
I

Lee, Jen and Liu: On the Design Automation of the Memory-Based VLSI Architectures for FIR Filters 619

ON THE DESIGN AUTOMATION OF THE MEMORY-BASED VLSI ARCHITECTURES FOR
FIR FILTERS

Hwan-Rei Lee,? Chein-Wei Jen,? and Chi-Min LiuS

ABSTRACT uct, such as A . T or A . T2 complexity, where A and T are

The design automation of the memory-based VLSI ar-
chitectures for FIR filters is investigated. This paper in-
tends to give a thorough discussion about the design space
and schemes for this subject. The discussed topics in-
clude the conditions leading to efficient memory replace-
ment, the formulation space of FIR filters, the considera-
tions in architecture design, and the methods to evaluate
architectures. With the research results of these topics, we
present a parameterized memory-based architecture and the
hardware-speed evaluation formulae. This architecture is
characterized by three parameters into which various mem-
ory-based architectures can be generated by substituting
different values. The presented formulae are formulated
as functions of the three parameters and implementation
technology. Using the evaluation formulae and through the
parameterized architecture, an area-minimized architecture
can be synthesized under a speed specification. Based on
these results, we develop an automatic synthesis tool with
an illustrating example.

1. INTRODUCTION

Finite-impulse-response (FIR) filters are basic processing el-
ements in applications such as video signal processing and
audio signal processing. The automatic synthesis of an op-
timal integrated circuit to handle diverse filtering speed
requirements is among the most challenging objectives in
CAD research today. To achieve this objective, two prob-
lems must be resolved. The first one concerns the selection
of architecture types. Various architecture types, such as
systolic arrays [l], transversal structure [2], stored-product
structure [3], have been proposed for FIR filters of various
lengths. Given these various architectures, a suitable opti-
mization criterion is needed to help in the selection of an
appropriate architecture for a specified filter length. One
conventional optimization criterion is the cost-speed prod-

'This work was supported by the National Science Council of
the R.O.C. under grant NSC82-0404-E009224.

tC.-W. Jen and H.-W. Lee are with the Department of Elec-
tronics Engineering and Institute of Electronics, National Chiao
Tung University, Hsinchu, Taiwan 30050, Republic of China.

tC.-M. Liu is with the Department of Computer Science
and Information Engineering, National Chiao Tung University,
Hsinchu, Taiwan 30050, Republic of China.

- .

the area and computing time, respectively. Such a criterion
gives a general and theoretical analysis of a prototype of a
VLSI architecture, but is not practical or precise enough for
use in designing the application-specific integrated circuits
(ASICs). A more practical criterion, which is adopted in
this paper, is to select a VLSI architecture with minimum
hardware cost under a certain speed specification. However,
an accurate estimation of the hardware and speed cost of
VLSI architectures must be given to support the use of this
selection criterion. In fact, the hardware and speed cost
vary with the technologies provided by different foundries,
such as routing technology and available implementations
of functional units. For example, it is hard to estimate
whether an architecture with higher routing complexity and
fewer arithmetic units is more or less costly than one with
lower complexity and more arithmetic units. Hence, it is
very difficult to give a fair evaluation of the cost of various
types of architectures.

Once a certain type of architecture is selected, the second
problem concerns the speed-specific configurations. For ex-
ample, to reduce hardware costs, fewer multipliers are used
in an architecture design for low speed requirements than in
one designed for high speed requirements. Hence, an aut*
matic design tool should be able to synthesize different ar-
chitecture configurations to suit diverse speed requirements.
This may entail designing a large number of architecture
configurations for an application and then selecting a suit-
able one among them. However, the synthesis and selection
procedure involved in this approach is difficult to carry out.

In this paper, the problems of selecting an appropri-
ate architecture type and of speed-specific configuration
are solved in the following ways: First, we show that the
multipliers in FIR filters can be efficiently replaced by
ROMs, hence, the resulting architecture styles, which we
call memory-based architectures (MBAs) can be arbitrar-
ily selected without sacrificing general speed and hardware
performance. To prove this claim, we show the conditions
of linearity and time-invariant input of a linear function can
be efficiently implemented by ROMs. Also, it is illustrated
that FIR can be formulated to have these two properties
and hence MBAs are feasible.
Second, we show that FIR filters can be implemented flex-

ibly using different numbers of memory modules. The hard-
ware and speed cost of each module are lower than those
of a multiplier. To achieve the flexibility, we show that a
highly efficient memory replacement sometimes causes dif-

Manuscript received June 1 1 , 1993 0098 3063/93 $03.00 1993 IEEE

I

620 IEEE Transactions on Consumer Electronics, Vol. 39, No. 3, AUGUST 1993

ferent contents of ROM modules and hence the number of
ROM modules is proportional to filter length or wordlength.
This paper is intended to show that both highly efficient
memory replacement and identical ROM contents can be
obtained by a proper algorithm formulation and hence a
flexible number of memory modules can be used to realize
an FIR filter.

Third, a parameterized MBA is presented. In addition to
utilizing the formulation results described above, the design
of this architecture takes into account the computing paral-
lelism, memory partitioning and pipelining. The resulting
architecture is characterized by three design parameters: D,
the number of bits to be processed in parallel, K, the mem-
ory partition factor, and P, the number of pipeline stages
in one processing unit. Different MBA configurations can
be obtained by substituting different values for these pa-
rameters.

