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Abstract. In this paper, we make a comparative study on morpho-
logical skeletonization (MSK) and fuzzy medial axis transformation
(FMAT). Methods have been proposed to construct convex FMAT
from the morphological skeleton points and to translate FMAT to
MSK, respectively. For the case of translating MSK to convex FMAT,
the experimental results reveal that the combination of the proposed
method and the redundant removal algorithm is very effective. Es-
pecially, the combined method is faster than the original method for
constructing convex FMAT of smoothed images. © 2002 SPIE and
IS&T. [DOI: 10.1117/1.1426075]

1 Introduction

The skeleton transformation is a generally used geometrica
shape representation in a computer vision system. The skel

It is well known that skeletons of binary images are
defined by the notion of maximal disk$.Based on this
notion, morphological skeletonizatidMSK) is developed
and generalizéd*=?°to find skeletons of gray-scale im-
ages. On the other hand, based on the notion of maximum
fuzzy disks, fuzzy medial axis transformati¢gRMAT) is
proposed to find the fuzzy medial axis of gray-scale
images’?2 Although both MSK and FMAT originated
from the notion of maximal disks, the morphological skel-
eton and the fuzzy medial axis of a gray-scale image are
not the same. Therefore, it is our purpose in this paper to
make a comparative study on MSK and FMAT. In next
kection, we will briefly review the concepts of MSK and
FMAT. In Sec. 3, we will compare them and explore their

eton transformation can reduce the time and storage needetelations. In Sec. 4, we will propose the translation methods
for further computer processing. In the last decade, math-between the convex FMAT and the MSK of an image. In

ematical morphologyhas been an useful tool for many

Sec. 5, we will show and discuss some experimental results

problems of the digital image processing, e.g., segmenta-on constructing convex FMAT from the MSK. Finally, in

tion, thinning, or skeletonization. Meanwhile, the fuzzy set
theory has been found a promising field of application in
digital image processing.® The fuzzy set theory ideally
fits human intuitive knowledge of the diffuse localization or
limits of the image components. It is usually used to model
uncertainty and imprecision of the image components. Re-
cently, several attempt$®~*? have been made to build a
mathematical morphology relying on intrinsically fuzzy ap-

Sec. 6, we will make some conclusions.

2 Morphological Skeletonization and FMAT

2.1 Morphological-Skeletonization MSK

The four basic morphological operations dilation, erosion,
closing, and opening are usually denoteddby©, @, and

proaches. These interesting approaches motivated us to in©, respectively. Then the morphological skeletong§X)
vestigate the relations between morphological skeletoniza-of a discrete binary imag¥ with respect to a discrete struc-

tion and fuzzy medial axis transformation.
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turing elemen is defined*® as follows:
SKM(X)=[XEnB\[(X&nB)OB], n=0,1; )
SKB(X)=n@OSK M(X), @

where “\.” is the set difference operation, B) is the
singleton consisting of the origin, and
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SK"(f)(p) if p=q
n times Sén)(q): L
nB=B®B®.--®B, n=1,2,--. 0 otherwise

©
Moreover, the discrete imageé can be reconstructed from  or eachq in R2 Note that Opem Sgn):SK(n)(f) and
€My

its morphological skeleton b
P g y (mL)t= Uﬁ’zo[(sg‘))tea nB] is either an empty set or a disk

- - for each gray level. Further note that the imadecan also
X= Lfo(SKB (X)&nB). (3 be reconstructed from the morphological diskas],,
" Pe Mf .
Proposition 1 Let M denote the support of SK§.
Thenf can be reconstructed from those morphological disks
defined in Eq(8), i.e.,f=D0pcy,my.

For eactn, SK{V(X) is thenth skeleton subset . If B is

the unit disk centered at the origin, th&x{"(X) consists
of the centers of maximal disks X with radiusn.

