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ON THE DESIGN AUTOMATION OF THE MEMORY-BASED VLSI ARCHITECTURES FOR 
FIR FILTERS 

Hwan-Rei Lee,? Chein-Wei Jen,? and Chi-Min LiuS 

ABSTRACT uct, such as A . T or A .  T2 complexity, where A and T are 

The design automation of the memory-based VLSI ar- 
chitectures for FIR filters is investigated. This paper in- 
tends to give a thorough discussion about the design space 
and schemes for this subject. The discussed topics in- 
clude the conditions leading to efficient memory replace- 
ment, the formulation space of FIR filters, the considera- 
tions in architecture design, and the methods to evaluate 
architectures. With the research results of these topics, we 
present a parameterized memory-based architecture and the 
hardware-speed evaluation formulae. This architecture is 
characterized by three parameters into which various mem- 
ory-based architectures can be generated by substituting 
different values. The presented formulae are formulated 
as functions of the three parameters and implementation 
technology. Using the evaluation formulae and through the 
parameterized architecture, an area-minimized architecture 
can be synthesized under a speed specification. Based on 
these results, we develop an automatic synthesis tool with 
an illustrating example. 

1. INTRODUCTION 

Finite-impulse-response (FIR) filters are basic processing el- 
ements in applications such as video signal processing and 
audio signal processing. The automatic synthesis of an op- 
timal integrated circuit to handle diverse filtering speed 
requirements is among the most challenging objectives in 
CAD research today. To achieve this objective, two prob- 
lems must be resolved. The first one concerns the selection 
of architecture types. Various architecture types, such as 
systolic arrays [l], transversal structure [2], stored-product 
structure [3], have been proposed for FIR filters of various 
lengths. Given these various architectures, a suitable opti- 
mization criterion is needed to  help in the selection of an 
appropriate architecture for a specified filter length. One 
conventional optimization criterion is the cost-speed prod- 
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the area and computing time, respectively. Such a criterion 
gives a general and theoretical analysis of a prototype of a 
VLSI architecture, but is not practical or precise enough for 
use in designing the application-specific integrated circuits 
(ASICs). A more practical criterion, which is adopted in 
this paper, is to select a VLSI architecture with minimum 
hardware cost under a certain speed specification. However, 
an accurate estimation of the hardware and speed cost of 
VLSI architectures must be given to support the use of this 
selection criterion. In fact, the hardware and speed cost 
vary with the technologies provided by different foundries, 
such as routing technology and available implementations 
of functional units. For example, it is hard to estimate 
whether an architecture with higher routing complexity and 
fewer arithmetic units is more or less costly than one with 
lower complexity and more arithmetic units. Hence, it is 
very difficult to give a fair evaluation of the cost of various 
types of architectures. 

Once a certain type of architecture is selected, the second 
problem concerns the speed-specific configurations. For ex- 
ample, to reduce hardware costs, fewer multipliers are used 
in an architecture design for low speed requirements than in 
one designed for high speed requirements. Hence, an aut* 
matic design tool should be able to synthesize different ar- 
chitecture configurations to suit diverse speed requirements. 
This may entail designing a large number of architecture 
configurations for an application and then selecting a suit- 
able one among them. However, the synthesis and selection 
procedure involved in this approach is difficult to carry out. 

In this paper, the problems of selecting an appropri- 
ate architecture type and of speed-specific configuration 
are solved in the following ways: First, we show that the 
multipliers in FIR filters can be efficiently replaced by 
ROMs, hence, the resulting architecture styles, which we 
call memory-based architectures (MBAs) can be arbitrar- 
ily selected without sacrificing general speed and hardware 
performance. To prove this claim, we show the conditions 
of linearity and time-invariant input of a linear function can 
be efficiently implemented by ROMs. Also, it is illustrated 
that FIR can be formulated to have these two properties 
and hence MBAs are feasible. 
Second, we show that FIR filters can be implemented flex- 

ibly using different numbers of memory modules. The hard- 
ware and speed cost of each module are lower than those 
of a multiplier. To achieve the flexibility, we show that a 
highly efficient memory replacement sometimes causes dif- 
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ferent contents of ROM modules and hence the number of 
ROM modules is proportional to filter length or wordlength. 
This paper is intended to show that both highly efficient 
memory replacement and identical ROM contents can be 
obtained by a proper algorithm formulation and hence a 
flexible number of memory modules can be used to  realize 
an FIR filter. 

Third, a parameterized MBA is presented. In addition to  
utilizing the formulation results described above, the design 
of this architecture takes into account the computing paral- 
lelism, memory partitioning and pipelining. The resulting 
architecture is characterized by three design parameters: D, 
the number of bits to  be processed in parallel, K, the mem- 
ory partition factor, and P, the number of pipeline stages 
in one processing unit. Different MBA configurations can 
be obtained by substituting different values for these pa- 
rameters. 

