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This work investigates binary pattern formations of two-dimensional standard cellular neural
networks (CNN) as well as the complexity of the binary patterns. The complexity is measured
by the exponential growth rate in which the patterns grow as the size of the lattice increases,
i.e. spatial entropy. We propose an algorithm to generate the patterns in the finite lattice for
general two-dimensional CNN. For the simplest two-dimensional template, the parameter space
is split up into finitely many regions which give rise to different binary patterns. Qualitatively,
the global patterns are classified for each region. Quantitatively, the upper bound of the spatial
entropy is estimated by computing the number of patterns in the finite lattice, and the lower
bound is given by observing a maximal set of patterns of a suitable size which can be adjacent
to each other.

1. Introduction

The cellular neural network (CNN), as designed by
Chua and Yang [1988a, 1988b], is an array of an
identical system of cells that are locally coupled.
This work investigates the complexity of stable bi-
nary patterns of two-dimensional CNN. Indeed, the
state equation of a cell Cij is the set of coupled
O.D.E’s

ẋij(t) = −xij(t) +
∑
|k|,|l|≤d

aklyi+k,j+l(t)

+ z, i, j ∈ Z2, (1)

with output yij(t) = f(xij(t)). Here f(·) is a
piecewise-linear function expressed as

f(x) =
1

2
(|x+ 1| − |x− 1|) . (2)

The parameter z is a time-invariant bias and d is
a positive integer. The coupling parameters akl’s
are assumed to be space-invariant, which is ar-
ranged in a (2d + 1) × (2d + 1) matrix A called a
template.

The stationary solutions x = (xij) of (1) are
prerequisite for understanding the CNN dynamics.
Indeed, when studying the long-time behavior of a
dynamic system, the stationary solutions are the
simplest objects to be considered. In the case of
CNN with finite cells and symmetric template A,
Chua and Yang [1988a], Lin and Shih [1999] demon-
strated that every trajectory of (1) tends to an equi-
librium as time proceeds. The stationary solutions
x = (xij) of (1) satisfy

xij = z +
∑
|k|,|l|≤d

aklf(xi+k,j+l), i, j ∈ Z . (3)
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116 S.-S. Lin & T.-S. Yang

A stationary x solution is called a mosaic solution
if |xij| > 1 for all i, j ∈ Z. The corresponding out-
put y = (f(xij)) is called a mosaic pattern. The
mosaic solution of (1) is always locally asymptoti-
cally stable [Juang & Lin, 1997] (and the references
given therein). Among all stationary solutions, the
stable mosaic solutions, which have been studied
before [Juang & Lin, 1997], are the most funda-
mental and important applications (finite cells) in
image-processing [Chua, 1988b, 1988]. Those inves-
tigations addressed two problems directly related
to the mosaic patterns: (a) the directed problem,
in which the parameter space is partitioned into
finitely many regions so that in each region (1) has
the same patterns and (b) the complexity of global
patterns.

The complexity of mosaic solutions can be ex-
amined according to its entropy. For completeness,
the following discussion introduces some definitions
and results concerning spatial entropy. Further de-
tails can be found in [Chow et al., 1996a]. Denote

by {−1, 1}Z2
the set of all y : Z2 → {−1, 1} i.e. the

set of all mosaic patterns. Let U be a translation-

invariant subset of {−1, 1}Z
2

and Zmn = {(i, j) :
1 ≤ i ≤ m, 1 ≤ j ≤ n}. The number of distinct
patterns observed among the elements of U when
observation is restricted to subset Zmn, is denoted
by Γmn(U). The spatial entropy h(U) of U is defined
by

h(U) = lim
m,n→∞

ln Γmn(U)

mn
.

U is called spatial chaos if the spatial entropy
h(U) is positive. Otherwise, U is called pattern
formation.