The earlier morphological skeleton representation has Proof. From Eqs.(7) and(8), we have
been generalized to gray-scale ima§emd| images® In
order to simplify its comparison with fuzzy medial axis O mp=_0 O (S"@nB)
transformation, we will make use of the following version Pt

of morphological skeletonization on gray-scale images pro- = ﬁo DM (S<p“>eanB)

posed by Maragos and SchafiFirst, for any gray-scale s Pl

imagesf,g:R?—(0,1, ... L), the image difference of =n;ﬁ0((p DM SE)n))eanB)
=0 \peM;

andg, written asf\g, is defined by .

= [0 (SK"(f)®nB)
f(x) if f(x)>g(x) n=0

(F\g)(x)= o (4) =t

0 otherwsie Thus,f can be reconstructed from;’s.

Then for a gray-scale image and a symmetrical flat struc-

turing elemenB, define(For a gray-scale imageand a flat

structuring elemenB, the dilationf®B and erosionf©B

are defined by f®B)(x)=max,.gf(x—q) and (fOB)

Example 1 Let f; be a one-dimensional signal given by

p ..012 3456 7 8 91011121314 ..

X(x)=minggf(x+0q), respectively. f, .01 3579636975310 ..
SKIM(f)=(fonB)\[(f&nB)OB], (5)  and letB be the flat structuring element given by1, 0, 1.
All the intermediate results needed to find the skeleton of
forn=1,2,..., and f, are listed
= M(f). .. 01234567 8 91011121314

SKa(T) ”@OSKE (t) ® f,gw . 01350063680 5310

As in binary casef can be reconstructed by (fig0B)oB (... 0°1 3 5 6 6 6 3 6 6 6 53 10 ..

feB 01T 3B E33I3IERE 30

f= [ (SK{'(f)@enB). (7 feBeB | .0 133333333310

n=0 fo2B .. 017333333310

For eachn, SK{(f) is thenth skeletal subimage df ~ .92808 ] . L a g s
with respect taB. Usually, the symmetrical flat structuring /1938 e O 1B E S S5 1D
elementB is chosen to be the unit disk centered at the -JS3BeB} 01333 33 1 0 e
origin. In such case, we will simply denote the morphologi- /ie4B e LSS 8T
cal skeleton and skeletal subimagesfaby SK(f) and --(--f-'?-g-);g -------------------- O;Tiiéo -------------------------
SK™(f), n=0,1,2 ..., respectively. Note that for each (fO5B)oB o111 0
the result SKV(f)(x)>0 indicates a maximal disk with T N DR I ——
radiusn at level SK™(f)(x) and centered at. Maximal (f,66B)°B .00 0

disks with a common center can be stacked up to form a

“morphological disk.” By a morphological disk, we meana The morphological skeletal subimages BKf,) are ob-
gray-scale imagem such that the threshold sen, tained to be

:_{x|f(x)>t} is a disk for each gray level Thgn for. eafch p |01 2345678 91011121314 ..,
p in the supportM; of SK(f ), the morphological diskn, SKOF) 0790009 70 ..
can be obtained by SKV () 056000650 ..
SK9(£) 030
my= 0y(S;"@nB), (8 SKO(f) 010
where the imagésg‘) is defined to be Then the morphological disks df can be expressed as
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P .. 0 1 23 4567 8 91011121314 .. Since conventional and morphological disks are convex,
mf .. 057 5 0. in the rest of this paper, we will restrict our discussion on
m .. 06 96 0 .. comparing MSK and CFMAT.
mi .01 33333333333T1°©0.. Example 1 (continued) The maximal fuzzy disks and
mi 069 6 0. maximal convex fuzzy disks fof, are
mf .. 0515
fi= v mil 0 1357963697531°0. p |.01234567891011121314
PeMa ghi=1, 013579613697 310
. ' ' cf 013575310 ..
2.2 Fuzzy-Medial-Axis Transformation (FMAT) of 0133608633 10.
Based on the notion of fuzzy disks, Pal and Rosefteld cf .0 1336096 0.
define FMAT for gray-scale images. FMAT generalizes the ol 0135 0.

medial axis transformation for binary images to fuzzy sub-

sets of a metric space. LBtbe a metric space with metric Relations between Morphological

d and letf be a fuzzy subset d. For eachpe D, a fuzzy Skeletonization and Fuzzy Medial
disk g{, centered ap is a fuzzy set defined by Axis Transformation