Fourth, hardware-speed evaluation formulae for the pa- 
rameterized MBA are established for a given speed and 
hardware cost model of the required elements in an MBA. 
These elements include memory modules, adders, and shift 
registers. Since all MBAs have the same types of elements 
and similar configurations, the selection of an optimized 
MBA will not be affected much by factors such as routing 
and placement, and different MBAs can be evaluated using 
the same hardware-speed evaluation formulae. 

Finally, based on the hardware-speed evaluation formu- 
lae and the parameterized architecture, an optimized MBA 
configuration can be easily designed by using computers to 
search for the best values of the design parameters. Thus, 
speed-specified configurations can be designed. 

The technical content of this paper is organized as fol- 
lows: In Section 2., efficient memory replacement based on 
algorithm properties is described. These properties include 
the time-invariant input and functional linearity. With the 
results of Section 2., computational units in FIR filters can 
be efficiently replaced by a flexible number of memory mod- 
ules. In Section 3., architecture issues involved in imple- 
menting the formulation results of Section 2. are consid- 
ered. These issues include memory partition, adder selec- 
tion, and pipelining. A parameterized MBA is presented 
by taking these architecture issues and formulation results 
into consideration. In Section 4., the evaluation formulae 
for the speed and hardware cost of the parameterized MBA 
are established. These formulae can be adapted to different 
technologies by giving different technology parameters for 
the components used in the MBA. Therefore, with a given 
set of technology parameters, different configurations of the 
proposed parameterized architecture can be evaluated us- 
ing the same formulae and the optimal configuration which 
meets the speed requirement can be obtained. A design 
example and discussion are also given in this section. In 
section 5 . ,  concluding remarks are given and other applica- 
tions of the technical content of this paper are suggested. 

2. ALGORITHM FORMULATION 

In this section, the formulation of algorithm for designing 
MBAs is systematically investigated. Two general condi- 
tions that lead to  an efficient replacement of ROMs for a 
combinational circuit are addressed in the first subsection. 

- -  
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Figure 1. The bas ic  memory replacement scheme 

In the second subsection, two aspects of algorithms that will 
be used in evaluating algorithm formulations for FIR filters 
are presented. In the last subsection, various algorithm for- 
mulae for FIR filters are derived and analyzed using these 
conditions and aspects. 

2.1. Two Conditions for Memory Reduction 
The basic memory replacement model is illustrated in Fig- 
ure 1, which shows how a combinational circuit with func- 
tion y = f(2’) can be replaced by a ROM with the address- 
ing lines as the bit lines of 2’ and a ROM size of 2N’Lz 
words. In most cases, the ROM size will be too large to 
be implemented. The ROM size can be reduced, however, 
whenever one or both of two conditions holds. The first con- 
dition is that some inputs of the combinational circuit are 
time-invariant. To replace a combinational circuit with H 
input lines, a ROM size of 2H words is needed. If, however, 
the signals in some of the H lines, say G lines, are time- 
invariant, the ROM size can be reduced to 2H-G words. 

For example, a multiplier with two operands can be re- 
placed by one ROM with a size of 22.L words, as shown 
in Figure 2a, where L is the wordlength of the operands. 
Such a replacement will induce a ROM area that is larger 
than that of the original multipliers. However, if one of the 
operands is time-invariant, as shown in Figure 2b, the ROM 
size can be reduced to  2L words. 

The other condition for reducing the ROM size is that the 
function f(.) is linear. In this case, if we represent the input 
signal as a linear combination of z ’ i ,  i.e., 2‘ = xi  ci . Zi ,  then 
it follows from the properties of linear functions that 

I I 

Different schemes for decomposing 2’ will lead to different 
implementations. For example, we can decompose 2’ into 
the summation of two sub-vectors: 

2’ = [ 2“ = [ . o . ]  2” + [  0 =2 ’1+2;  

(2) y = f(Z1 + Z2) = f(2’1) + f (2’2) .  

1T r- - .  
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precision of output is necessary, the output wordlength of 
y would be ( L z  + La +log, N).  Such a ROM size is too 
large to be implemented in most applications. To reduce 
the ROM size, a memory partition scheme based on the 
linear property of FIR filters can be adopted. If the input 
data sequence {z,} in the N-taps of delays in Figure 3 is 
decomposed into q subsets, a ROM module can be parti- 

The d i r e c t  form implementation of an (e) (a) (b) 

Figure 2.  
applied f o r  mul t ip l i ca t ions  

For this decomposition, two ROM modules are needed to 
implement f(21) and f(&), and the two partial results are 
summed to get y. In (2), since some entries of 2’1 and 2; are 
zeroes and hence time-invariant, each ROM can be reduced 
by the scheme described above. In this paper, this scheme 

