strings

no feasible solutions will be available, and the CDDP algorithm is £.(1)
not executed. The maximum and minimum number of wells can pj(1)= W (19)
be determined as follows: ORAG
i
maximum number of weltls maxd;)/Upin (12) =1

wherepop denotes the population size. This operation simulates

minimum number of wells max(d;)/Umax (13) natural selection, where a higher fitness value of a chromosome
If the number of wells in a chromosome does not satisfy the implies a higher pro_bability that the chromosomes will survive.
constraints, then the fitness of this chromosome is assigned aTr.lerefore,'the algorithm can converge to a set of chromosomes
small value. with high fitness values.

Second, since the CDDP algorithm requires nominal policies

for initialization, a systematic procedure must be developed. The Step 3: Perform Crossover
nominal policies for each chromosonfat is, network design
are calculated by solving a series of quadratic problems forwar
in time. The problems are defined as follows:

dCrossover involves random coupling of the newly reproduced
strings, and each pair of strings partially exchanges information.

Fort=1,...T
min  D{(1)s(1) (14) offspring 1 [1[1 1[1[0]i]1 1[1]1 1[1[1]1]1]
u(h,ico *
subject to offspring 11 [1 [t [1{1]1[T I[T[TI]t]11]1]
hey1=Fh+G(Du(1)+2, h;=h;, 1UQ (15) Fig. 4. Mutation operator
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Fig. 5. Aquifer for water supply examples

Crossover aims to exchange gene information so as to produceability, mutation changes a specific gefte—~1 or 1—0) in the
new offspring strings that preserve the best material from two offspring strings produced by the crossover operation. An ex-
parent strings. In general, the crossover occurs at a certain probample of mutation is shown in Fig. 4 in the selected bit shown as
ability (peros9 SO that it is performed on a majority of the popu- the block is changed from O in the old string to 1 in the new
lation. In this study, we select one point crossover as shown in string.

Fig. 3, wherep,,ssranges from 0.5 to 1.0.

Step 5: Perform Termination

Step 4 Implement Mutation After completion of steps 1-4, a new population is formed that

Mutation restores lost or unexplored genetic material to the popu- requires evaluating the total cost as in step 1, which is used to
lation to prevent the GA from prematurely converging to a local assess the stopping criterion, which in turn is based on the change
minimum. A mutation probability f,,,..) IS Specified so that ran-

dom mutations can be applied to individual genes. Del@8g@5

originally suggested that a mutation probability inversely propor- - . . : e 0.4

tional to the population size would prevent the search from lock- 14
ing onto a local optimum. This study follows DeJong’s sugges- 12 |
tion. Before implementing a mutation, a random number with Y

uniform distribution is generated. If this number is smaller than
the mutation probability, then mutation is performed; otherwise,
mutation is disregarded. Notably, according to the specific prob-

o
98]

04 e
- - --well 1 and well 5
------ well 2 and well 4

o o
— [ 5]
well pumping rate(m”3/sec)

Table 1. Aquifer Properties of Example Application

demand pumping rate(m”"3/sec)

Parameter Value 02 1 ——well 3
T T T YW G Y I R [N FOUOS WU OO WU B 1 Well6 L 00
Hydraulic conductivity 4.31X10 *mi/s 00 ’
- 1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35
Storage coefficient 0.001 Ti
. ime stage
Porosity 0.2
Aquifer thicknesgb) 50 m Fig. 6. Water demand for examples and optimal pumping rates for
L, 120 m section 4.2
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Table 2. Optimal Solutions for Different Limits on Minimum Pump- 2447 e e e s 60
in
g Rate s 2446 I No. of'wells A 1 s
Limits on Calculated § —s— Objective function value
minimum Optimal minimum s 14 =
well pumping  operating pumping rate Optimal = =
) g S2444 | 130 %
rates cost at first stage number a8 o
(m3s) million (m3s) of wells  Generations 2 043 12 %
-2
0 $2.44278 0.000082 35 37 3 sam 110
0.01 $2.44281 0.01 14 40
2.441 e el