Fourth, hardware-speed evaluation formulae for the pa-
rameterized MBA are established for a given speed and
hardware cost model of the required elements in an MBA.
These elements include memory modules, adders, and shift
registers. Since all MBAs have the same types of elements
and similar configurations, the selection of an optimized
MBA will not be affected much by factors such as routing
and placement, and different MBAs can be evaluated using
the same hardware-speed evaluation formulae.

Finally, based on the hardware-speed evaluation formu-
lae and the parameterized architecture, an optimized MBA
configuration can be easily designed by using computers to
search for the best values of the design parameters. Thus,
speed-specified configurations can be designed.

The technical content of this paper is organized as fol-
lows: In Section 2., efficient memory replacement based on
algorithm properties is described. These properties include
the time-invariant input and functional linearity. With the
results of Section 2., computational units in FIR filters can
be efficiently replaced by a flexible number of memory mod-
ules. In Section 3., architecture issues involved in imple-
menting the formulation results of Section 2. are consid-
ered. These issues include memory partition, adder selec-
tion, and pipelining. A parameterized MBA is presented
by taking these architecture issues and formulation results
into consideration. In Section 4., the evaluation formulae
for the speed and hardware cost of the parameterized MBA
are established. These formulae can be adapted to different
technologies by giving different technology parameters for
the components used in the MBA. Therefore, with a given
set of technology parameters, different configurations of the
proposed parameterized architecture can be evaluated us-
ing the same formulae and the optimal configuration which
meets the speed requirement can be obtained. A design
example and discussion are also given in this section. In
section 5 . , concluding remarks are given and other applica-
tions of the technical content of this paper are suggested.

2. ALGORITHM FORMULATION

In this section, the formulation of algorithm for designing
MBAs is systematically investigated. Two general condi-
tions that lead to an efficient replacement of ROMs for a
combinational circuit are addressed in the first subsection.

- -
with size of

N-Lx
2 Memry words P-
J

ZVector with N entries and Lx bits each

Figure 1. The bas ic memory replacement scheme

In the second subsection, two aspects of algorithms that will
be used in evaluating algorithm formulations for FIR filters
are presented. In the last subsection, various algorithm for-
mulae for FIR filters are derived and analyzed using these
conditions and aspects.

2.1. Two Conditions for Memory Reduction
The basic memory replacement model is illustrated in Fig-
ure 1, which shows how a combinational circuit with func-
tion y = f(2’) can be replaced by a ROM with the address-
ing lines as the bit lines of 2’ and a ROM size of 2N’Lz
words. In most cases, the ROM size will be too large to
be implemented. The ROM size can be reduced, however,
whenever one or both of two conditions holds. The first con-
dition is that some inputs of the combinational circuit are
time-invariant. To replace a combinational circuit with H
input lines, a ROM size of 2H words is needed. If, however,
the signals in some of the H lines, say G lines, are time-
invariant, the ROM size can be reduced to 2H-G words.

For example, a multiplier with two operands can be re-
placed by one ROM with a size of 22.L words, as shown
in Figure 2a, where L is the wordlength of the operands.
Such a replacement will induce a ROM area that is larger
than that of the original multipliers. However, if one of the
operands is time-invariant, as shown in Figure 2b, the ROM
size can be reduced to 2L words.

The other condition for reducing the ROM size is that the
function f(.) is linear. In this case, if we represent the input
signal as a linear combination of z ’ i , i.e., 2‘ = xi ci . Zi , then
it follows from the properties of linear functions that

I I

Different schemes for decomposing 2’ will lead to different
implementations. For example, we can decompose 2’ into
the summation of two sub-vectors:

2’ = [2“ = [. o .] 2” + [0 =2 ’1+2;

(2) y = f(Z1 + Z2) = f(2’1) + f (2’2) .

1T r- - .

I

62 1 Lee, Jen and Liu: On the Design Automation of the Memory-Based VLSI Architectures for FIR Filters

x a
address

. x x Fixedvalue

Y Y c Y

ireplaced by ireplaced by ireplaced by

address address adpess

c c
Y Y Y
Y

N-Taps
K >I

I I I I

Lx Lx Lx Lx

1 Ly Yo Y1 Y2 ---
Figure 3.
FIR f i l t e r

precision of output is necessary, the output wordlength of
y would be (L z + La +log, N). Such a ROM size is too
large to be implemented in most applications. To reduce
the ROM size, a memory partition scheme based on the
linear property of FIR filters can be adopted. If the input
data sequence {z,} in the N-taps of delays in Figure 3 is
decomposed into q subsets, a ROM module can be parti-

The d i r e c t form implementation of an (e) (a) (b)

Figure 2.
applied f o r mul t ip l i ca t ions

For this decomposition, two ROM modules are needed to
implement f(21) and f(&), and the two partial results are
summed to get y. In (2), since some entries of 2’1 and 2; are
zeroes and hence time-invariant, each ROM can be reduced
by the scheme described above. In this paper, this scheme

The bas i c memory replacement schemes

is called memory partition. To illustrate the scheme, the
multiplier in Figure 2 is again taken as an example. In
Figure 2c, if we decompose z’ as in (2), the multiplier can be
replaced by two memory modules and one adder. The total
ROM size is 2 . 2 f words with some overhead in adders. For
a value of L of eight, the hardware-speed cost for the two
ROMs and the adder has been shown to be more efficient
than that of most multiplier architectures [4]. In general,
if the original ROM size is Z L and the ROM module is
uniformly partitioned into q submodules, then the total size
will be reduced to q.2 q words, with some overhead of adders
to sum the partial results from each submodule. Therefore,
the memory partition scheme can reduce the memory size
exponentially.