The bas i c  memory replacement schemes 

is called memory partition. To illustrate the scheme, the 
multiplier in Figure 2 is again taken as an example. In 
Figure 2c, if we decompose z’ as in (2), the multiplier can be 
replaced by two memory modules and one adder. The total 
ROM size is 2 . 2 f  words with some overhead in adders. For 
a value of L of eight, the hardware-speed cost for the two 
ROMs and the adder has been shown to be more efficient 
than that of most multiplier architectures [4]. In general, 
if the original ROM size is Z L  and the ROM module is 
uniformly partitioned into q submodules, then the total size 
will be reduced to q.2 q words, with some overhead of adders 
to sum the partial results from each submodule. Therefore, 
the memory partition scheme can reduce the memory size 
exponentially. 

2.2. Two Aspects for Evaluat ing Algori thms 
In this subsection, output wordlength and the space-time- 
commutative property are introduced for use in evaluating 
the performance of algorithm formulae in the succeeding 
discussions. Consider an FIR filter with tap weights a, for 
an input sequence zj. This filter can be represented as 
follows: 

L 

N-1 

Y k  = a i  . I k - i r  (3) 

tioned-into q submodules, and the total ROM size can be 
reduced from ( 2 N ’ L r ) . L ,  to ( q . 2 T ’ L ’ ) . L y .  In the reduction 
process, the output wordlength L,  or the required precision 
of each ROM is assumed to be a constant. In general, the 
output wordlength of each submodule can also be reduced 
through the partitioning. However, the reduction in output 
wordlength depends on a suitable decomposition of input 
data {I,}. The algorithm formulae described in the next 
subsection can factor the FIR equation to reduce not only 
the exponent of (2N’Lr) . L ,  but also the L ,  of factorized 
ROMs. This is one reason why we introduce these algorithm 
formulae in addition to the memory partition scheme. 

Another property that may be used to evaluate the al- 
gorithm formulae is the space-time-commutative property. 
The space-time-commutative property is the property that 
a reduction (or an increase) of a factor of hardware results in 
an increase (or a reduction) of approximately the same fac- 
tor in computation time. If an algorithm formula has this 
property, based on a particular type of hardware realiza- 
tion, then the hardware architecture for that algorithm can 
be flexibly modified to meet different speed requirements. 
For example, suppose that an algorithm mostly consists of 
multiplications. If multipliers are used to realize these mul- 
tiplications, then the number of multipliers required in the 

i = O  architecture varies with different speed requirements. If the 
required speed is low, fewer multipliers can be used, thereby 
reducing the hardware cost. If, on the other hand, the re- 
quired speed is high, a larger number of multipliers should 
be used. Since one objective of this paper is to design a 
memory-based architecture that is easily tuned to various 
speed requirements, this property is essential. The attain- 
ment of this property depends on a cautious examination of 
algorithm formulae and hardware units. The example dis- 

where k is the time index starting from zero. In this equa- 
tion, the number of multiplications required to obtain each 
output yk is equal to the tap length N .  A direct form im- 
plementation of the FIR filter is shown in Figure 3. In most 
applications, the tap weights are time-invariant. Therefore, 
the dotted block shown in Figure 3 can be replaced by one 
ROM with a size of ( 2 N ‘ L = )  . L,, where L,  and L ,  are 
the wordlengths of operands z, and yk, respectively. If full 
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N -Taps cussed above shows that a realization based on multipliers 
possesses the space-time-commutative property. However, 
ROM tables are not as flexible as multipliers are. For ex- 
ample, the ROM in Figure 2a can be used to realize multi- 
plications with any operand values while that in Figure 2b 
can only realize multiplications with the operand a. Hence, 
if the ROM in Figure 2b is adopted as a hardware unit, 
algorithms have to be formulated to consist of multipli- 
cations with only an operand a to attain the space-time- 
commutative property. This example implies that a highly 
efficient memory replacement would seriously restrict the 
range of feasible algorithm formulae. In the next subsec- 
tion, an algorithm formulation that yields both highly effi- 
cient memory replacement and the space-time-commutative 
property is presented. 

K 

Figure 4. 
decomposition 

Architecture results from vord-level 

r o i  

2.3. Derivation and Analysis of Various Formula- 
tions 

In this subsection, time-invariant input and functional lin- 
earity are used to derive various formulations for MBAs, 
and output wordlength and the space-time-commutative 
property are used to analyze these formulae. 