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43
of either the objective function valug¢otal cos} or the optimized No. of Generation

parameters. If the user-defined stopping criterion is satisfied or

when the maximum allowed number of generations is achieved,
the procedure terminates; otherwise, return to step 1 to perform
another cycle. The success and performance of the GA depend on
several parameters: the population size, number of generations,
and probabilities of crossover and mutatigvicKinney and Lin

1994. Goldberg (1989 has suggested that a good GA perfor- 0.045. The performance of all examples relies on proper setting of
mance requires the choice of high-crossover and low-mutationthe crossover probabilityp(,.s), population size, and mutation
probabilities and a moderate population size. Therefore, solutionsprobability (p,.a). Numerical experiments indicate that, for
from a GA cannot be guaranteed to be optimal. However, GAs arep___ in the range 0.5—-1.0, population size between 50 and 100,
robust and easy to hybridize with other optimization methods or gnqg Pmua= 1/population, the computation is likely to converge to

Fig. 8. Objective function values and number of wells versus num-
ber of generations

simulation models. an optimal or near-optimal solution within 22 to 43 generations.
The solutions to the following examples are obtained using
Numerical Results Peross 0.8 and a population size of 80 chromosomes.

Several example problems are presented to demonstrate the effec- o .
tiveness of the methodology integrating a GA and CDDP. All the Efféct of Omitting Fixed Costs

examples are based on the same hypothetical system as depictehe first two cases investigate the consequences of omitting fixed
in Fig. 5, adapted from Chang et &.992. Several issues related  costs in the planning of a groundwater supply system. The value
to fixed costs and constraints on individual pumping wells are of c, is zero, and two different minimum pumping constraints on
considered in this demonstration. The aquifer is assumed to beindividual wells of 0 and 0.01 ffs, respectively, are examined,

homogeneous, isotropic, and confined. The 3;0B@00 m site is  with results summarized in Table 2. For the case of no fixed costs
described with 77 finite-element nodes and 35 potential well lo- with a minimum pumping constraints of 03, the algorithm

cations with constant head and no-flow boundaries to circumventselects all 35 candidate wells, with several wells pumping at a

the flow domain. Initial conditions on hydraulic head distribution small rate. Since small pumping rates are infeasible for practical
prior to pumping are assumed to be in steady state with the aqui-applications, this finding corresponds to the statement of McKin-
fer properties listed in Table 1. In the management model, the ney and Lin(1999 in their study on optimal aquifer remediation.
planning horizon is divided into 36 Stages over nine years. The When the minimum pumpmg constraint is set at Odﬁsmhe
total pumpage at each stage must satisfy the demand as shown igptimal number of well installations is reduced to 14. These re-
Fig. 6, with maximum and minimum well capacities of 0.5 and O sylts demonstrate that when omitting the fixed costs, the lower
or 0.01 n¥/s and minimum hydraulic head of 50 m. bound on pumpage strongly impacts the number of wells selected.
Three examples are examined: no fixed costs; constant unitHowever, since there are few physical or economic references, it
fixed costs, and varying unit fixed costs according to geological s difficult to estimate suitable lower bounds. Fig. 7 illustrates the
conditions. The value of coefficient in these examples is setat  gptimal hydraulic head distribution and pumping rates at the first
time step for the case of 0.01 minimum pumping rate. Fig 8
summarizes the change of the value of the objective function and

3000 l / ’{ ‘ the number of wells for the optimal chromosomes in each GA
2300 (|1 760 024 e generation. This simulation result indicates that solution con-
8 verges after the 25th generation.