2.2. Two Aspects for Evaluat ing Algori thms
In this subsection, output wordlength and the space-time-
commutative property are introduced for use in evaluating
the performance of algorithm formulae in the succeeding
discussions. Consider an FIR filter with tap weights a, for
an input sequence zj. This filter can be represented as
follows:

L

N-1

Y k = a i . I k - i r (3)

tioned-into q submodules, and the total ROM size can be
reduced from (2 N ’ L r) . L , to (q . 2 T ’ L ’) . L y . In the reduction
process, the output wordlength L, or the required precision
of each ROM is assumed to be a constant. In general, the
output wordlength of each submodule can also be reduced
through the partitioning. However, the reduction in output
wordlength depends on a suitable decomposition of input
data {I,}. The algorithm formulae described in the next
subsection can factor the FIR equation to reduce not only
the exponent of (2N’Lr) . L , but also the L , of factorized
ROMs. This is one reason why we introduce these algorithm
formulae in addition to the memory partition scheme.

Another property that may be used to evaluate the al-
gorithm formulae is the space-time-commutative property.
The space-time-commutative property is the property that
a reduction (or an increase) of a factor of hardware results in
an increase (or a reduction) of approximately the same fac-
tor in computation time. If an algorithm formula has this
property, based on a particular type of hardware realiza-
tion, then the hardware architecture for that algorithm can
be flexibly modified to meet different speed requirements.
For example, suppose that an algorithm mostly consists of
multiplications. If multipliers are used to realize these mul-
tiplications, then the number of multipliers required in the

i = O architecture varies with different speed requirements. If the
required speed is low, fewer multipliers can be used, thereby
reducing the hardware cost. If, on the other hand, the re-
quired speed is high, a larger number of multipliers should
be used. Since one objective of this paper is to design a
memory-based architecture that is easily tuned to various
speed requirements, this property is essential. The attain-
ment of this property depends on a cautious examination of
algorithm formulae and hardware units. The example dis-

where k is the time index starting from zero. In this equa-
tion, the number of multiplications required to obtain each
output yk is equal to the tap length N . A direct form im-
plementation of the FIR filter is shown in Figure 3. In most
applications, the tap weights are time-invariant. Therefore,
the dotted block shown in Figure 3 can be replaced by one
ROM with a size of (2 N ‘ L =) . L,, where L, and L , are
the wordlengths of operands z, and yk, respectively. If full

I

622 IEEE Transactions on Consumer Electronics, Vol. 39, No. 3, AUGUST 1993

N -Taps cussed above shows that a realization based on multipliers
possesses the space-time-commutative property. However,
ROM tables are not as flexible as multipliers are. For ex-
ample, the ROM in Figure 2a can be used to realize multi-
plications with any operand values while that in Figure 2b
can only realize multiplications with the operand a. Hence,
if the ROM in Figure 2b is adopted as a hardware unit,
algorithms have to be formulated to consist of multipli-
cations with only an operand a to attain the space-time-
commutative property. This example implies that a highly
efficient memory replacement would seriously restrict the
range of feasible algorithm formulae. In the next subsec-
tion, an algorithm formulation that yields both highly effi-
cient memory replacement and the space-time-commutative
property is presented.

K

Figure 4.
decomposition

Architecture results from vord-level

r o i

2.3. Derivation and Analysis of Various Formula-
tions

In this subsection, time-invariant input and functional lin-
earity are used to derive various formulations for MBAs,
and output wordlength and the space-time-commutative
property are used to analyze these formulae.

If (3) is represented as an inner-product, it follows that

N-1

i=O

L xk-(N-l) J

where a' - - [ao,al , . . .aN-lIT
and x> = [X ~ , X ~ - ~ , " . X K - - (N - ~)] ~ . The superscript, T ,
denotes the transpose of a vector. Since the function is lin-
ear, the input vector can be decomposed to obtain various
formulae. One simple approach to doing this is the Stored-
Product [3], in which 2' is decomposed at the word level, as
follows:

If the decomposing scheme in (6) is substituted into (4), the
output can be obtained from the linear combination of the
N separated terms, i.e.,

(7)

Each term JTz;-, in (7) can be implemented by a ROM
module for i = O , l , . . . , N - 1 as shown in Figure 4. Since
only L , entries of the vector 2': are nonzero, the size of each
ROM module is ZL' . Lv' bits. Hence, the total ROM size
in Figure 3 is (N . 2L=) . L&. Also, the full precision length
of L& is L , + La, which is smaller than the (L , + La +
log, N) of L,. This justifies the claim made earlier that
proper algorithm formulation can not only exponentially
reduce the required ROM size but also reduce the output
wordlength. A comparison of Figure 3 and Figure 4 shows
that the multiplication on each tap is replaced by one ROM
module.