If (3) is represented as an inner-product, it follows that 

N-1 

i=O 

L xk-(N-l) J 

where a' - - [ao,al , . . .aN-lIT 
and x> = [ X ~ , X ~ - ~ , " . X K - - ( N - ~ ) ] ~ .  The superscript, T ,  
denotes the transpose of a vector. Since the function is lin- 
ear, the input vector can be decomposed to obtain various 
formulae. One simple approach to doing this is the Stored- 
Product [3], in which 2' is decomposed at the word level, as 
follows: 

If the decomposing scheme in ( 6 )  is substituted into (4), the 
output can be obtained from the linear combination of the 
N separated terms, i.e., 

(7) 

Each term JTz;-, in (7) can be implemented by a ROM 
module for i = O , l , .  . . , N - 1 as shown in Figure 4. Since 
only L ,  entries of the vector 2': are nonzero, the size of each 
ROM module is ZL' . Lv' bits. Hence, the total ROM size 
in Figure 3 is ( N .  2L=) . L&. Also, the full precision length 
of L& is L ,  + La, which is smaller than the ( L ,  + La + 
log, N) of L,.  This justifies the claim made earlier that 
proper algorithm formulation can not only exponentially 
reduce the required ROM size but also reduce the output 
wordlength. A comparison of Figure 3 and Figure 4 shows 
that the multiplication on each tap is replaced by one ROM 
module. 

However, the main drawback of this architecture is that 
it is not space-time-commutative and hence the number of 
ROM tables must be equal to the tap length N .  For con- 
sidering the space-time-commutative property, (7) is refor- 
mulated as 

Yk = O O Z k  + 0 1 2 k - 1  + ... + aN-lzk-(N-l). ( 8 )  

From ( 8 ) ,  it can be seen that the contents of each ROM 
module are coded based on aizjv-, for i = O , l , .  . . , N - 
1. Since different ROM tables are dedicated to different 
tap values a,, these ROM modules are not space-time- 
commutative. Consequently, hardware costs cannot be re- 
duced through the space-time-commutative property when 
the tap length is long or the required speed is low. 

Another approach to decompose Z, one that uses the con- 
cepts of "Distributed Arithmeticn[5, 61, is to represent the 
operand 2' at the bit-level, as follows: 

1 zk-1 xk 1 
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where z' denotes the j t h  bit of data z. Here, z is repre- 
sented in an unsigned binary form. The extension for two's 
complement is discussed in the Appendix. We now repre- 
sent (9) as a linear combination of bit-level vectors, 

where Z'J denotes the vector that is composed of the j th bit 
of each entry of 2'. Substituting (10) into (4) and using the 
linear property yields 

j = O  

L, -1 

= [;%;I . 2'. 
j=O 

The resulting architecture, which realizes each ZT2'; by one 
ROM, is shown in Figure 5. In this figure, each input sam- 
ple, Z k ,  is decomposed and fed to each ROM module to 
produce L ,  results. These results are weighted by Z J  and 
summed to get the outputs, Yk. Note that the weights are 
all powers of two, so only shifts of bit position are needed. 
These shifts can be implemented by suitably hardwired 
lines. In this architecture, there are L ,  ROM modules. 
Therefore, a total of L ,  . 2N . L: bits are needed, where the 
full precision length of L&', is (La +log, N). The functions 
of the ROM modules in (11) are all identical and equal to 
f ( 2 k )  = a"2'k in (11). In other words, any ROM mod- 
ule can take the place of any other module, which implies 
the formula in (11) is space-time commutative. Figure 6 
shows an architecture that realizes (11) by only one ROM 
time-serially. If Figure 6 is compared with Figure 5, four 
primary features can be found. First, the L ,  ROM mod- 
ules are replaced by a single module. Second, since the 
input of each ROM module like that in Figure 5 consists 
of the same significant bits of input sequence {zi} and the 
input is assumed to proceed data-serially and bit-serially, 

Lx slices 
K >I 

+g- 

o o  ... X 0 X l  e..  a- 
Figure 5 .  
decomposition 

Architecture r e s u l t s  from b i t - l eve l  

N 

I ,z.bXx: x: ... x i  x: ... x; x: ... K z.L. z-Lr 

I '  
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o1 Delay and multiplied by 2 

Figure 6 .  
b i t - l eve l  decomposition: t he  DA approach 

each black block on the input line of Figure 6 should con- 
sist of L ,  delay elements to ensure functional correctness. 
Third, the weighted adder in Figure 5 is now the shift- 
and-accumulation adder. Fourth, the computation speed of 
Figure 6 is L ,  times slower than that of Figure 5 .  

