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Abstract: An accurate wave equation beyond the slowly
varying envelope approximation for femtosecond soliton
propagation in an optical fiber is derived by the iterative
method. The derived equation contains higher nonlinear
terms than the generalized nonlinear Schrödinger equation
obtained previously. For a silica-based weakly guiding single
mode fiber, it is found that those more higher-order non-
linear terms, whose coefficients are proportional to the sec-
ond-order dispersion parameter, are much smaller than the
shock term. The 2.5-fs fundamental solitons is numerically
simulated by using the generalized nonlinear Schrödinger
equation and the full Maxwell’s equations. Comparing these
two results, we have found that the generalized nonlinear
Schrödinger equation well describes the propagation of the
pulse even containing a single optical cycle.
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proximation – nonlinear Schrödinger equation

1. Introduction

As the rapid development of the laser technology, ul-
trashort optical pulses containing only a few optical cy-
cles and with pulsewidth less than 10 fs have been gen-
erated [1]. The propagation of an ultrashort pulse in a
fiber is usually described by the generalized nonlinear
Schrödinger equation based on the slowly varying en-
velope approximation (SVEA) [2]. The validity of this
equation becomes questionable when the pulse con-
tains only a few optical cycles. To resolve this problem,
several approaches, which do not make the SVEA,
have been employed [3–7]. The full-vector nonlinear
Maxwell’s equations have been solved by direct inte-
gration [3, 4], but this is very time consuming. By using
an operator method and assuming that the nonlinear-
ity is small [5, 6] or by representing the electric field as
the superposition of monochromatic waves [7], modi-
fied wave equations can be derived. In addition, an
iterative method has been used to derive a wave equa-
tion for ultrashort pulses [8].
In this paper, we will derive a wave equation using

the electric field expansion of [7], the iterative method

of [8] and the order of magnitude considerations of [9].
Through the first iteration, we obtain a wave equation,
which has four more higher-order nonlinear terms than
the equation obtained previously [5–8]. For a silica-
based weakly guiding single mode fiber, we have
found those more higher-order nonlinear terms, the
coefficients of which are proportional to the second-
order dispersion parameter, are much smaller than the
shock term. We numerically investigate 2.5-fs funda-
mental solitons by using the generalized nonlinear
Schrödinger equation and the full Maxwell’s equations
[3, 4]. After we compare these two results, we have
found that the generalized nonlinear Schrödinger
equation well describes the propagation of the pulse
even containing a single optical cycle.

2. Derivation of the wave equation

We derive the wave equation for a femtosecond pulse
propagating in a single-mode fiber with a third-order
nonlinearity. The electric field Eðx; y; z; tÞ which propa-
gates in the fiber along the z-direction can be ex-
pressed by

Eðx; y; z; tÞ ¼ Fðx; yÞ � fðz; tÞ ; ð1Þ
where Fðx; yÞ is the normalized linear eigenfunction of
the mode excited in the fiber and fðz; tÞ can be further
represented as a superposition of monochromatic
waves,

fðz; tÞ ¼ 1
2p

ð
jðz;wÞ exp fi½bðwÞz� wt�g dw ; ð2Þ

where bðwÞ ¼ nðwÞw=c is the mode propagation con-
stant at frequency w, c is the velocity of light in va-
cuum, and nðwÞ is effective refractive index. It is cus-
tomary to express fðz; tÞ by

fðz; tÞ ¼ Aðz; tÞ exp ½iðb0z� w0tÞ� ; ð3Þ
where Aðz; tÞis the field envelope, w0 is the angular
frequency of the carrier wave, and b0 ¼ bðw0Þ. From
the Maxwell’s equations, we obtain the wave equation

r2E� 1
c2

@2E

@t2
¼ �m0

@2PL

@t2
� m0

@2PNL

@t2
; ð4Þ

Chi-Feng Chen et al., Femtosecond soliton propagation in an optical fiber 267

International Journal for Light and Electron Optics

0030-4026/02/113/06-267 $ 15.00/0

Received 25 January 2002; accepted 28 May 2002.