The case of a two-dimensional template
markedly differs from that of a one-dimensional
template. In the case of the one-dimensional tem-
plate, the transition matrix can be used to construct
the global pattern; the exact spatial entropy is then
computed [Lin & Yang, 2000]. However, the tran-
sition matrix cannot be defined in the case of a
two-dimensional template. Up to now, no efficient
and general method is available for two-dimensional
templates. In [Juang & Lin, 1997] and [Shih, 1998],
are discussed two-dimensional symmetric and asym-
metric square cross templates, respectively. The di-
rect problem is completely solved in both cases and
the global patterns are classified by building blocks
and the corresponding compatible conditions. In
addition, the spatial chaos is confirmed to occur

by identifying the blocks which can be adjacent to
each other. In contrast to the above developments,
this work presents a novel algorithm to generate
the patterns in the finite lattice for a general tem-
plate, which gives the upper bound of the spatial
entropy. Moreover, the lower bound of the spatial
entropy is estimated by obtaining the maximal set
of the patching blocks of some size (depending on
the characteristic of global patterns). This inves-
tigation concentrates mainly on the simplest two-
dimensional template, L-shaped liked, i.e.

A =

0 r 0

0 p s

0 0 0

 .
The tools developed herein can be easily applied to
the general templates. For example, the case of a
fully connected template

A′ =

a1 a2 a3

a4 a5 a6

a7 a8 a9

 ,
the reader can go through the process of partition-
ing parameter space, determining the feasible local
patterns as in Sec. 2, then finding the patterns in
a finite lattice by using an algorithm similar to the
one in Sec. 3. All the process are very similar to
the case of template A except the shape of the local
patterns.

Generally, a neural network concerns the re-
lationship between input and output patterns. A
learning algorithm is used to establish this relation-
ship. Such a learning algorithm usually starts with
initial weights i.e. coupling parameters of the neural
network and then consecutively updates the weights
according to the difference between actual output
and desired output patterns. Our investigation pro-
vides a method (for CNN) to analyze (a) possible
output patterns in different regions of parameter
space, (b) the choice of the range of coupling pa-
rameters in the learning process.

The rest of this paper is organized as follows.
Section 2 addresses the direct problem. The method
is quite similar to the case of the one-dimensional
template [ r p s ][Lin & Yang, 2000]. Section 3
presents a novel algorithm to generate the patterns
in the finite lattice and give the upper bound of the
spatial entropy. Section 4 describes and classifies
the global patterns. For the case of spatial chaos,
we find the maximal set of patching blocks of some
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Spatial Entropy and Patterns of Two-Dimensional Cellular Neural Networks 117

size (depending on the characteristic of global pat-
terns) and give the lower bound of the spatial en-
tropy. Conclusions are finally made in Sec. 5.

2. Partitioning the Parameter Space

First, we introduce the notation of local patterns
[Juang & Lin, 1997; Hsu et al., 2000] for the tem-
plate

A =

0 r 0

0 p s

0 0 0

 .
The state equation (1) now becomes

ẋij(t) = ryi−1,j(t) + syi,j+1(t) + pyij(t) + z − 1 .

(4)

For a mosaic solution x, the output at cell Cij is
+1, i.e. xij > 1 if and only if

ryi−1,j + syi,j+1 + p+ z − 1 > 0 , (5)

and, similarly, the output at cell Cij is −1, i.e. xij <
−1 if and only if

ryi−1,j + syi,j+1 − p+ z + 1 < 0 . (6)

Denote by X2 = {−1, 1}2 the set of all possible
(yi−1,j, yi, j+1). Each (k, m) ∈ X2 is naturally asso-
ciated with two local patterns Pk,m and Nk,m, which
have yij “+1” and yij “−1”, respectively. Visually,
the “+1” and “−1” are represented by black and
white squares, respectively.

P1,1 = ��� , N1,1 = ��� ,

P1,−1 = ��� , N1,−1 = ��� ,

P−1,1 = ��� , N−1,1 = ��� ,

P−1,−1 = ��� , N−1,−1 = ���

Obviously, for a given template A and threshold z,
Pk,m and Nk,m are feasible if and only if (7) and (8)
hold, respectively.

z + (p− 1) + kr +ms > 0 , (7)

z − (p− 1) + kr +ms < 0 . (8)

The set of feasible local patterns, denoted by
F(A, z), is defined to be the collection of feasible
Pk,m

′s and Nk,m
′s.