The architectures in Figure 5 and Figure 6 are two ex- 
treme cases, with the maximal and minimal number of 
memory modules, respectively. In general, the number of 
ROM modules for different hardware-speed requirement is 
flexible. If we let the structure in Figure 6 represent a slice 
of a memory module, then if D slices of ROM modules 
are used, we can set j to be equal to % . j' + j", where 
j' = 0, 1 ,  . . . , D - 1 and j" = 0, 1, . . . , % - 1. Substituting 
this factorization into (11) yields following equation: 

B i t - se r i a l  a r ch i t ec tu re  r e s u l t s  from 

An architecture that realizes (12) is illustrated in Figure 7. 
In this figure, each ROM module is used to realize one term 

a 'k , the modules are identical to those in Figure 5 
and Figure 6.  The terms in the bracket are realized time- 
serially by one slice, which consists of one ROM module and 
accumulator, as marked in Figure 7. The D terms in the 
braces are realized by D slices in parallel. 

Equation (12) provides high time-sharing potential and 
efficient memory replacement. Hence, in the next section, 

-.T 3'' %+I" . 

I T  I ' -  
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ROM c J 

&tX2 

Figure 7 .  Digi t - ser ia l  a rch i tec ture  

we shall adopt it to  design a parameterized MBA. 

3. ARCHITECTURE DESIGN 

In this section, we shall use the results of the last section 
as a basis for considering three issues involved in the ar- 
chitecture design of MBAs. In the first of the three sub- 
sections that follow, a way of further reducing the memory 
size through a memory partition scheme is presented. In 
the second subsection, the implementation of additions and 
the arrangement of the addition sequence are addressed, so 
that MBAs with low hardware cost and high pipelinability 
can be designed. In the final subsection, our results con- 
cerning algorithm formulation and architecture design are 
integrated to develop a parameterized MBA that can be 
easily tuned to various hardware-speed requirements. 

3.1. Memory Partitioning 
As described in the last section, implementing the inner 
product term, iiTZj”%tJ”, in (12) by a ROM module with 
N input lines results in a memory of size 2 N  . L i .  Since 
the function ZTZ3”%3” is linear, the memory partition 
scheme in Section 2.1. can be applied to reduce the memory 
size. Applying this scheme to partition each ROM module 
in Figure 7 into K submodules results in the architecture 
illustrated in Figure 8. The total ROM size is exponentially 
reduced from D . 2N . L: to D . K . 2% . L i  at the expense 
of a multi-operand addition to sum up the partial results 
from these submodules. 

In the discussions above, the number of submodules K 
is assumed to be a factor of filter length N such that % is 
an integer. In general, K is not necessarily a factor of N .  
In cases where it is not, the ROM size of each submodule 
will not be equal. However, since a larger ROM size will 
result in a longer table lookup time and the ROM size is 
exponentially proportional to the number of input address- 
ing lines, the memory size of the submodules should be as 
uniform as possible. If we take N = 18 and K = 5 as an ex- 
ample, to achieve higher speed and lower cost, N should be 
partitioned into five sets with line numbers of ( 3 , 3 , 4 , 4 , 4 )  
instead of ( 3 , 3 , 3 , 3 , 6 )  or ( 3 , 3 , 3 , 4 , 5 ) .  In other words, there 

I 
- 

t 

Direct Summotion 

Accumulation 

Figure 8. 
p a r t  it ions 

Dig i t - ser ia l  a rch i tec ture  with memory 

Y Y Y 

I 
J /L JJ 

‘iy 

Every D clock cycles 

Figure 9.  Dig i t - ser ia l  a rch i tec ture  with 
accumulation rearrangement 

would be only two kinds of line numbers: and [%A, 
where [ffl is the smallest integer that is larger than f f ,  
while the number with [%J is the largest one smaller than 
$. The number of submodules with rff1 is (N mod K ) ,  
while the number with [%J is (K - N mod K ) ,  where 
( N  mod K) is the residue of $. 
3.2. Implementation and Arrangement of Addi- 

tion Sequence 
In Figure 8, there are three kinds of additions: direct-sum- 
mation, accumulation, and weighted summation. Each slice 
in Figure 8 involves one accumulator. Since addition is as- 
sociative, i.e. ((I + p )  + 7 = (I + ( p  + y), all of these ac- 
cumulators can be moved to the final stage and merged 
as shown in Figure 9. Such an arrangement would reduce 
the hardware cost in two ways. First, the wordlength of the 
hardware implementing the direct summation and weighted 
summation can be reduced, because the output wordlength 
increase with the times of accumulations. Second, the num- 
ber of accumulators is reduced from D to one. 

- .  . 