Correspondence to: S. Chi
E-mail: schi@cc.nctu.edu.tw

Optik 113, No. 6 (2002) 267–271
ª 2002 Urban & Fischer Verlag
http://www.urbanfischer.de/journals/optik



where m0 is the permeability in vacuum, and the linear
part PL and the nonlinear part PNL of the induced po-
larization are related to electric field Eðx; y; z; tÞthrough
the following equations:

PLðx; y; z; tÞ ¼ "0
Ð1

�1
cð1Þðt � t0Þ Eðx; y; z; tÞ dt0 ; ð5Þ

PNLðx; y; z; tÞ ¼ "0
Ð Ð1
�1

Ð
cð3Þðt � t1; t � t2; t � t3Þ

� Eðx; y; z; t1ÞEðx; y; z; t2ÞE*ðx; y; z; t3Þdt1 dt2 dt3 ; ð6Þ

where "0 is the vacuum permittivity, cð1Þðt � t0Þ is the
linear susceptibility response function, and
cð3Þðt � t1; t � t2; t � t3Þ is the third-order nonlinear sus-
ceptibility response function. Substituting eqs. (1), (2),
(5), and (6) into eq. (4), we have

@jðz;wÞ
@z

¼ ikw2

2c2bðwÞ

ð ð
dw0 dw00 jðz;w0Þjðz;w00Þ

� j*ðz;w0 þ w00 � wÞ cð3Þðw� w0Þ � exp ðiDb zÞ

þ i
2bðwÞ �

@2jðz;wÞ
@z2

; ð7Þ

where k ¼
Ð Ð

jFðx; yÞj4 dx dy=
Ð Ð

jFðx; yÞj2 dxdy, cð3ÞðwÞ
¼
Ð
cð3ÞðtÞ exp ðiwtÞdt is the third-order susceptibility,

and Db ¼ bðw0Þ þ bðw00Þ � bðw0 þ w00 � wÞ � bðwÞ. We
expand bðwÞ around w0 up to the fourth order, we

have bðwÞ ¼ b0 þ b1 Dwþ b2
2

Dw2 þ b3
6
Dw3 þ b4

24
Dw4,

where Dw ¼ w� w0, b0 ¼ bðw0Þ, bj ¼ @jb
�
@w jjw¼w0

for j ¼ 1 to 4. b1 is the reciprocal group velocity. b2,
b3, and b4 are the second-order, third-order, and
fourth-order dispersion parameters, respectively. Sub-
stituting jðz;wÞ ¼ ~AAðz;DwÞ exp f�i½bðwÞ�bðw0Þ� zg
into eq. (7) and taking the inverse Fourier transform

Aðz; tÞ ¼ 1
2p

ð
~AAðz;w� w0Þ exp ½�iðw� w0Þ t� dw, we have

@A

@z
¼ H þ i

2b0
CbAh ; ð8Þ

where

H ¼ � b1
@A

@t
� ib2

2
@2A

@t2
þ b3

6
@3A

@t3
þ ib4

24
@4A

@t4

þ ig 1þ i
2
w0

� b1
b0

� �
@

@t

�

� 1

w2
0

� 2b1
b0w0

þ b21
b20

� b2
2b0

 !
@2

@t2

#
NA ; ð9Þ

Cb ¼ 1� ib1
@

@t
þ b2

2b0
� b21
b20

 !
@2

@t2
; ð10Þ

Ah ¼ @2A

@2z
þ 2b1

@

@t
þ ib2

@2

@t2
� b3

3
@3

@t3

� �
@A

@z

� ib1
@

@t
� b2

2
@2

@t2
� ib3

6
@3

@t3

� �2
A ; ð11Þ

where g ¼ n2w0

cAeff
, n2 is the Kerr coefficient, Aeff is effec-

tive fiber cross section, Aeff ¼
Ð Ð

jFðx; yÞj2 dx dy
k

, and

the higher order terms are neglected. The response
Nðz; tÞ is described by [10]

Nðz; tÞ ¼ ð1� aÞ jAðz; tÞj2 þ a
Ðt

�1
dt0 f ðt � t0Þ

� jAðz; t0Þj2 : ð12Þ

On the right-hand side of eq. (12), the first term repre-
sents Kerr nonresonant virtual electronic transitions in
the order of about 1 fs or less [4], the second term re-
presents delayed Raman response, f ðtÞ is the delayed
response function, and a ¼ 0:18 parameterizes the re-
lative strengths of Kerr and Raman interactions. In this
paper, f ðtÞ models a single Lorentzian line centered on
the optical phonon frequency 1=t1 and having a band-
width of 1=t2 (the reciprocal phonon lifetime).

f ðtÞ ¼ t21 þ t22
t1 � t22

exp ð�t=t2Þ � sinðt=t1Þ ; ð13Þ

where t1 ¼ 12:2fs, t2 ¼ 32fs.
We now use order of magnitude considerations to

simplify the calculation. The dispersion and the non-
linear terms in the nonlinear Schrödinger equation are
of the same order of magnitude for the fundamental
soliton, hence, we have

b2
@2A

@t2

����
���� � b2A

T2
0

����
���� � gjAj2 A

N2
p

�����
����� ; ð14Þ

where the parameter Np ¼ ½gP0T2
0=jb2j�

1=2 is the order
of the soliton and Np ¼ 1 for the fundamental soliton,
T0 ¼ Tw=1:763, Tw is the pulse full width at half max-
imum, and P0 is peak power of the incident pulse. In a
silica-based weakly guiding single mode fiber,

b0 �
n0w0

c
, b1 �

n0
c
, b21 � b0b2, and b31 � b0b3. Defin-

ing s ¼ 1
w0T0

, we obtain from eq. (14) for the funda-

mental soliton

jb2j
T2
0

� gjAj2 � w2
0jb2j s2 : ð15Þ

By using the iterative technique and the order of mag-
nitude considerations, we first neglect the second term
on the right-hand side of eq. (8) and obtain in the zer-
oth order approximation