The parameter space, P4 = {(r, s, p, z)|z, p, r,
s ∈ R}, can be partitioned according to the feasible
local patterns. To partition the r-s plane, we first
arrange the elements of X2 according to the value of
kr+ms. Denote by I[i, j] the set of integers are not
smaller than i and not larger than j. Given a (r, s),
the (r, s)-arrangement of X2 is a function from X2

into I[1, 4], which assigns the integer i to (k0, m0)
provided that k0r+m0s is the ith largest among all
of kr+ms, (k, m) ∈ X2. It can be verified that the
following half lines, L1, . . . , L8, denoted by

L1 : r > 0, s = 0 , L2 : r > 0, r = s ,

L3 : r = 0, s > 0 , L4 : r > 0, r = −s ,
L5 : r < 0, s = 0 , L6 : r < 0, r = s ,

L7 : r = 0, s < 0 , L8 : r > 0, r = −s ,

Fig. 1.

Fig. 2. Partition of r–s plane according to (r, s)-
arrangement.
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divide the r − s plane into eight open regions,
R1, . . . , R8. Here Ri is the open region bounded
by Li and Li+1, for 1 ≤ i ≤ 7 and R8 is the open
region bounded by L8 and L1 such that only one
(r, s)-arrangement of X2 is induced in each Ri (see
Fig. 2). Denote by Ji, the (r, s)-arrangement of X2

induced in Ri.
Figure 2 is illustrated as follows: Each element

(k, m) of X2 corresponds to a position in a 2 × 2
lattice as shown in Fig. 1. On each Ri, there is also
a 2 × 2 lattice and the values of Ji(k, m) are put
into the position of this lattice, which corresponds
to (k, m).

Now, we partition z−p plane when (r, s) in Ri.
If Ji(k, m) = j, let `+j and `−j be the lines on z − p
plane with equations:

z + (p− 1) + kr +ms = 0 , (9)

and

z − (p− 1) + kr +ms = 0 , (10)

respectively. Therefore {`+j }4j=1 and {`−j }4j=1 form
two sets of parallel lines in the z − p plane with
`+j+1 and `−j lying above `+j and `−j+1, respectively.
Let [µ, ν]i, 0 ≤ µ, ν ≤ 4, denote the open region
bounded by `+µ , `+µ+1, `−5−ν , `

−
4−ν with `+0 , `−0 , `+5 , `−5

being the empty lines, as observed in Fig. 3. Hence,
the z−p plane is partitioned into finitely many dis-
joint regions, i.e. [µ, ν]i, 0 ≤ µ, ν ≤ 4. After parti-
tioning the parameter space, Theorem 2.1 indicates

Fig. 3.

how the feasible local patterns are determined for
each region [µ, ν]i.

Theorem 2.1. For (z, p) ∈ [µ, ν]i, the feasible lo-
cal patterns are exactly the union of⋃

Ji(k,m)≤µ
Pk,m

and ⋃
Ji(k,m)≥5−ν

Nk,m .

Proof. Assume Ji(k1, m1) = µ, Ji(k2, m2) = µ+ 1
and (z, p) ∈ [µ, ν]i. According to the definition of
[µ, ν]i, z and p satisfy

z + (p− 1) + k1r +m1s > 0 , (11)

and

z + (p− 1) + k2r +m2s < 0 , (12)

which implies that

z + (p− 1) + kr +ms > 0
(13)

if Ji(k,m) ≤ Ji(k1,m1) = µ ,

and

z + (p− 1) + kr +ms < 0
(14)

if Ji(k,m) ≥ Ji(k2,m2) = µ+ 1 .

In addition, there is no (k, m) such that µ <
Ji(k, m) < µ + 1. Hence,

⋃
Ji(k,m)≤µ Pk,m are

exactly the feasible local patterns whose left-
lower cell is +1. A similar argument shows that⋃
Ji(k,m)≥5−ν Nk,m are exactly the feasible local pat-

terns whose left-lower cell is −1. The proof is
complete. �

Example 2.1. If r = 2, p = 3/2, s = 1 and z = 0,
a mosaic solution (xij) satisfies

xij =
3

2
yij + 2yi−1,j + yi,j+1, (i, j) ∈ Z2 .