However, the main drawback of this architecture is that
it is not space-time-commutative and hence the number of
ROM tables must be equal to the tap length N . For con-
sidering the space-time-commutative property, (7) is refor-
mulated as

Yk = O O Z k + 0 1 2 k - 1 + ... + aN-lzk-(N-l). (8)

From (8) , it can be seen that the contents of each ROM
module are coded based on aizjv-, for i = O , l , . . . , N -
1. Since different ROM tables are dedicated to different
tap values a,, these ROM modules are not space-time-
commutative. Consequently, hardware costs cannot be re-
duced through the space-time-commutative property when
the tap length is long or the required speed is low.

Another approach to decompose Z, one that uses the con-
cepts of "Distributed Arithmeticn[5, 61, is to represent the
operand 2' at the bit-level, as follows:

1 zk-1 xk 1

I

Lee, Jen and Liu: On the Design Automation of the Memory-Based VLSI Architectures for FIR Filters

where z' denotes the j t h bit of data z. Here, z is repre-
sented in an unsigned binary form. The extension for two's
complement is discussed in the Appendix. We now repre-
sent (9) as a linear combination of bit-level vectors,

where Z'J denotes the vector that is composed of the j th bit
of each entry of 2'. Substituting (10) into (4) and using the
linear property yields

j = O

L, -1

= [;%;I . 2'.
j=O

The resulting architecture, which realizes each ZT2'; by one
ROM, is shown in Figure 5. In this figure, each input sam-
ple, Z k , is decomposed and fed to each ROM module to
produce L , results. These results are weighted by Z J and
summed to get the outputs, Yk. Note that the weights are
all powers of two, so only shifts of bit position are needed.
These shifts can be implemented by suitably hardwired
lines. In this architecture, there are L , ROM modules.
Therefore, a total of L , . 2N . L: bits are needed, where the
full precision length of L&', is (La +log, N). The functions
of the ROM modules in (11) are all identical and equal to
f (2 k) = a"2'k in (11). In other words, any ROM mod-
ule can take the place of any other module, which implies
the formula in (11) is space-time commutative. Figure 6
shows an architecture that realizes (11) by only one ROM
time-serially. If Figure 6 is compared with Figure 5, four
primary features can be found. First, the L , ROM mod-
ules are replaced by a single module. Second, since the
input of each ROM module like that in Figure 5 consists
of the same significant bits of input sequence {zi} and the
input is assumed to proceed data-serially and bit-serially,

Lx slices
K >I

+g-

o o ... X 0 X l e.. a-
Figure 5 .
decomposition

Architecture r e s u l t s from b i t - l eve l

N

I ,z.bXx: x: ... x i x: ... x; x: ... K z.L. z-Lr

I '

623

o1 Delay and multiplied by 2

Figure 6 .
b i t - l eve l decomposition: t he DA approach

each black block on the input line of Figure 6 should con-
sist of L , delay elements to ensure functional correctness.
Third, the weighted adder in Figure 5 is now the shift-
and-accumulation adder. Fourth, the computation speed of
Figure 6 is L , times slower than that of Figure 5 .

The architectures in Figure 5 and Figure 6 are two ex-
treme cases, with the maximal and minimal number of
memory modules, respectively. In general, the number of
ROM modules for different hardware-speed requirement is
flexible. If we let the structure in Figure 6 represent a slice
of a memory module, then if D slices of ROM modules
are used, we can set j to be equal to % . j' + j", where
j' = 0, 1 , . . . , D - 1 and j" = 0, 1, . . . , % - 1. Substituting
this factorization into (11) yields following equation:

B i t - se r i a l a r ch i t ec tu re r e s u l t s from

An architecture that realizes (12) is illustrated in Figure 7.
In this figure, each ROM module is used to realize one term

a 'k , the modules are identical to those in Figure 5
and Figure 6. The terms in the bracket are realized time-
serially by one slice, which consists of one ROM module and
accumulator, as marked in Figure 7. The D terms in the
braces are realized by D slices in parallel.

Equation (12) provides high time-sharing potential and
efficient memory replacement. Hence, in the next section,

-.T 3'' %+I" .

I T I ' -

I

624 IEEE Transactions on Consumer Electronics, Vol. 39, No. 3, AUGUST 1993

ROM c J

&tX2

Figure 7 . Digi t - ser ia l a rch i tec ture

we shall adopt it to design a parameterized MBA.

3. ARCHITECTURE DESIGN

In this section, we shall use the results of the last section
as a basis for considering three issues involved in the ar-
chitecture design of MBAs. In the first of the three sub-
sections that follow, a way of further reducing the memory
size through a memory partition scheme is presented. In
the second subsection, the implementation of additions and
the arrangement of the addition sequence are addressed, so
that MBAs with low hardware cost and high pipelinability
can be designed. In the final subsection, our results con-
cerning algorithm formulation and architecture design are
integrated to develop a parameterized MBA that can be
easily tuned to various hardware-speed requirements.

3.1. Memory Partitioning
As described in the last section, implementing the inner
product term, iiTZj”%tJ”, in (12) by a ROM module with
N input lines results in a memory of size 2 N . L i . Since
the function ZTZ3”%3” is linear, the memory partition
scheme in Section 2.1. can be applied to reduce the memory
size. Applying this scheme to partition each ROM module
in Figure 7 into K submodules results in the architecture
illustrated in Figure 8. The total ROM size is exponentially
reduced from D . 2N . L: to D . K . 2% . L i at the expense
of a multi-operand addition to sum up the partial results
from these submodules.