@A

@z
¼ H : ð16Þ

From eq. (16), the first order approximation of Ah is

Ah ¼ � g2N2A� 2gb2A ð1� aÞ @Aðz; tÞ
@t

����
����
2

"

þa

ðt
�1

dt0 f ðt� t0Þ � @Aðz; t0Þ
@t0

����
����
2
3
5� 2gb2

@N

@t

@A

@t
: ð17Þ
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By substituting eq. (16) into eq. (8), the first order ap-
proximation of the wave equation is

@A

@z
¼ �b1

@A

@t
� ib2

2
@2A

@t2
þ b3

6
@3A

@t3
þ ib4

24
@4A

@t4

� �

þ ig NAþ ia1
@

@t
NA

� �
� iga2

@2NA

@t2
� igb2A

b0

� ð1� aÞ @Aðz; tÞ
@t

����
����
2

þa

ðt
�1

dt0 f ðt � t0Þ� @Aðz; t0Þ
@t0

����
����
2

2
4

3
5

� igb2
b0

@N

@t

@A

@t
� i
2b0

g2N2A ; ð18Þ

where a1 ¼
2
w0

� b1
b0

� 1
w0

, a2 ¼
1

w2
0

� 2b1
b0w0

þ b21
b20

� b2
2b0

� � b2
2b0

, and retaining all terms to the order of s4. If

we make a second iteration, we find that the equation
does not change up to the order of s4. On the right-
hand side of eq. (18), the term with coefficient a1 is of
order s3, and the last five terms representing nonlinear
high-order terms of order s4 which are newly derived
terms. Comparing the s4 term with coefficient a2 with
the s3 term with coefficient a1, we have

r ¼
a2

@2NA

@t2

� �����
����
max

a1
@NA

@t

� �����
����
max

�

jb2j
b0T

2
0

1
w0T0

� jb2j c
n0T0

: ð19Þ

We consider a single cycle pulse. At the wavelength
l ¼ 1:55 mm, b2 ¼ �20 fs2/mm, pulsewidth Tw � 5.17 fs
and we have r ¼ 1:4� 10�3. At l ¼ 0:8 mm,
b2 ¼ 38:5 fs2/mm, pulsewidth Tw � 2.67 fs and we have
r ¼ 5:1� 10�3 [6]. Similarly we can show that other s4

terms are much smaller than the s3 term. Therefore,
all s4 terms can be neglected for the single cycle pulse
in the low loss window of the fiber.

The equation (18) is used to describe the propagation.
In dimensionless soliton units, it can be rewritten as

@

@x
u ¼ i

2
@2u

@t2
þ b

@3u

@t3
þ ib4
24jb2jT2

0

@4u

@t4
þ i �NNu� 1

w0T0

@

@t

� �NNu� ib2
b0T

2
0

1
2

@2 �NNu

@t2
þ ð1� aÞ @u

@t

����
����
2

"(

þa

ðt
�1

dt0 � f ðt � t0Þ� @u
@t0

����
����
2
3
5þ @ �NN

@t

@u

@t
þ 1

2
�NN2u

9=
;;

(20)

where x ¼ z

LD
, t ¼ t � b1z

T0
, u ¼ NPAffiffiffiffiffiffi

P0
p , b � b3

6jb2j T0
,

LD ¼ T2
0

jb2j
is dispersion length, and �NN ¼ N2

PN

P0
. When

the terms of order s4 are neglected, eq. (20) reduces to

@

@x
u ¼ i

2
@2u

@t2
þ b

@3u

@t3
þ ib4
24jb2j T2

0

@4u

@t4

þ i �NNu� 1
w0T0

@

@t
�NNu : ð21Þ

3. Full Maxwell’s equations model

The Maxwell’s equations for the optical pulse linearly
polarized in x-direction propagation in z-direction are
written as

@Hy

@t
¼ 1

m0

@Ex

@z
; ð22aÞ

@Dx

@t
¼ @Hy

@t
; ð22bÞ

Dx ¼ "0"rEx þ Px : ð22cÞ
Here m0 and "0 are the permeability and permittivity
coefficients in free space, "r is the relative permittivity,
Dx is the electric filed displacement and Px is the elec-
tric polaritation.
Px consists of linear part PL

x and nonlinear part PNL
x ,

Px ¼ PL
x þ PNL

x . The linear polarization PL
z is given by

convolution of Ezðx; tÞ and first-order susceptibility
function cð1ÞðtÞ.