To consider which local patterns are feasible,
(a) yij = 1 implies xij = 3/2 + 2yi−1,j + yi,j+1 > 1,
hence

�
�� and �

��
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are feasible. (b) yij = −1, implies xij = 3/2 + 2yi−1,j + yi,j+1 < −1, hence

�
�� and �

��

are feasible.
On the other hand, we can also induce the feasible local patterns by Theorem 2.1 as follows. (r, s) =

(2, 1) ∈ R1 implies

`+1 : z + (p− 1) + 3 = 0, ��� ; `−1 : z − (p− 1) + 3 = 0, ��� ;

`+2 : z + (p− 1) + 1 = 0, ��� ; `−2 : z − (p− 1) + 1 = 0, ��� ;

`+3 : z + (p− 1)− 1 = 0, ��� ; `−3 : z − (p− 1)− 1 = 0, ��� ;

`+4 : z + (p− 1)− 3 = 0, ��� ; `−4 : z − (p− 1)− 3 = 0, ��� .

Fig. 4. Partition of z − p plane when (r, s) = (2, 1).

Figure 4 shows that (z, p) ∈ [2, 2], according to
Theorem 2.1, which implies the local patterns asso-
ciated with `+1 , `+2 , `−3 and `−4 are feasible i.e.

�
�� ,

�
�� ,

�
�� ,

�
�� .

3. An Algorithm to Generate the
Patterns in the Finite Lattice

Herein, the patterns in the finite lattice can be con-
structed based on the feasible local patterns. In-
deed, assume that we have the set of feasible local
patterns F(A, z) = {U1, . . . , Uk} where Ui has the

shape ��� . We dilate Ui to the minimal rectangu-

lar block containing Ui by adding a black or white
block in the upper right corner. By doing so, we
obtain the set of patterns of 2× 2 size correspond-
ing to F(A, z), say G = {V1, . . . , V2k}. Starting
from G, we use the technique of [Lin & Yang, 2000]
by gluing right or below to obtain the patterns of
larger size [Lin & Yang, 2000]. The patterns in finite
lattice can be obtained by executing the following
algorithm.

Algorithm

Initially set G = {V1, . . . , V2k}. Repeat executing
(A) and (B) in suitable order. The patterns in the
lattice of any finite size can be attained.

(A) One step horizontal extension.

(i) Suppose that each pattern in G is of size
m × n. From G, take all pairs (Vi, Vj)
such that Vi can glue to Vj on the right
with overlapping m− 1 columns, i.e. the
last m − 1 columns of Vi must equal to
the first m−1 columns of Vj, respectively.
Such a pair is referred to herein as a hor-
izontal compatible pair of patterns.

(ii) Refresh G as the set of patterns obtained
by gluing the horizontal compatible pairs
of patterns in (i) together with overlap-
ping m− 1 columns. Then, G is now the
set of patterns of size m× (n+ 1).

(B) One step vertical extension.

(i) Suppose that each pattern in G is of size
m × n. From G, take all pairs (Vi, Vj)

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

2.
12

:1
15

-1
28

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

T
IO

N
A

L
 C

H
IA

O
 T

U
N

G
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/2
7/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S0218127402004206&iName=master.img-008.png&w=227&h=227


120 S.-S. Lin & T.-S. Yang

such that Vi can glue to Vj below with
overlapping m−1 rows, i.e. the last m−1
rows of Vi are equal to the first m − 1
rows of Vj , respectively. Such a pair are
referred to herein as a vertical compatible
pair of patterns.

(ii) Refresh G as the set of the patterns ob-
tained by gluing the vertical compatible
pairs of patterns in (i) together with over-
lapping m − 1 rows. Then, G is now the
set of patterns of size (m+ 1)× n.

For fixed A and z, let hm,n = (ln Γ(m,n))/(mn),
which can be obtained by executing (A) m times
and (B) n times. Proposition 3.1 shows the proper-
ties of hm,n.

Proposition 3.1. {h2km,2kn}∞k=1 is a decreasing
sequence and converge to the spatial entropy of
mosaic patterns.