I 



I 

Lee, Jen and Liu: On the Design Automation of the Memory-Based VLSI Architectures for FIR Filters 

:Carry-ripple adder 

Figure 10. The parameterized HBA 

In Figure 9, aside from the implementation of the ROMs, 
the implementation of the adders is most critical in deter- 
mining hardware cost and speed. In this paper, carry-save 
adders (CSAs) [7] are adopted as the basic addition unit. 
It is known that managing the carry propagation in an 
adder dominates the hardware and speed cost of the adder. 
There are basically three types of adders [7]: carry-ripple 
adders, carry-look-ahead adders and carry-saved adders. 
Carry-ripple adders propagate the carry stage-by-stage and 
hence consume much time to complete an addition. On the 
other hand, carry-look-ahead adders implement the carry 
propagation through extra combinational circuits and hence 
achieve high speed at a high hardware cost. Instead of giv- 
ing one addition result, as carry-ripple adders and carry- 
look-ahead adders do, CSAs [7, 81 avoid the carry propa- 
gation by giving two partial results, a method that makes 
them efficient in both hardware and speed cost. For the 
addition of two operands, CSAs cannot be applied, because 
the two partial results have to be summed together to get 
the final result. Since the additions in Figure 9 have multi- 
ple operands, they can be implemented by a series of CSAs 
and only one adder in the final stage is needed to add the 
two partial results of CSAs for the final result as shown in 
Figure 10. Also, since one slice in this figure is activated 
every % cycles to produce one output datum, the speed 
requirement of this final addition is not very critical when 
L, is greater than D .  Therefore, low-speed and low-cost 
adders like carry-ripple adder may be used in this case as 
illustrated in Figure 10. In Figurelo, accumulations are 
also implemented by two CSAs. Thus, the clock cycle time 
is limited by the delay time of the two CSAs within this ac- 
cumulation, which is independent of the wordlength of the 
operands. 

In Figure 10, the sequence in each slice is arranged to 
take pipelining into consideration. It can be checked from 
Figure 8 that the clock cycle time of this architecture is the 
ROM access time and the addition time of the direct sum- 
mation, accumulation, and weighted summation. Pipelin- 
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4- 
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Figure 11. 
r e t i r i n g  

ing can be applied to decrease the cycle time through a 
scheme called cut-set retiming [9]. The direct summation 
in Figure 8 can be implemented by the addition sequence 
of CSAs either in the direction of input data flow or in 
the opposite direction, as shown in Figure l l ( a )  and (b). 
According to the delay transfer rules in [9], the same num- 
ber of delay elements can be moved from all the inbound 
edges to the outbound edges of a cut line without modifying 
the system’s behavior. Consider the two data flow arrange- 
ments in Figure 11. The cut line applied on Figure l l (a )  
leads to the insertion of delay elements for all the edges 
that cross the line. Thus, one extra delay is introduced. In 
Figure l l (b) ,  the data flow direction for the tapped input, 
z, and accumulation are arranged contrariwise, so that the 
delay on the inbound edge (tapped z) is transferred to the 
outbound edge (accumulation). Therefore, no extra delay 
time is introduced to obtain pipelining. Thus, the contra 
data flow is more efficient and so it is adopted in Figure 10. 
Since that the wordlength of input data is 1 bit while that 
of accumulation data is 2 . L,,  an extra ( 2  . L,  - 1) de- 
lay elements will be introduced for each cut-set. Also, the 
weighted summation sequence should be pipelined to meet 
the desired sampling period T,. Since there are 2 .  D stages 
of CSAs, the CSAs should be pipelined into L stages to 
meet the following constraint: 

Dataflow arrangement and cut-set  

~ . D . T F A  T, <- 
L - L , / D  

01, 

Thus, the weighted summation is pipelined into [z’L;yA1 
stages. 

In Figure 10, for generality and to obtain flexibility in 
pipelining, the addition sequence is evenly cut into P stages. 
A higher value of P leads to more pipeline stages and 
shorter cycle time, but more delay elements are needed. 
The pipelining factor, P, will serve as a design parameter 
for our parameterized MBA. 

1 
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3.3. The Parameterized MBA 
On the basis of the foregoing discussion, we now propose 
the parameterized MBA shown in Figure 10. This param- 
eterized MBA is composed of D slices, each of which pro- 
cesses one bit of input data z in one clock cycle. Thus, D 
bits are processed at a time and two partial results are ob- 
tained from each slice in each cycle. These partial results 
are produced from the K partitioned ROM submodules and 
summed through (K - 2) stages of CSAs. The (K - 2) 
stages of CSAs are pipelined into P stages, as depicted in 
the shaded rectangle in Figure 10. These partial results are 
weighted-summed through a series of CSAs as depicted at 
the bottom of Figure 10. Since there are two partial re- 
sults produced in each slice, two stages of CSAs are used 
for each slice in the series. As for the accumulating section, 
two stages of CSAs are applied to perform the accumula- 
tion efficiently. Finally, the final carry-ripple addition on 
the lower left of Figure 10, as discussed above, is activated 
every % clock cycles. 

To sum up, the MBA is characterized by three parame- 
ters: the digit size, D; the number of partitioned memory 
submodules, K ;  and the number of pipeline stages, P. Vari- 
ous configurations of MBAs can be obtained by substituting 
different values into the three parameters. 