PL
z ðx; tÞ ¼ "0

Ð1
�1

cð1Þðt � �ttÞEzðx; tÞ d�tt ; ð23Þ

where

cð1ÞðtÞ ¼ w2
r ð"s � "rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

r �
d2

4

s exp ð�dt=2Þ sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

r �
d2

4

s
t

0
@

1
A:

wr is dipole resonant frequency d is damping constant.
PNL
z is given by convolution of Ezðx; tÞ and third-order

susceptibility cð3ÞðtÞ

PNL
z ðx; tÞ ¼ "0

Ð1
�1

Ð1
�1

Ð1
�1

cð3Þðt � �tt1; t � �tt2; t � �tt3Þ

� Ezðx; �tt1Þ Ezðx; �tt2Þ Ezðx; �tt3Þ d�tt1 d�tt2 d�tt3 : ð24Þ
We consider the nonlinear polarization with single
time convolution

PNL
z ðx; tÞ ¼ "0c

ð3ÞEzðx; tÞ
Ð1

�1
gðt � �ttÞ E2

zðx; �ttÞ d�tt ; ð25Þ

where cð3Þ is the nonlinear coefficient. The response is
given by phonon interaction f ðtÞ and nonresonant elec-
tric effects dðtÞ.

gðtÞ ¼ ð1� aÞ dðtÞ þ a � f ðtÞ ; ð26Þ
where f ðtÞ is given in eq. (13).

4. Numerical results

In an attempt to verify the validity of the eq. (21) for
describing the propagating of ultrashort pulse, we si-
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mulate the 2.5-fs fundamental soliton propagation by
eqs. (20), (21) and the full Maxwell’s equations. The
fiber parameters are: soliton wavelength l ¼ 1:55 mm,
wr ¼ 8� 1013 rad/s, "1 ¼ 2:25, "s ¼ 5:25, d ¼ 1:0
� 109 s�1, and the nonlinearity g ¼ 2�
10�6 W�1 mm�1. From the permittivity function cð1ÞðtÞ,
we obtain b1 ¼ 5:01� 103 fs/mm, b2 ¼ �24:56 fs2/mm,
b3 ¼ 61:97 fs3/mm, and b4 ¼ �209:64 fs3/mm. eqs. (20)
and (21) are solved by the split-step Fourier method.
eq. (22) is directly and iteratively computed by follow-
ing the algorithm of the FD-TD method [4]. Figs. 1a
and 1b are the pulse shapes of the 2.5-fs fundamental
soliton in 5LD simulated by using the generalized non-
linear Schrödinger equation, eq. (21), and the full Max-
well’s equations, eq. (22), respectively. Using the mov-

ing frame relation t ¼ t � b1z

T0

� �
, we transform Fig. 1b

into temporal distribution. After the transformation,
one can see that Fig. 1a and Fig. 1b are almost the
same. From Fig. 1, the soliton phenomenon is induced
by third-order dispersion [11, 12], self-steepening effect
[13] and delayed Raman response [14, 15]. The angular
frequency of the pulse is 200 THz, which is 10-times to
the spectrum of Raman gain spectrum. It can be seen
from Figs. 1a and b that the pulse is with oscillation
structure and dispersive wave in tailing edge. The
dominant effect by third-order dispersion is shown. We
can find the pulse shape in Figs. 1a is consistent with
that in Fig. 1b. The same propagation also simulated by
using eq. (20), and it is found that two numerical re-
sults by using eq. (20) and (21) differ less than 0.5%. It
is demonstrated that eq. (21) could well describe the
propagation of the 2.5-fs fundamental soliton in fiber.
On the other hand, the coefficient of s4 order is found
to be negligible.

5. Conclusion

In conclusion, we have used iterative method to derive
a wave equation for femtosecond soliton propagation
in an optical fiber. The derived equation contains high-
er nonlinear terms than the equation obtained pre-
viously. It is found that those more higher-order non-
linear terms, the coefficients of which are proportional
to the second-order dispersion parameter, are much
smaller than the shock term in a silica-based weakly
guiding single mode fiber. The propagations of 2.5-fs
fundamental soliton by using the generalized nonlinear
Schrödinger equation and the full Maxwell’s equations
are numerically simulated. Comparing these two re-
sults, we found that the generalized nonlinear Schrö-
dinger equation well describes the propagation of the
pulse even containing a single optical cycle.
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