; _ Similarities between morphological skeletonization and
gp(@)= inf  f(r). (10 FMAT are that(i) both of them are derived from the con-

d(p.r)=d(p.a) cept of “maximal disks;”(ii) both of them can be used to
) ] . ) . reconstruct the original image; affid ) both the support of

Remind that a poinp € D is called a local maximum dfif SK(f ) and the se€; of an imagef contain all the peaks of
p has no neighborg such thatg,<gj. The fuzzy medial { By a peak off, we mean a pixelp such thatf(p)
axis off is defined by the sdd; of such local maxima of, >f(q), for all q(#p) in a neighborhood op. Similarity
and{g,f)|p e Dy} is called the FMAT off. (iii ) can be shown as follows. Suppose there exists a peak

One important property of FMAT is that the original which does not belong to the CFMAT &fThen there must
image can be completely reconstructed from its FMAT. exist a convex fuzzy disk c; such that c;
However, to record the FMAT information it needs a lot of — (f(q),f(qy),...,f(q)=f(p),....f(q,)) for some inte-
memory, sometimes even more than to store the originalgersk andn with 0<k=n. Let u be a neighbor op with
image. Pal and Wari§propose a redundant removal algo- iy 1) —k—1. By the definition of convex fuzzy disks
rithm to tackle this problem. Their algorithm yields the so f(u)z’f(qk 1)>.f(p) This contradicts to the assumptio’n

called reduced FMATRFMAT). . .
The FMAT has a “convex” definition, if we define the thatp is a peak. Therefore, the & contains all the peaks

FMAT only using the maximal convex fuzzy disks. By a of f. Similarly, since morphological disks are convex, the

convex fuzzy disk, we mean a fuzzy digk such that for ~ S€tMs also contains all the peaks bf , .
all g, g, with d(p,q;)<d(p,q,) we have g.(qy) However, they are some dissimilarities. First, the disks
’ ’ 1 P

fra . . :
=g,(2). Now, given an imagé. For eachpe D, a con- cp'sin CFMAT-are qll maf>f|mal fuzzy conyex d|sks,.wh|Ie
vex fuzzy diskc{) centered ap is defined by the morphological (fj|sks?ps are not.fFor instance, in ex-
ample 1, we haven,'<c.'. That is,m.' is not a maximal

g{)(q) if g;(r)z inf QL(S)’ fuzzy convex disk. Next, the convex fuzzy medial axis
d(p,s)=d(p.r) transformation does not satisfy the “threshold-max super-
f . » . - . )
c = . ) position,” while the morphological skeletonization does.
D) vr with d(p,r)<d(p.q) Let ¥ be an operation on gray-scale images. For any
0 otherwise binary imageACR?, if we define
Let C¢ be the set of alpe D such thatc;, are maximal L if xeA

among all convex fuzzy disks &f Then the seC; is called Xa(X)= 0 otherwise
the convex fuzzy medial axis cbfand{c;|p e Cy} is called

the convex fuzzy medial axis transformati@@FMAT) of f. thenW can be applied to binary images by defining
Proposition 2 All morphological disks of an imagkeare
convex fuzzy disks. T(A)=T(yp).
Proof. Let m,f) be a morphological disk dfcentered ap.
First, we note that for any pointg, andq; with d(p,q) Now, an operatior¥’ on gray-scale images is said to
<d(p.qz), we have satisfy the threshold-max superpositifh®® if for any

gray-scale imagé&
mi(dy) = B (S @nB)(qy) = SKUP%)(p)<SKIP92)(p)
x f V(1) () =maxtlxe T ()},
= 00,(SbtnB)(dz) =mh(qy).
for all pixel x. Wheref,={x|f(x) =t} is the threshold set of
This concludes tharln{, is a convex fuzzy disk. f at levelt, t=1,2,... L. Before proving the following
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proposition, we should note that for any sequence of gray-Therefore, we have

scale images; ,iel:
O ficg=maxXt|xe U (f)}.

Proposition 3 The morphological skeletonization de-
fined in formula(4)—(6) obeys thethreshold-max superpo-
sition. That is

SK(f )(x)=maxt|x e SK(f,)}.