4. HARDWARESPEED EVALUATION 
In this section, the hardware-speed cost of the MBA intro- 
duced above is formulated based on the three parameters 
and the hardware-speed cost of the basic cells. Through 
the formulae presented here, the hardware and speed cost 
of the parameterized MBA can be numerically described in 
a way that takes into account the architecture structures 
and implementation technology. Also, a CAD tool is devel- 
oped in Section 4.3. to search for the values of parameters 
so that the hardware cost is minimized for a particular a 
speed specification. 

The three basic elements in the parameterized MBA are 
the ROM, full adders, and delay elements. The delay time 
and hardware cost of the three elements can be found from 
the cell library that will be used to implement the MBAs. 
Here, they are represented as the parameters tabulated in 
Table 1. 

Table 1. 
Technology 
Parameters Delay time Cost (gates 

Full Adder 

Table f o r  technology parameters 

Delay Tdelay Cdelay 
ln  : the number of addressing lines. WO: output wordlength. 

The terms Tmem(n, WO) and Cmem(n, WO) in this table 
mean that the time and cost of the memory is determined 
by the number addressing lines and the output wordlength. 
These terms will be used to develop the hardware-speed 
formulae in this section. 

4.1. Cost Evaluation 
To evaluate the cost of the parameterized MBA, we shall 
discuss the costs of the three basic components individu- 
ally. We begin with the cost of the memory modules. In 

Figure 10, there are D slices in each module and each slice 
has K memory submodules. As described in Section 3.1., 
the number of addressing lines is either [$I or 1x1. The 
number of submodules with lines [$I is ( N  mod K )  and the 
number with [$J is N - ( N  mod K ) .  Therefore, the total 
cost of the memory modules can be formulated as follows: 

where nl = N m o d K ,  n2 = K - ( N  mod K ) .  The 
wordlength of each ROM submodule is defined by the coef- 
ficient wordlength La and its number of addressing lines. 

We now consider the cost of the adders. Each CSA con- 
sists of W L  full adders. The total cost of the full adders in 
the parameterized MBA can thus be formulated as follows: 

where W L  = min{L,, La +log, N } ,  L ,  corresponds to the 
desired output wordlength, and La +log, N is the maxi- 
mum possible wordlength for the linear summation in each 
slice. The smaller one of the two is chosen to fit the re- 
quirements of particular specifications. In (14), the first 
term corresponds to the (K - 2) stages of CSAs used for 
summing the K partial results in each of the D-slices, and 
the second term corresponds to the CSAs and accumulators 
in the lower part of Figure 10, which are used to sum the 
partial results from the D slices. Although it is possible to 
reduce the wordlength and hence the cost for each adder, 
we here keep W L  a constant to obtain a regular design. 

We now turn to the cost of the delay elements. Most of 
the delays are introduced by cut-set retiming. Originally, 
there are [L ,  . ( N  - I)] . D delay elements for the tapped 
delay line in Figure 9. Every cut-set applied in each slice 
introduces an extra (2 .WL-1)  elements, for a total of D .P .  
( 2 .  W L  - 1). Other delay elements are from the pipelining 
of the weighted summation. If the weighted summation is 
pipelined into ["";FA1 stages, as discussed in Section 3.2., 
the number of delay elements is 2 . W L  . ["";?"1. Thus, 
the total cost of the delay elements becomes 

COStDelay = 
D .  L, . ( N  - 1) + D . P . ( 2 .  W L  - 1) 

1 . 2 .  W L .  61 5 1 + , ~ . T F A .  L,  
TS 

The total hardware cost of the parameterized MBA is 
formulated as follows: 

4.2. Speed Evaluation 
Since each data sample is processed in parallel within D 
slices and in serial within each slice, the sample period can 
be estimated as the time for the serial processing, i.e., % 
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16 * - . . . , * . .  
# of Slices - 

#of Partitions - . 
#of PipclinCS . 12 

10 

cycles. Therefore, in Figure 10, the clock cycle time is lim- 
ited by the ROM access time and addition time within a 
pipelined stage. I t  then follows that 

Estimated sample-period = 

25ooo 

2 m  

15000 

loo00 

5000 

0 

where Tmem([gl ,  pog, [ g l l )  is the access time for the 
memory module and [$$I . TFA corresponds to  the delay 
time of the CSAs within [$$I stages. 

4.3. Design Example 
Equations (15)-(17) were used to  develop a CAD tool, and 
with the inputs being the filter length, N; input wordlength, 
L,; coefficient wordlength, La;  and desired sampling period, 
T.. Also, the technology values of the terms in Table 1 must 
be available. 

m . . . . . . . .  

E s t s t i m n t c d g n t e ~  - 
- 

. 