2000 5[0

1500 4 Da4age
1000 4 0ASCS |
o hoas oor Table 3. Cost Comparison for Variation of Coefficient
500 1 ° ° Coefficientc, $60.0 nT1 $120.0 ! $180.0 m! $240.0 m*
0 w ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Number of wells 8 7 6 5
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 )
o Well location Fixed cost($) 57,600 100,800 129,600 144,000
Operating cost$) 2,449,611 2,456,985 2,472,055 2,497,860
Fig. 7. Optimal head distribution and pumping rates at first time step Total cost($) 2,507,211 2,557,785 2,601,655 2,641,860
for case of 0.01 minimum pumping rat€s4 selected wells CPU time(s) 13,894 14,333 19,373 12,101
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0 6 120 180 240 300 Fig. 10. Head distribution calculated using optimal well locations,

Unit fixed cost optimal number of wells, and optimal stage 1 pumping rate for each

Fig. 9. Comparison of value of coefficiei@; and minimum pump- well

ing rate

ated with each optimal solution. As expected, this figure reveals
that increasing the unit fixed cost increases the calculated mini-
mum pumping rates and, expectedly, reduces the number of wells.
This study also considers the impact of fixed costs given a range  The optimal head distribution at the first time step and the
of values of the unit fixed cost. Within each case, the unit fixed number and location of wells, assuming the unit fixed cost equals
cost of each well is assumed to be the same. Constraints on thes180.0 m%, are shown in Fig. 10. The number of wells of the
individual minimum pumping rates were relaxéthat is, Uy, optimal network is six, and the selected wells concentrate on the
=0.0n?/s) for all cases. Other constraints and the system con- west side. The distribution of the location of wells is reasonable
figuration are identical to those described previously. Total fixed since hydraulic head is higher in the west region, thus requiring
cost can be estimated by multiplying well depth by the unit fixed less pumping cost. Time-varying pumping rates for the six wells
cost. The optimal value of the objective function is the optimal are shown in Fig. 6. Comparing the case of omitting fixed costs,
total cost with both the fixed and operating costs considered. the optimal number of wells is reduced from 14 to 6, the wells are
Table 3 summarizes the optimal total cost, optimal number of repositioned, and the distribution of hydraulic head is altered.
wells, and required CPU time with respect to distinct unit fixed
costc,. These examples are calculated on a PC with an Intel
Pentium 11 300 MHz CPU.

According to Table 3, increasing the unit fixed cost increases The merits of considering both the fixed and operating costs are
the total fixed costs, operating costs, and total cost, but decreasesevealed by comparing the true total cost of the designed network
the total number of wells. The relationship between the optimal for all cases considered. For the cases omitting fixed costs, the
number of wells and the unit fixed cost resembles that betweenoptimal network was determined based on only the operating
the optimal number of wells and constraints on individual mini- costs; the operating costs are nearly the same, although the num-
mum pumping rate described previously. Fig 9 plots the relation- ber of wells differs significantlfTable 2. The total cost can be
ship between unit fixed cost, the optimal number of wells, and the estimated by adding the calculated operating costs to the fixed
minimum pumping rates at the end of the first time step associ- costs. Table 4 summarizes the total cost of the two networks given

Effect of Uniform Fixed Cost on Number of Well Setup

Comparison of Total Cost with These Cases

Table 4. Total Costs for Varying Unit Fixed Cost() in Example 1

Unit fixed cost €,) $0m?t $60 m'? $120 mt $180 m! $240 m't
Lower limits (0.0 nv/s) 2.44 (M) 2.69 (M) 2.95 (M) 3.20 (M) 3.45 (M)
(35 welly

Lower limits (0.01 n¥/s) 2.45 (M) 2.55 (M) 2.65 (M) 2.75 (M) 2.85 (M)
(14 welly

Difference of total cost —0.01 (M) 0.14 (M) 0.30 (M) 0.45 (M) 0.60 (M)
Note: M=million dollars.

Table 5. Comparison of Total Cost with and without Consideration of Fixed Costs in Optimization Model

Coefficientc; $60 m* $120 m't $180 it $240 mt

Total cost and well numbers 2,507,211 2,557,785 2,601,655 2,641,860
considering fixed cost (8 wells) (7 wells) (6 wells) (5 wells)