Proof. First of all, we claim that SK)(f)(x)=maxt|x
e SKM(f,)} for eachn.

Let SKIV(f)(x)=s.

Case 1. Suppose=0. Then

(fonB)(x)=[(fonB)OB](x).

Let (fonB)(x)=[(fonB)OB](x)=s'. Then we ob-
serve that

xe (fonB),N[(f©SnB)OB];, for all 0O<t=<¢g/,
and

x& (fonB),U[(fEonB)OB],, for all t>s’.
Thus

xe& (fonB)\[(fenB)OB],, for all t.

Since fenB),=(f.©nB) and

=(f,©nB)OB, we have
x¢ (f,OnB\[(f{©nB)OB]=SK"(f,), for all t.

[(f&nB)OB],

Therefore, ma§t|x e SKM(f,)}=0=SKM(f)(x).
Case 2. Suppose>0. In this case, we have
(foB)(xX)>[(fonB)OB](x) and (f&nB)(x)=s.
Let[(fEnB)OB](x)=u. Then we observe that

xe (fonB),N[f(fEnB)OB];, for all 0=<t=<u,

x¢ (fonB),U[(fEnB)OB];, for all t>s,

and

xe (fonB), and x&[(fonB)OB];, for all u<t<s.

Thus

xe (fonB)\[(fEnB)OB];, for all u<t<s

and

x¢& (fonB)\[(fonB)OB];, for all t<u or t>s.

In other words

maxt|xe (fSnB)\[(f©nB)OB];}
=maxt|xe (f OnB\[(f{©nB)OB]}
=maxt|xe SKW(f)}=s.

max{t|x e SKW(f)}=[SKM(f)](x)
xe (f,.onB)\[(f;©nB)OB], for all u<ts<s.
Combining the earlier two cases, we conclude that
SKM(f)(x)=maxt|xe SKM(f,)}.

Next, since

SK(f)(x)= B SK™(f)(x)=maxt|xe U SK"(f)}
=maxt|x e SK(f,)},

it follows that the morphological skeletonization MSK sat-
isfies the threshold-max superposition.

Finally, let us revisit example 1 again. In there, we have
Mf1={4,5,7,9,1@:)Cf1={4,5,9,1(}. It seems that CFMAT
of a gray-scale image contains fewer points than MSK
does. Unfortunately, this is not true in general as the fol-
lowing example shows.

Example 2 Let f, be a one-dimensional signal given by

p .. 01 2 3 45 6 7 8 9 10 ..

fo(p) .. 02 1 1 1 2 3 4 3 2 0

and letB be the structuring element same as given in ex-
ample 1. Then using the same expression as example 1, the
skeletal subimages are

p .. 0123 456 7 8 910 ..
SKO (£,) 0 40

SKY (f,) 0 30

SK@ (f,) .. 020

SK¥ (f,) .. 010

The maximal morphological disks are
f f
m=(1,1,1,1,9, m/?=(4,3,2.
However, the maximal convex fuzzy disks fby are
c2=(2,1,1,1,0, c¢2=(3210, f2=(432.

Thus, in this example, we haverzz{S,?}CCf2

=1{5,6,7}.