Proof. First, we claim that h2m,2n ≤ hm,n. In a
2m × 2n lattice, there are 2 × 2 disjoint blocks of
size m × n. When constructing the patterns in
the lattice, each block has at most Γ(m, n) choices
i.e. Γ(2m, 2m) ≤ (Γ(m, n))2×2. Hence h2m, 2n ≤
hm,n follows immediately. The standard induc-
tion argument shows that {h2km,2kn}k is decreasing
and its limit follows from the definition of the spa-
tial entropy of the mosaic patterns. The proof is
complete. �

Proposition 3.1 suggests the upper bound of the
spatial entropy hm,n. However, the computation
of Γ(m, n) consumes considerable amounts of time
and memory as the spatial chaos occurs. Therefore
we need a procedure to confirm the spatial chaos
for some regions.

4. Global Patterns and Spatial Chaos

In this section, we construct the global patterns for
each region [µ, ν]i of the parameter space. Accord-
ing to the feasible local patterns for each region,
we induce and describe the class of global patterns.
However, once spatial chaos occurs, the number of
restrictions of the global patterns in the finite lat-
tice grows too fast to compute even though the class
of the global patterns can be characterized. To con-
firm spatial chaos, we give the maximal set of the
patching blocks of some size (depending on the char-
acteristic of the global patterns). Restated, the set

contains the largest number of blocks of some size,
which can be adjacent to each other. Through this
process, we give the lower bound of the spatial en-
tropy.

First, we introduce some special subsets of Z2,
which are necessary to describe global patterns.

Definition 4.1. [Juang & Lin, 1997] A horizontal
(resp. vertical) edge of length k in Z2 is the subset
defined U by U = {(i, j0) : i ∈ [i1, i2]} for some
i1, i2 ∈ Z (U = {(i0, j) : j ∈ [j1, j2]} for some j1,
j2 ∈ Z respectively). A edge of infinite length is
called a line. The solid edge Ũ of U in R2 is defined
by Ũ = {(x, j0) : i1 ≤ x ≤ i2} (vertical case is sim-
ilarly defined). A union of edges T in Z2 is called a
path if (i) T contains no 2×2 lattice (i.e. width one)
and (ii) the solid path T̃ of T , i.e. the union of the
corresponding solid edges, is connected. A path T
in Z2 is nonincreasing (resp. nondecreasing) if (i, j)
belongs to T implies (i+1, j+1) (resp. (i+1, j−1))
does not belong to T .

Comment. A horizontal or vertical edge is both
nonincreasing and nondecreasing paths according to
Definition 4.1.

Since the patterns for [µ, ν]i and [ν, µ]i have
opposite colors, it is sufficient to discuss only the
cases of [ν, µ]i with µ ≥ ν and 1 ≤ i ≤ 4. Herein,
we first state the result of this section.

Theorem 4.1. Equation (4) is spatial chaos if and
only if r, s, p and z belong to the following regions
of P4:

1. [4, 4]i, 1 ≤ i ≤ 8.
2. [4, 3]i, 1 ≤ i ≤ 8.
3. [4, 2]i, i = 4, 5, 6, 7.
4. [4, 1]i, i = 5, 6.
5. [3, 3]i, 1 ≤ i ≤ 8.
6. [3, 2]i, i = 4, 5, 6, 7.

Furthermore, we observe that [µ, ν]i with
min(µ, ν) ≥ 3 is always spatial chaos for each i.

The proof of Theorem 4.1 proceeds as follows.
The class of global patterns for each case of The-
orem 4.1 is first described. The lower bound of
the spatial entropy is then obtained by finding the
maximal set of patching blocks of minimal size.
Next, for the remaining regions of the parameter
space, only finite types of global patterns appear.
Therefore, it is easily seen that they are pattern
formation.
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Case 1. [4, 4]i, 1 ≤ i ≤ 8.

All possible local patterns are feasible and, there-
fore, each position can have two choices: � or �.
Hence, the spatial entropy is ln 2.

Case 2a. [4, 3]1,2.

Only ��� is infeasible. The global patterns are ob-

tained by allowing paths of infinite length to be
white and the remainders are black.