In the discussions above, the number of submodules K
is assumed to be a factor of filter length N such that % is
an integer. In general, K is not necessarily a factor of N .
In cases where it is not, the ROM size of each submodule
will not be equal. However, since a larger ROM size will
result in a longer table lookup time and the ROM size is
exponentially proportional to the number of input address-
ing lines, the memory size of the submodules should be as
uniform as possible. If we take N = 18 and K = 5 as an ex-
ample, to achieve higher speed and lower cost, N should be
partitioned into five sets with line numbers of (3 , 3 , 4 , 4 , 4)
instead of (3 , 3 , 3 , 3 , 6) or (3 , 3 , 3 , 4 , 5) . In other words, there

I
-

t

Direct Summotion

Accumulation

Figure 8.
p a r t it ions

Dig i t - ser ia l a rch i tec ture with memory

Y Y Y

I
J /L JJ

‘iy

Every D clock cycles

Figure 9. Dig i t - ser ia l a rch i tec ture with
accumulation rearrangement

would be only two kinds of line numbers: and [%A,
where [ffl is the smallest integer that is larger than f f ,
while the number with [%J is the largest one smaller than
$. The number of submodules with rff1 is (N mod K) ,
while the number with [%J is (K - N mod K) , where
(N mod K) is the residue of $.
3.2. Implementation and Arrangement of Addi-

tion Sequence
In Figure 8, there are three kinds of additions: direct-sum-
mation, accumulation, and weighted summation. Each slice
in Figure 8 involves one accumulator. Since addition is as-
sociative, i.e. ((I + p) + 7 = (I + (p + y), all of these ac-
cumulators can be moved to the final stage and merged
as shown in Figure 9. Such an arrangement would reduce
the hardware cost in two ways. First, the wordlength of the
hardware implementing the direct summation and weighted
summation can be reduced, because the output wordlength
increase with the times of accumulations. Second, the num-
ber of accumulators is reduced from D to one.

- . .

I

I

Lee, Jen and Liu: On the Design Automation of the Memory-Based VLSI Architectures for FIR Filters

:Carry-ripple adder

Figure 10. The parameterized HBA

In Figure 9, aside from the implementation of the ROMs,
the implementation of the adders is most critical in deter-
mining hardware cost and speed. In this paper, carry-save
adders (CSAs) [7] are adopted as the basic addition unit.
It is known that managing the carry propagation in an
adder dominates the hardware and speed cost of the adder.
There are basically three types of adders [7]: carry-ripple
adders, carry-look-ahead adders and carry-saved adders.
Carry-ripple adders propagate the carry stage-by-stage and
hence consume much time to complete an addition. On the
other hand, carry-look-ahead adders implement the carry
propagation through extra combinational circuits and hence
achieve high speed at a high hardware cost. Instead of giv-
ing one addition result, as carry-ripple adders and carry-
look-ahead adders do, CSAs [7, 81 avoid the carry propa-
gation by giving two partial results, a method that makes
them efficient in both hardware and speed cost. For the
addition of two operands, CSAs cannot be applied, because
the two partial results have to be summed together to get
the final result. Since the additions in Figure 9 have multi-
ple operands, they can be implemented by a series of CSAs
and only one adder in the final stage is needed to add the
two partial results of CSAs for the final result as shown in
Figure 10. Also, since one slice in this figure is activated
every % cycles to produce one output datum, the speed
requirement of this final addition is not very critical when
L, is greater than D . Therefore, low-speed and low-cost
adders like carry-ripple adder may be used in this case as
illustrated in Figure 10. In Figurelo, accumulations are
also implemented by two CSAs. Thus, the clock cycle time
is limited by the delay time of the two CSAs within this ac-
cumulation, which is independent of the wordlength of the
operands.

In Figure 10, the sequence in each slice is arranged to
take pipelining into consideration. It can be checked from
Figure 8 that the clock cycle time of this architecture is the
ROM access time and the addition time of the direct sum-
mation, accumulation, and weighted summation. Pipelin-

N-Taps
Y n

4-

625

- p l r r f l o v :
No extra output lateby.
Delay trvlsfn only

@) Contra flow f a input and rcrormlation (mae effiacot)

1. ZLy- 1 e x h delay rcgistns
2. No extra lakncy inkducal

f a e w atS.

--I)
Lx/D-l timc-umt May, Z

Figure 11.
r e t i r i n g

ing can be applied to decrease the cycle time through a
scheme called cut-set retiming [9]. The direct summation
in Figure 8 can be implemented by the addition sequence
of CSAs either in the direction of input data flow or in
the opposite direction, as shown in Figure l l (a) and (b).
According to the delay transfer rules in [9], the same num-
ber of delay elements can be moved from all the inbound
edges to the outbound edges of a cut line without modifying
the system’s behavior. Consider the two data flow arrange-
ments in Figure 11. The cut line applied on Figure l l (a)
leads to the insertion of delay elements for all the edges
that cross the line. Thus, one extra delay is introduced. In
Figure l l (b) , the data flow direction for the tapped input,
z, and accumulation are arranged contrariwise, so that the
delay on the inbound edge (tapped z) is transferred to the
outbound edge (accumulation). Therefore, no extra delay
time is introduced to obtain pipelining. Thus, the contra
data flow is more efficient and so it is adopted in Figure 10.
Since that the wordlength of input data is 1 bit while that
of accumulation data is 2 . L,, an extra (2 . L, - 1) de-
lay elements will be introduced for each cut-set. Also, the
weighted summation sequence should be pipelined to meet
the desired sampling period T,. Since there are 2 . D stages
of CSAs, the CSAs should be pipelined into L stages to
meet the following constraint:

Dataflow arrangement and cut-set

~ . D . T F A T, <-
L - L , / D

01,

Thus, the weighted summation is pipelined into [z’L;yA1
stages.