4  Translations Between CFMAT and MSK

In the previous section, we discussed the relationship be-
tween FMAT and MSK. As we have known, both FMAT
and MSK can be used to reconstruct a given image. Thus,
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there exists an indirect transformation between CFMAT P .. 0 123 45678 91011121314
and MSK. It is then interesting to ask whether there exists «' =(7.53nf... 0 1.3 5 7 5 3 1 0.
a direct transformation from CFMAT to MSK or from ¢ =®633D).. 0 1.3 3 6 9 6 3 3 10
¢ =(9,6,3,3,1) ...0 1 3 3 6 96 3 3 10
MSK to CFMAT. ¢ = (7,53, 013575310
KOG e
01 35775371770 .
.. 01336663310,
4.1 Construct MSK Using Convex Fuzzy Medial .0 1336663310 ..
Axis Transformation coreeeeeemeeeefereeeiee 2 0L 35 7 5 3 10
SK®(#) 7 7
One of similarities mentioned in the beginning of the pre- = [y 17375 s s Ty g T
vious section is that both CFMAT and MSK contain all the .0 1336663310
peaks of an imagé In other words, all peaks are common -0 g i g ‘;’ g g g } g
skeleton points in the CFMAT and the MSK of an imdge Oy T 6 T i
Another observation is that MSK satisfies the threshold- - prmgrryrrrgmrgrgrrgrrgryrrggee s
max superposition. Then we can develop an algorithm to .0 1333333310,
construct the MSK from convex fuzzy disk set. The main - 013333333120
idea of this transformation algorithm is using the threshold- T 5013525310
max superposition to decompose the image then compute-------- o U T T T A S S S
the morphological skeleton points for each decomposed 01 333333310.
component. The algorithm is described as follows. .. 013333333
Algorithm A. Construct MSK from CFMAT. 0133332;;;;;; ------------ _
Input. A convex maximum fuzzy disk set. e N
Step 1. Select the radius values that appear in the convey--- B ST T T
maximum fuzzy disk set. Then sort these values in de- “gxw [T T
scending order and store the result in a queue.
Step 2. If the queue is empty then stop.
Otherwise, remove a valuefrom the queue. 4.2 Construct CFMAT Using Morphological
Step 3. Mark the points whose gray values are equal to Skeleton
The marked and unmarked areas may be treated as a bina

. ll(lthough the MSK and CFMAT possess many common
Image. _ & _ center points of the image and the CFMAT has been used to
Step 4. Apply the distance transformatiom to the bi-  construct the MSK. However, to construct the CFMAT by

nary image. MSK is not a straight forward. Since CFMAT is different
Step 5. Select the points with the maximum distance as

morphological skeleton points. A poirg with the local
maximum distancel(p) is a morphological skeleton point

and belongs to the skeletal subimage$R .

Step 6. For each convex fuzzy disk, change the value of
marked points as its next radius value.

Step 7. Go to step 2.

The following example is a one-dimensional case for
illustrating the operation in algorithm A.

Example 3 Let f; be a one-dimensional signal aBce
the flat structuring element as given in example 1. The
maximal convex fuzzy disks fof;, are

f f (a) S (54x69) (b) Shapes (256x256)
¢, '=(7,532, c.!=(9,6,332,

cli=(9.6,33, cl1=(753.1. l OOL S

(c) TOOLS (275x93)

Then the step-by-step process of algorithm A is illus-
trated in the following table. Fig. 1 Test images.

42/ Journal of Electronic Imaging / January 2002/ Vol. 11(1)
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Table 1 Computation time and memory required for MSK. Table 2 Time used for construct MSK from CFMAT.

# skeleton  # gray Time used for Time used Total time

points values  Time used (s) CFMAT (s) for MSK (s) used (s)
Shapes image 410 412 5.30 Shapes image 6.15 3.27 9.43
S image 2736 5021 0.17 S image 0.16 151 1.67
Smoothed S image 1037 2024 0.17 Smoothed S image 0.60 1.28 1.88
TOOLS image 20538 36970 2.26 TOOLS image 1.48 16.85 18.33
Smoothed TOOLS image 6987 12 277 2.28 Smoothed TOOLS image 23.74 12.80 36.54

from MSK, one cannot expect to obtain the CFMAT justby 4
using points in MSK. A concrete example is given as fol-
lows.

Example 4 Let f; be a two-dimensional signal given by

‘ 198:198:198!
2121208 120520812052161206] | 1
0

<

(@ SKO(f,) () SK"(f)

; 08 198: 205 208 205 216 206 202

v

3}79241 411 4[39°

0 2 1951195195’ 201;2011‘
2 Tl g 4
Using morphological skeletonization formul@) and © SKO(f,) @ SKP(f) (@ SK¥(f)
(4), the MSK off; can be obtained. The skeletal subimages Note that the blank denotes that the pixel's gray value
are equal to 0. We construct maximal convex fuzzy disks cen-
Table 3 Experiment results of the image S.
FMAT
produced
FMAT by
using RFMAT FMAT algorithm B
convex using produced +redundant
disks convex by removal
FMAT CFEMAT disks algorithm B algorithm
# fuzzy disk 3233 2609 2261 2508 2261
# gray values 36 145 11431 9565 10 946 9564
Time used for 0.13 s 0.14 s 0.13 s
FMAT or CFMAT
Time used for MSK 0.16 s 0.16 s
Time used for 0.03 s 0.01 s
redundant removal
Total time used 140 s 0.14 s 0.16 s 0.30 s 0.30 s
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Table 4 Experiment results of the image TOOLS.