Patching blocks of size 2× 2:

��
�� ,

��
�� ,

��
�� .

Hence, on the 2n × 2n lattice, we have n2 disjoint
blocks of size 2 × 2 and each block have three
choices. Therefore,

h[4, 3]1,2 ≥ lim
m,n→∞

ln 3n·n

2n · 2n =
ln 3

4
.

Case 2b. [4, 3]3,4.

Only ��� is not feasible. The global patterns are

obtained by allowing some nonincreasing paths U
to be white, whose each downward step is at most
one, i.e. if (i, j) and (i − 1, j) belong to U then
(i, j + 1) must belong to U . For example,

· · · � �
��
���

.

And the remainders are black.

Patching blocks of size 2× 2:

��
�� ,

��
�� ,

��
�� ,

��
�� .

Hence, a similar argument shows that

h[4, 3]3,4 ≥
ln 4

4
.

Case 2c. [4, 3]5, 6.

In this case, only ��� is not feasible. The global

pattern is obtained by letting some paths of Z2, con-

taining no ��� , to be white and the remainders to

be black.

Patching blocks of size 2× 2:

��
�� ,

��
�� ,

��
�� ,

��
�� ,

��
�� .

Spatial entropy:

h[4, 3]5,6 ≥
ln 5

4
.

Case 2d. [4, 3]7,8.

Only ��� is not feasible. It is the reflection of the

�
�� , the only infeasible local pattern for [4, 3]1,2,

about the axis {(i, i) : i ∈ Z}. Hence, the global
patterns are obtained by reflecting those of the
Case 2a with respect to the axis {(i, i) : i ∈ Z}.

Patching blocks of size 2× 2:

��
�� ,

��
�� ,

��
�� ,

��
�� .

Spatial entropy:

h[4, 3]7,8 ≥
ln 4

4
.

Case 3a. [4, 2]4,5.

�
�� and ��� are infeasible, i.e. more than one con-

secutively vertical white cells are forbidden. Hence,
the global patterns are obtained by letting some
horizontal edges to be white and the remainders to
be black.

Patching blocks of size 2× 2:

��
�� ,

��
�� ,

��
�� ,

��
�� .

Spatial entropy:

h[4, 2]4,5 ≥
ln 4

4
.

Case 3b. [4, 2]6,7.

�
�� and ��� are not feasible, i.e. more than one

consecutively horizontal white cells are forbidden.
Hence, the global patterns are obtained by allowing
some vertical edges to be white and the remainders
are black.

Patching blocks of size 2× 2:

��
�� ,

��
�� ,

��
�� ,

��
�� .

Spatial entropy:

h[4, 2]6,7 ≥
ln 4

4
.
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Case 4. [4, 1]5,6.{�
�� ,

�
�� ,

�
��

}
are not feasible. This is the

union of the infeasible local patterns of Cases 2d
and 3a. Hence the global patterns are the intersec-
tion of those of Cases 2d and 3a. Indeed, the global
patterns are obtained by allowing some nonincreas-
ing paths whose each downward and rightward step
is at most one.

Patching blocks of size 2× 2:

��
�� ,

��
�� ,

��
�� ,

��
�� .

In each case [3, 3]i, 1 ≤ i ≤ 8, the set of
feasible local patterns has the property: if a lo-

cal pattern is feasible then its color-reversed pat-
tern is also feasible. Therefore we say that the
global pattern for [µ, ν]i has the symmetric prop-
erty in [µ, ν]i if its color-reversed pattern is also for
[µ, ν]i. Obviously, every global pattern of [3, 3]i in-
herits the symmetric property from its feasible local
patterns.

Case 5a. [3, 3]1,2

�
�� and ��� are not feasible, due to one more

infeasible local pattern ��� than in Case 2a. The

global patterns are obtained by taking those from
Case 2a, which have the symmetric property in
[4, 3]1,2.

Patching block of size 4× 5:

Spatial entropy:

h[3, 3]1,2 ≥
ln 20

20
.

Case 5b. [3, 3]3,4.

�
�� and ��� are not feasible, due to one more infeasible local pattern ��� than in Case 2b. The global

patterns are obtained by taking those from Case 2b, which have the symmetric property in [4, 3]3,4.