In Figure 10, for generality and to obtain flexibility in
pipelining, the addition sequence is evenly cut into P stages.
A higher value of P leads to more pipeline stages and
shorter cycle time, but more delay elements are needed.
The pipelining factor, P, will serve as a design parameter
for our parameterized MBA.

1

I

626 IEEE Transactions on Consumer Electronics, Vol. 39, No. 3, AUGUST 1993

3.3. The Parameterized MBA
On the basis of the foregoing discussion, we now propose
the parameterized MBA shown in Figure 10. This param-
eterized MBA is composed of D slices, each of which pro-
cesses one bit of input data z in one clock cycle. Thus, D
bits are processed at a time and two partial results are ob-
tained from each slice in each cycle. These partial results
are produced from the K partitioned ROM submodules and
summed through (K - 2) stages of CSAs. The (K - 2)
stages of CSAs are pipelined into P stages, as depicted in
the shaded rectangle in Figure 10. These partial results are
weighted-summed through a series of CSAs as depicted at
the bottom of Figure 10. Since there are two partial re-
sults produced in each slice, two stages of CSAs are used
for each slice in the series. As for the accumulating section,
two stages of CSAs are applied to perform the accumula-
tion efficiently. Finally, the final carry-ripple addition on
the lower left of Figure 10, as discussed above, is activated
every % clock cycles.

To sum up, the MBA is characterized by three parame-
ters: the digit size, D; the number of partitioned memory
submodules, K ; and the number of pipeline stages, P. Vari-
ous configurations of MBAs can be obtained by substituting
different values into the three parameters.

4. HARDWARESPEED EVALUATION
In this section, the hardware-speed cost of the MBA intro-
duced above is formulated based on the three parameters
and the hardware-speed cost of the basic cells. Through
the formulae presented here, the hardware and speed cost
of the parameterized MBA can be numerically described in
a way that takes into account the architecture structures
and implementation technology. Also, a CAD tool is devel-
oped in Section 4.3. to search for the values of parameters
so that the hardware cost is minimized for a particular a
speed specification.

The three basic elements in the parameterized MBA are
the ROM, full adders, and delay elements. The delay time
and hardware cost of the three elements can be found from
the cell library that will be used to implement the MBAs.
Here, they are represented as the parameters tabulated in
Table 1.

Table 1.
Technology
Parameters Delay time Cost (gates

Full Adder

Table f o r technology parameters

Delay Tdelay Cdelay
ln : the number of addressing lines. WO: output wordlength.

The terms Tmem(n, WO) and Cmem(n, WO) in this table
mean that the time and cost of the memory is determined
by the number addressing lines and the output wordlength.
These terms will be used to develop the hardware-speed
formulae in this section.

4.1. Cost Evaluation
To evaluate the cost of the parameterized MBA, we shall
discuss the costs of the three basic components individu-
ally. We begin with the cost of the memory modules. In

Figure 10, there are D slices in each module and each slice
has K memory submodules. As described in Section 3.1.,
the number of addressing lines is either [$I or 1x1. The
number of submodules with lines [$I is (N mod K) and the
number with [$J is N - (N mod K) . Therefore, the total
cost of the memory modules can be formulated as follows:

where nl = N m o d K , n2 = K - (N mod K) . The
wordlength of each ROM submodule is defined by the coef-
ficient wordlength La and its number of addressing lines.

We now consider the cost of the adders. Each CSA con-
sists of W L full adders. The total cost of the full adders in
the parameterized MBA can thus be formulated as follows:

where W L = min{L,, La +log, N } , L , corresponds to the
desired output wordlength, and La +log, N is the maxi-
mum possible wordlength for the linear summation in each
slice. The smaller one of the two is chosen to fit the re-
quirements of particular specifications. In (14), the first
term corresponds to the (K - 2) stages of CSAs used for
summing the K partial results in each of the D-slices, and
the second term corresponds to the CSAs and accumulators
in the lower part of Figure 10, which are used to sum the
partial results from the D slices. Although it is possible to
reduce the wordlength and hence the cost for each adder,
we here keep W L a constant to obtain a regular design.

We now turn to the cost of the delay elements. Most of
the delays are introduced by cut-set retiming. Originally,
there are [L , . (N - I)] . D delay elements for the tapped
delay line in Figure 9. Every cut-set applied in each slice
introduces an extra (2 .WL-1) elements, for a total of D .P .
(2 . W L - 1). Other delay elements are from the pipelining
of the weighted summation. If the weighted summation is
pipelined into ["";FA1 stages, as discussed in Section 3.2.,
the number of delay elements is 2 . W L . ["";?"1. Thus,
the total cost of the delay elements becomes

COStDelay =
D . L, . (N - 1) + D . P . (2 . W L - 1)

1 . 2 . W L . 61 5 1 + , ~ . T F A . L,
TS

The total hardware cost of the parameterized MBA is
formulated as follows:

4.2. Speed Evaluation
Since each data sample is processed in parallel within D
slices and in serial within each slice, the sample period can
be estimated as the time for the serial processing, i.e., %

I

Lee, Jen and Liu: On the Design Automation of the Memory-Based VLSI Architectures for FIR Filters

16 * - . . . , * . .
of Slices -

#of Partitions - .
#of PipclinCS . 12

10

cycles. Therefore, in Figure 10, the clock cycle time is lim-
ited by the ROM access time and addition time within a
pipelined stage. I t then follows that

Estimated sample-period =

25ooo

2 m

15000

loo00

5000

0

where Tmem([gl , pog, [g l l) is the access time for the
memory module and [$$I . TFA corresponds to the delay
time of the CSAs within [$$I stages.