FMAT
produced
FMAT by
using RFMAT FMAT algorithm B
convex using produced +redundant
disks convex by removal
FMAT (CFMAT) disks algorithm B algorithm
# fuzzy disk 24 677 19317 16 841 18 601 16 840
# gray values 532 444 80 646 67 855 77230 67 846
Time used for 0.98 s 1.00 s 0.99 s
FMAT or CFMAT
Time used for MSK 221 s 221 s
Time used for 0.20 s 0.04 s
redundant removal
Total time used 8151 s 1.00 s 1.20 s 3.23 s 3.26 s

tered at these points and use them to build an image. Thisl21 at the point4, 6) [the left down corner is the origif®,

built image is

..................

201

119512101209

210

200{204{208

207

201207202

216

2061202206

210

1981205208

216

1
>

just built has gray valu

(b) Shapes (thresholded)

(c) TOOLS

Fig. 2 Outputs of CFMAT.

44/ Journal of Electronic Imaging / January 2002/ Vol. 11(1)

0)] while the original gray value at this point is 170.

To find a convex FMAT of an image, some points must
be added to the set MSK for keeping the reconstruction
property. Our approach is to check the sponsoring points
for MSK points. The concept of sponsoring points is pro-
posed by Pal and Warfg,and used to check the redun-
dancy fuzzy disks, originally. If every point in a fuzzy disk
has more than one sponsoring point other than itself, then
this fuzzy disk is redundant and can be removed from the
FMAT. In the current study, we use this representation to
check whether the point sponsored by the other points.
Once the points without sponsoring point are found, we
then find additional maximal convex fuzzy disks centered
at these points. They, together with those centered at MSK

epoints, form a CFMAT. This CFMAT can be further re-

(b) Shapes (thresholded)

() TOOLS

Fig. 3 Outputs of algorithm B.
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Fig. 4 RFMAT options.

our approach in the following.
Algorithm B. Construct CFMAT from MSK.

Comparative study . . .

Input. The morphological skeleton SK). Let M; be

the support of SK{).

Step 1. Mark all morphological skeleton poirfis M

as the centers of the fuzzy disks.

Step 2. If all morphological skeleton poingss M are
unmarked, then go to step 7. Otherwise, select one of sk® ()

marked skeleton poirgg and unmark it.
Step 3. Radius — 1.
Step 4. Radiusradiust 1.

Step 7. Check each point M and mark its sponsoring
points. If there exist points with no sponsoring points, then
add these points to the skt; and find the corresponding
convex fuzzy disks centered at them.

Step 8.(Inclusion detectionCheck eactp in M; . If the
fuzzy disk c{, is contained in another fuzzy disié, then
the pointp is removed fromM; .

The set{cy|pe M} is the desired CFMAT of. This
algorithm is essentially the same as the algorithm proposed
by Pal and Wang except that we use morphological skeletal
points to initialize an approximation for CFMAT.

Example 4 (continued Note that the pixe{4, 6) has no
sponsored points. Thus, we a@4, 6) to C; and find the
maximal fuzzy convex dislc{4’6)=(170,44,39).

Before ending this section, a one-dimensional example
is used to illustrate the operation of algorithm B.