Total cost and well numbers 2,694,780 2,946,780 3,198,780 3,450,780
considering no fixed cost (35 wells (35 wells (35 wells (35 wells
Percentage of differend@s) 7.48 15.21 22.95 30.62
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Fig. 11. Head distribution resulting from optimal network design and pumping scheme for first time step

a range of unit fixed costs. Contrary to the operating costs, thewells. In addition, according to Figs. @land ¢ the permeability

two cases differ from each other significantly when the unit fixed in zone Il is higher than zone I, and the optimal well number

cost is high. Table 5 compares only the total cost of the network increases by two. This finding indicates that a high permeability

designation. zone is desired when placing a well. More interestingly, according
Table 5 reveals that for the value coefficientas $180.0 m?, to Fig. 11(d), when unit fixed costs do not significantly differ

the total cost of the network for the case that does not considerfrom permeability, the latter dominates the behavior of the well

fixed costs is 22.95% more than that which considers the fixed setup more than the former. Table 6 lists the fixed costs, operating

costs. This finding demonstrates the importance of consideringcosts, and total costs for the four cases.

fixed costs when the unit fixed cost is high.

Varying Unit Fixed Cost (c,) According to Geological Conclusion

Conditions This study presents a novel scheme that integrates a GA with

The last example demonstrates the capability of this procedure toCDDP to determine the optimal solution of a groundwater man-
solve a problem with the unit fixed cost and hydraulic conductiv- agement problem while simultaneously considering fixed costs
ity varying in space. Previously, the unit fixed cost and hydraulic and time-varying operating costs. The decision variables involve
conductivity were assumed to be the same in the study area; howthe number and location of wells as well as the time-varying
ever, this is unlikely to be true due to typical heterogeneous geo-
logical conditions. Therefore, this example spatially varies the
value of ¢; and hydraulic conductivity to simulate the conse- Table 6. Fixed Costs, Operating Costs, and Total Costs for Examples
quence of geological heterogeneity. To simplify the analysis, the of Varying Unit Fixed Cost ¢;) According to Geological Conditions
unit fixed costs ¢;) selected are $60.0 and $180.0 nand Fixed cost Operating cost Total Cost
hydraulic conductivity is 4.3% 10° and 4.3 10" % m/s. Case ) ) )

Figure 11 presents two geological zones and the corresponding

unit fixed costs and also shows the optimal head distribution, 32’288 é’;‘gg’ﬁgi ?2783?2)2

number, and location of wells. Comparing Figs(dland 11d) c 136’ 800 3’ 181’ 356 3’318’ 156

reveals that when unit fixed costs remain the same in the flow ’ o SOl
108,000 2,500,937 2,608,937

domain, the heterogeneity affects the number and location of
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pumping rates. The number and location of wells together form a

discrete optimal combinatorial problem, and the time-varying

pumping rates increase the computational complexity. The pro-
posed model can incorporate binary variables simply into the op-

timization problem.

Simulation results demonstrate that the solution of the problem

while omitting the fixed costs may be far from the true optimal

Water Resour. Res28(3), 629-641.

Culver, T. B., and Shoemaker, C. A997. “Dynamic optimal ground-
water reclamation with treatment capital costd.” Water Resour.
Plan. Manage.1231), 23-29.

DeJong, K. A.(1975. “An analysis of the behavior of a class of genetic
adaptive systems.” PhD dissertation, Univ. of Michigan, Ann Arbor.

Goldberg, D. E.(1989. Genetic algorithm in search, optimization, and
machine learningAddison-Wesley, Reading, Mass.

network if the fixed costs are high. The fixed costs can reduce theggyejick, s. M.(1983. “A review of distributed parameter groundwater

number of wells in the network. This can also be achieved by
assigning minimum pumping constraints on each well, but the
appropriate pumping constraints are difficult to estimate in prac-
tice without economic or physical references. Therefore, the in-
clusion of fixed costs is important in the groundwater manage-
ment problem, and the proposed algorithm provides a valuable

reference for decision makers.
Although this study considers only groundwater supply, the

proposed algorithm can be further extended to groundwater reme

diation planning. The computational loading required for the so-

lution of groundwater remediation models increases with the

complexity of the problem. Using the property of homogeneity of

a GA can attain the speedup of convergence. That is, the chromo-
some does not require further calculation when it has been calcu-

lated in a previous generation of the GA. In addition, parallel
implementations of the GA and the simulation model are likely to
be required.
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