4.3. Design Example
Equations (15)-(17) were used to develop a CAD tool, and
with the inputs being the filter length, N; input wordlength,
L,; coefficient wordlength, La; and desired sampling period,
T.. Also, the technology values of the terms in Table 1 must
be available.

m

E s t s t i m n t c d g n t e ~ -
-

.

-

-
+

" " * " "

Tdelry = 2.2 n s
TFA = 1.1 n s

'' Tmem(n, W L) = 5 + W L

Y
3

Cdelay = 5.25 gates
CFA = 6.5 gates

~ m e m = 2 " . a. W L

ti B

621

Figure 12.
d i f f e r e n t des i r ed sample per iods

the logic gates. To inspect how the memory cost factor a
in Table 1 affects the design parameters, the optimal values
are plotted with respect to the cost factor in Figure 13. The
memory cost factor (ranging from 0.01 to 1 in the figure)
is defined as the ratio of the hardware cost of one memory
cell to that of a two-input NAND gate. As shown in the
figure, the memory cost factor affects mostly the number
of partitions and pipeline stages. A higher memory cost
factor results in finer partitions of the memory and more
pipeline stages. These curves are drawn under the same
specification as that in Table 3.

Optimized parameter values f o r

Filter length: 15
Input wordlength: 8
Coefficient wordlength: 8
Output wordlength: 18
Desired sample period : 60

Estimated gate counts : 2245.92
D (Number of slices): 2
K (Number of partitions): 2
P (Number of pipeline cuts): 1
The estimated resulting sample period : 55.3

Table 3. Parameters of a design example

5. CONCLUDING REMARKS
The preceding sections have developed an approach to au-
tomating the design of memory-based VLSI architectures
for FIR filters. The automation is based on the exploration

1

628

I

IEEE Transactions on Consumer Electronics, Vol. 39, No. 3, AUGUST 1993

#of Slices -
#of Partitions -
#of Pipelines L.-..

_i
...........

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Memory cost factor

3800
3600-

3400-

3200 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Memory Cost Factor

Figure 13.
d i f f e r e n t memory cos t f a c t o r s

of the design space and schemes for efficient memory re-
placement, algorithm formulation, architecture design, and
evaluation method. Various schemes and design consider-
ations were integrated to produce, a parameterized MBA
that can easily be tuned to various hardware-speed re-
quirements. This parameterized MBA is characterized by
three design parameters. Differently configured MBAs re-
sult from specifying different values for these parameters.
Also, hardware-speed evaluation formulae were established
based on the required elements in MBAs. These elements
include ROM, adders and shift registers. These formulae
and a cell library of a target technology can be used to de-
sign an optimally configured MBA by searching for the best
values of the design parameters with the aid of a computer.

The research results can also be extended to IIR and
multidimensional filters by decomposing multidimensional
filtering into the summation of multiple inner products.
Moreover, as we have shown in [13, 14, 151, transformations
like Discrete Fourier Transform, Discrete Cosine Trans-
form, and Discrete Sine Transform can be formulated as
a convolution form. Since the formulation of convolution
is the same as that of FIR filters, the speed-specified de-
sign method presented in this paper can also be applied to
realize such transformations.

Optimized parameters values f o r

APPENDIX: TWO’S COMPLEMENT
CONSIDERATIONS

In (ll), 2’ is represented in an unsigned binary form. That
is, if L , is eight, the dynamic range of zk is from 0 to 2’-1 =
255. However, in many applications, two’s complement is

Figure 14.
two’s complements

used to represent both positive and negative numbers. To
modify the algorithm in this paper for two’s complement
form, 2’k can be shifted by adding a value of 2Ls-’ .f so
that the dynamic range of each entry of 2‘k is skifted from
(-2L=-2 - 2Lr-2 - 1) to (0 N 2Ls-1), where I is defined

2’+ 2Lr-’ . f - 2L=-’ . f and fed into a linear function f (.):

Offse t t ing inputs f o r deal ing with

as [l, 1 , 1IT. With this formula, 2‘ is reformulated as

Therefore, each entry of 2’+ 2Lr-1 .I’ is an unsigned binary
such that the value of f(Z+ ZLr-’ . f) can be evaluated as
discussed in this paper. As for the second term of (18), since
it is a constant, it can be evaluated in advance. This process
for dealing with two’s complement with linear systems that
have only unsigned computations is depicted in Figure 14.