Patching block: Patching blocks of size 3× 4:
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Spatial entropy:

h[3, 3]3,4 ≥
ln 9

12
.

Case 5c. [3, 3]5,6.

�
�� and ��� are not feasible, due to one more infeasible local pattern ��� than in the Case 2c. The global

patterns are obtained by taking those from Case 2c, which have the symmetric property in [4, 3]5,6.

Patching block of size 3× 3:

Spatial entropy:

h[3, 3]5,6 ≥
ln 9

9
.

Case 5d. [3, 3]7,8.

�
�� and ��� are not feasible, due to one more infeasible local pattern ��� than in Case 2d. The global

patterns are obtained by taking Case 2d those of which have the symmetric property in [4, 3]7,8.

Patching blocks of size 4× 3:

Spatial entropy:

h[3, 3]7,8 ≥
ln 9

20
.

Case 6a. [3, 2]4.{�
�� ,

�
�� ,

�
��

}
are not feasible. This case has one more infeasible local pattern ��� than in Case 5b.

Therefore, the global patterns are obtained by taking those of Case 5b, which contain no ��� .

Patching block of size 3× 4:

Spatial entropy:

h[4, 3]4 ≥
ln 3

12
.

Case 6b. [3, 2]5.{�
�� ,

�
�� ,

�
��

}
are not feasible. This case has one more infeasible local pattern ��� than in Case 5c,

so the global patterns are obtained by taking those from Case 5c, which contain no ��� .
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Patching blocks of size 7× 3:

Spatial entropy:

h[3, 2]5 ≥
ln 8

21
.

Case 6c. [3, 2]6.{�
�� ,

�
�� ,

�
��

}
are not feasible. The global patterns are obtained by reflecting those patterns for [3, 2]5

about the axis {(i, i) : i ∈ Z}.
Patching block of size 3× 7:

Spatial entropy:

h[3, 2]6 ≥
ln 8

21
.

Case 6d. [3, 2]7.{�
�� ,

�
�� ,

�
��

}
are not feasible. The global patterns are obtained by reflecting those patterns for [3, 2]4

about the axis {(i, i) : i ∈ Z}.
Patching block of size 4× 3:

Spatial entropy:

h[3, 2]7 ≥
ln 3

15
.

The remaining regions of the parameter space
are all pattern formation. Only finite types of pat-
terns appear. Therefore Table 1 lists the results for
each case, where × means no global patterns exist.
The Appendix illustrates the type of patterns which
Pis
′ represent.

5. Discussion

In Sec. 4, we use the maximal set of patching block
of minimal size to estimate the lower bound of the

spatial entropy. The reason for using the size is
that it requires less time to find them. However,
the set of patching blocks of a larger size will give
a more precise estimate of lower bound. Indeed,
denote by B(m, n) the number of elements in the
maximal set of the patching blocks of size m × n.
Define

hm,n =
ln B(m, n)

mn
,

the lower bound of the spatial entropy given by the
maximal set of patching blocks. Proposition 5.1
indicates the superiority of the patching blocks of
large size.
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Table 1. The regions of pattern formation and the types of patterns appear in each region.

R1 R2 R3 R4 R5 R6 R7 R8

[4, 2] P1, P2 P1, P2, P1, P2, chaos chaos chaos chaos P1, P2,

P5, P11 P6, P12 P6, P12 P5, P11

[4, 1] P1, P2, P1, P2, P1, P8, P1, P8, chaos chaos P1, P7, P1, P7,

P3, P4, P3, P4, P14 P14 P13 P13

P17 P17

[4, 0] P1 P1 P1 P1 P1 P1 P1 P1

[3, 2] P1, P2, P1, P2, P1, P6, chaos chaos chaos chaos P1, P2,

P4, P5, P4, P6, P18, P22 P3, P19,

P15, P20 P16, P21 P23

[3, 1] P1, P2, P1, P2, P1, P8 P1, P8 P24, P25 P24, P25 P1, P7 P1, P7

P3, P4 P3, P4

[3, 0] P1 P1 P1 P1 × × P1 ×

[2, 2] P1, P2, P1, P2, P1, P2, P10, P25 P10, P25 P9, P25 P9, P25 P1, P5

P5 P5 P6

[2, 1] P1, P2, P1, P2, P1, P8 P25 P25 P25 P9 P1, P7

P3 P4

[2, 0] P1 P1 P1 P1 × × × ×

[1, 1] P1, P2 P1, P2 P10 P10 P24 P24 P9 P9

[1, 0] P1 P1 × × × × × ×

Proposition 5.1. {h2km,2n}∞k=1 is an increasing
sequence.