- 

- 
+ 

" " * " "  

Tdelry = 2.2 n s  
TFA = 1.1 n s  

'' Tmem(n, W L )  = 5 + W L  

Y 
3 

Cdelay = 5.25 gates 
CFA = 6.5 gates 

~ m e m  = 2 " .  a. W L  

ti B 

621 

Figure 12. 
d i f f e r e n t  des i r ed  sample per iods 

the logic gates. To inspect how the memory cost factor a 
in Table 1 affects the design parameters, the optimal values 
are plotted with respect to the cost factor in Figure 13. The 
memory cost factor (ranging from 0.01 to 1 in the figure) 
is defined as the ratio of the hardware cost of one memory 
cell to that of a two-input NAND gate. As shown in the 
figure, the memory cost factor affects mostly the number 
of partitions and pipeline stages. A higher memory cost 
factor results in finer partitions of the memory and more 
pipeline stages. These curves are drawn under the same 
specification as that in Table 3. 

Optimized parameter values f o r  

Filter length: 15 
Input wordlength: 8 
Coefficient wordlength: 8 
Output wordlength: 18 
Desired sample period : 60 

Estimated gate counts : 2245.92 
D (Number of slices): 2 
K (Number of partitions): 2 
P (Number of pipeline cuts): 1 
The estimated resulting sample period : 55.3 

Table 3. Parameters of a design example 

5. CONCLUDING REMARKS 
The preceding sections have developed an approach to au- 
tomating the design of memory-based VLSI architectures 
for FIR filters. The automation is based on the exploration 

1 
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Figure 13. 
d i f f e r e n t  memory cos t  f a c t o r s  

of the design space and schemes for efficient memory re- 
placement, algorithm formulation, architecture design, and 
evaluation method. Various schemes and design consider- 
ations were integrated to  produce, a parameterized MBA 
that can easily be tuned to various hardware-speed re- 
quirements. This parameterized MBA is characterized by 
three design parameters. Differently configured MBAs re- 
sult from specifying different values for these parameters. 
Also, hardware-speed evaluation formulae were established 
based on the required elements in MBAs. These elements 
include ROM, adders and shift registers. These formulae 
and a cell library of a target technology can be used to de- 
sign an optimally configured MBA by searching for the best 
values of the design parameters with the aid of a computer. 

The research results can also be extended to IIR and 
multidimensional filters by decomposing multidimensional 
filtering into the summation of multiple inner products. 
Moreover, as we have shown in [13, 14, 151, transformations 
like Discrete Fourier Transform, Discrete Cosine Trans- 
form, and Discrete Sine Transform can be formulated as 
a convolution form. Since the formulation of convolution 
is the same as that of FIR filters, the speed-specified de- 
sign method presented in this paper can also be applied to 
realize such transformations. 

Optimized parameters values f o r  

APPENDIX: TWO’S COMPLEMENT 
CONSIDERATIONS 

In (ll), 2’ is represented in an unsigned binary form. That 
is, if L ,  is eight, the dynamic range of zk is from 0 to 2’-1 = 
255. However, in many applications, two’s complement is 

Figure 14. 
two’s complements 

used to represent both positive and negative numbers. To 
modify the algorithm in this paper for two’s complement 
form, 2’k can be shifted by adding a value of 2Ls-’ .f so 
that the dynamic range of each entry of 2‘k is skifted from 
( -2L=-2  - 2Lr-2 - 1) to (0 N 2Ls-1), where I is defined 

2’+ 2Lr-’ . f - 2L=-’ . f and fed into a linear function f (  .): 

Offse t t ing  inputs  f o r  deal ing with 

as [l, 1 , .  ... 1IT. With this formula, 2‘ is reformulated as 

Therefore, each entry of 2’+ 2Lr-1 .I’ is an unsigned binary 
such that the value of f(Z+ ZLr-’ . f) can be evaluated as 
discussed in this paper. As for the second term of (18), since 
it is a constant, it can be evaluated in advance. This process 
for dealing with two’s complement with linear systems that 
have only unsigned computations is depicted in Figure 14. 

If we investigate further, we find that the offsetting of 
Z+2Lr-’ .I’ is only the inversion of the MSBs of each entry 
of vector 2. Suppose that zj is the j t h  entry of Z; it then 
follows that 

L,-2  
z j + 2 L = - l  = (-z, L r - 1  . 2Lr-1 + .f . 2 ’ )  + 2 L - ’  

I=O 
L.. -2 

= ( -zl  L=-1 + 1 ) .  +-’ + zf . 2 ‘ .  (19) 

I=O 

Therefore, the first term in (19) corresponds to only the 
inversion of the MSB of z j . 

Another overhead in (18) is the subtraction of f(f) . 
aLr-l .  However, since this term is a constant for all z’s, 
it can be preloaded in the accumulator of our architecture 
instead of being subtracted by an extra subtractor. 
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