If we investigate further, we find that the offsetting of
Z+2Lr-’ .I’ is only the inversion of the MSBs of each entry
of vector 2. Suppose that zj is the j t h entry of Z; it then
follows that

L,-2
z j + 2 L = - l = (-z, L r - 1 . 2Lr-1 + .f . 2 ’) + 2 L - ’

I=O
L.. -2

= (-zl L=-1 + 1) . +-’ + zf . 2 ‘ . (19)

I=O

Therefore, the first term in (19) corresponds to only the
inversion of the MSB of z j .

Another overhead in (18) is the subtraction of f(f) .
aLr-l . However, since this term is a constant for all z’s,
it can be preloaded in the accumulator of our architecture
instead of being subtracted by an extra subtractor.

REFERENCES
M. Sid-Ahmed, “A systolic realization for 2-D digital fil-
ters,” IEEE Transcation on Acoustics, Speech, and Signal
Processing, vol. 37, pp. 5-565, April 1989.

C. C. S tems, D. A. Luthi, P. A. Ruetz, and P. H.Ang,
“Design of a 24 MHz 64-tap transversal filter,” in IEEE
Conference on Computer Design, pp. 574-577, 1988.

D. Dubois and W. Steenaart, “High speed stored product
recursive digital filter,” IEEE Transactions on Circzlita and
Systems, vol. 27, pp. 657-666, August 1982.

M.T.Sun, “VLSI architectures for high-speed video process-
ing,” IEEE Workshop on VSPC, pp. 307-311,1991.
S. A. White, “Applications of distributed arithmetic to digi-
tal signal processing: A tutorial review,” IEEE A SSP MAG-
AZINE, pp. 4-18, JULY 1989.

I

Lee, Jen and Liu: On the Design Automation of the Memory-Based VLSI Architectures for FIR Filters 629

A. Peled and B. Liu, "A new hardware realization of digital
filters," IEEE Transcation o n Acoustics, Speech, and Signal
Processing, vol. 22, pp. 456-462, December 1974.
K. Hwang, Computer Arithmetic: Principles, Architecture,
and Design, ch. 4.2, p. 98. John Wiley k Sons, 1979.
T. Noll, "Carry-save arithmetic for high-speed digital sig-
nal processing," Journal of VLSI Signal Processings, vol. 3,
pp. 121-140,1991.
S. Y. Kung, VLSI Array Processors, ch. 4, pp. 208-210.
Prentice-Hall, 1988.
Texas Instruments, TSC700 Series, 1 .0 -p CMOS STAN-
D A R D CELLS, 1992.
J. Ward, P. Barton, J. Roberts, and B. Stanier, "Figures of
merit for VLSI implementations of digital signal processing
algorithms," IEE Proceedings, Part F, vol. 131, pp. 156-
160, January 1989.
H.-R. Lee and C.-W. Jen, "The design of two-dimensional
FIR and IIR filter architectures for HDTV signal process-
ing," in International Symposium on VLSI Technology Sys-
tem and Architecture, pp. 307-311,1991.
J.-I. Guo, C.-M. Liu, and C.-W. Jen, "The efficient memory-
based VLSI array designs for DFT and DCT," IEEE Trans-
actions on Circuits and Systems, October 1992.
J.-I. Guo, C.-M. Liu, and C.-W. Jen, "A new array archi-
tecture for prime-length discrete cosine transform," IEEE
Transcation o n Signal Processing, vol. 41, pp. 436-442, Jan-
uary 1993.
C.-M. Liu and C.-W. Jen, "On the design of VLSI ar-
rays for discrete fourier transform," IEE Proceeding Part
G, vol. 139, pp. 541-552, August 1992.

Chein-Wei Jen was born in
Shanghai, China, in 1948. He re-
ceived the B.S. degree from National
Chiao Tung University in 1970, the
M.S. degree from Stanford Univer-
sity in 1977, and the Ph.D degree
from National Chiao-Tung Univer-
sity in 1983.

He is a professor in the Department of Electronics En-
gineering and the Institute of Electronics, National Chiao-
Tung University, Hsinchu, Taiwan. From 1985 to 1986 he
was a Visiting Researcher a t the University of Southern
California, USA. He is now the director of the Institute
of Electronics, National Chiao-Tung University. His cur-
rent research interests include VLSI signal processing, VLSI
architecture design, design automation, and fault tolerant
computing. He is a member of IEEE and Phi Tau Phi.

Chi-Min Liu was born in Ping-
tung, Taiwan, R.O.C. in 1963. He
received the B.S. degree in electrical
engineering from Tatung Institute
of Technology, Taiwan, R.O.C. in
1985, and the M.S. degree and Ph.D
degree in electronics from National
Chiao Tung University, Hsinchu,
Taiwan, in 1987 and 1991, respec-
tively.

He is currently an Associate Professor in the Depart-
ment of Computer Science and Information Engineering,
National Chiao Tung University, Hsinchu, Taiwan. His re-
search interests include parallel processing algorithms, par-
allel architectures, adaptive signal processing, image signal
processing, radar signal processing, neural networks, fast
algorithms, and design automation for DSP VLSI architec-
tures.

Hwan-Rei Lee was born in Taipei,
Taiwan, R.0.C. in 1966. He re-
ceived the B.S. degree in electron-
ics engineering from National Chiao
Tung University, Hsinchu, Taiwan,
in 1989.
He is currently working on his Ph.D
degree in electronics engineering Na-
tional Chiao Tung University. His

research interests include parallel processing algorithms and ar-
chitectures and VLSI architecture design and implementation.

- r T- I