Proof. First, we claim that h2m,2n ≤ hm,n In a
2m× 2n lattice, there are 2× 2 disjoint blocks of size
m × n. When constructing the patching blocks in
the lattice, each block has at least B(m, n) choices
i.e. B(m,m) ≤ (B(m,n))2×2. Hence h2m,2n ≤ hm,n
follows immediately. The standard induction ar-
gument shows that {h2km,2kn}k is decreasing. The
proof is complete. �

Combining the Propositions 3.1 and 5.1 we get
the inequality:

hm,n ≤ h2m,2n ≤ h22m,22n ≤ · · ·

≤ h22m,22n ≤ h2m,2n ≤ hm,n.
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Appendix

P1: pattern of all black.

P2: pattern of all white.

P3: Z2 is divided into two parts — all black and all
white. The boundary of the two parts is a vertical
line.

P4: Z2 is divided into two parts — all black and
all white. The boundary of the two parts is a

horizontal line.

P5: Each vertical line is either all black or all white.

P6: Each horizontal line is either all black or all
white.

P7: Each vertical line is either all black or all white
and the vertical white line is adjacent to only black
lines.

P8: Each horizontal line is either all black or all
white and the horizontal white line is adjacent to
only black lines.

P9: Each vertical line is either all black or all white
and every two adjacent vertical lines have different
colors.

P10: Each horizontal line is either all black or all
white and every two adjacent horizontal lines have
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different colors.

P11: The vertical lines are of only two types:
(a) whole black or white and (b) upper half white
and lower half black.

P12: The horizontal lines are of only two types:
(a) whole black or white and (b) left half black and
right half white.

P13: The vertical lines are of two types: (a) all
black or white. (b) upper half white and lower half
black. And (b) is adjacent to vertical black lines.

P14: The horizontal lines are of two types: (a) all
black or white. (b) upper half black and lower half
black. And (b) is adjacent to the horizontal white
lines.

P15: Z2 is divided into two parts: the left part is
entirely white and the right part is entirely black.
The boundary of the two parts is a nondecreasing

path.

P16: Z2 is divided into two parts: the left part is all
black and the right part is all white. The boundary
of the two parts is a nondecreasing path.

P17: Z2 is divided into two parts. The left part is all
black and the right part is all white. The boundary
of the two parts is a nonincreasing path.

P18: Z2 is divided into two parts. The left part is all
white and the right part is all black. The boundary
of the two parts is a strictly decreasing path whose
each downward step is at most one.

P19: Z2 is divided into two parts. The left part is all
white and the right part is all black. The boundary
of the two parts is a strictly decreasing path whose
each rightward step is at most one.

P20: This is a mixed type of P15 and P5. Indeed,
the pattern consists of (a) P15 with finite width and
(b) vertical lines of all black or all white. And (a) is
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adjacent to a vertical white line on the right and a
white or black vertical line on the left, respectively.

P21: This is a mixed type of P16 and P6. Indeed,
the pattern consists of (a) P16 with finite height
and (b) horizontal lines of all black or all white.
And (a) is adjacent above to a horizontal black line
and below a horizontal white line, respectively.

P22: This is a mixed type of P17 and P6. Indeed,
the pattern consists of (a) P17 with finite height and
(b) horizontal lines of all black or all white. And
(a) is adjacent above to a horizontal white line and
below a white or black horizontal line, respectively.

P23: This is a mixed type of P18 and P5. Indeed,
the pattern consists of (a) P18 with finite width and
(b) vertical lines of all black or all white. And (a) is
adjacent to vertical lines.

P24: Checkerboard.

P25:
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