. ) ) Example 5 Let f; be a one-dimensional signal am
duced by removing the redundant points. We summarizepe the flat structuring element as given in example 1. The
morphological skeletal subimages fdy are shown in

example 1.
p [... 1 23 456 7 8 91011121314 ...
SKO(f) .0 79 0009 7 0 ..
SKV(f) 055500055560,
SKll)(fl) ...0 6 6 6 0 6 6 6 0,
0333333333330 ..
TSsK®(ry |0 A T T R S R T 10 .7

The translation results are

Step 5. If radius exceeds the object boundary then go to
ci'=(753, c*=(9,633,,

step 2.
Otherwise, compute the value

= min max SK™(r)|n=0,1,2,..N}.
r e[s|d(s,r)=radiug

Step 6. Ifl less than the precedent one, then redard

step 2.

ci'=(9,6,33,, cii=(7,53,.

Based on algorithm B, we choose all of the morphologi-
cal skeletal points as centers of the fuzzy disks. Then we
the fuzzy disk center aj and go to step 4. Otherwise, go to sequentially check the radii to search the minimum gray
values. For example, the coordinate 4 is a morphological

Table 5 Experiment results of the smoothed image S.

FMAT
produced
FMAT by
using RFMAT FMAT algorithm B
convex using produced +redundant
disks convex by removal
FMAT (CFMAT) disks algorithm B algorithm
# fuzzy disk 1936 1573 602 966 602
# gray values 27 425 18 693 6202 10752 6169
Time used for 054 s 0.23 s 0.24 s
FMAT or CFMAT
Time used for MSK 0.16 s 0.16 s
Time used for 0.98 s 0.15 s
redundant removal
Total time used 092 s 0.54 s 152 s 0.39 s 0.55 s
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Table 6 Experiment results of the smoothed image TOOLS.

FMAT using convex

RFMAT using

FMAT produced by

FMAT produced by
algorithm B+redundant

FMAT disks (CFMAT) convex disks algorithm B removal algorithm
# fuzzy disk 14112 11503 3101 6412 3075
# gray values 36 998 216 152 51083 118979 50503
Time used for FMAT or CFMAT 18.04 s 5.76 s 5.65 s
Time used for MSK 221 s 221 s
Time used for redundant removal 46.08 s 7.01 s
Total time used 46.06 s 18.09 s 64.13 s 8.00 s 14.88 s
skeletal point, and is selected as the center of a fuzzy disk. PFEAERGEEPFN J -= { r -
The minimum gray values corresponding to radii 1, 2, 3 are ot " .
5, 3, 1, respectively. The search for minimum gray values is g I -
finished when the radius equal to 4 which exceeds the dis- P i
tance from point 4 to the object boundary. Thus, the convex - . - -
fuzzy disk center at 4 is}=(7,5,3,1). - ;
«h
5 Experimental Results and Discussions w T 2 .
For demonstrating the proposed methods, we apply them to ¢ T b
the test images presented in Fig. 1. The sizes of test images "1

“S,” “Shapes,” and “TOOLS” are 54X 69, 256x 256, and
275x 93, respectively. All of them are 8-bits gray level im-
ages. The Shapes is a synthesis image. The gray values of
the background are 0, the ellipse at the up-left corner are
100, the rectangle are 180, the outer square at the left-
bottom corner are 60, the inner square at the same corner
are 160, the circle are 200, and the ellipse inside the circle
are 230. The simulation programs are written in C language
and run on a Pentium Il 300 over clock to 450 PC.

In the experiments, we observed that the computation
times for MSK are less than the CFMAT, and MSK can be
obtained from the CFMAT using algorithm A proposed in
Sec. 4.1. Table 1 presents the computation time, number of
skeleton points, and storage required for the morphological

@'s"

(b) Smoothed "S"

(c) "Shapes" (thresholded)

(d) "TOOLS"
o AN R T Y LT T e
""r.' LRy TR RS 5‘ . .,-\‘“;" '.?.‘_'.3 NS AR

(b) (¢) Smoothed "TOOLS"

Fig. 5 (a) CFMAT output of smoothed image S; (b) output of

Fig. 6 (a) CFMAT output of smoothed image TOOLS; (b) output of
smoothed image S derived from algorithm B.

smoothed image TOOLS derived from algorithm B.
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Fig. 8 Outputs derived from combination of algorithm B and redun-
dant removal algorithm.

skeletonization of each image. In this case, we have to
record the indexes of the morphological skeleton subsets
for each gray value in MSK. For example, the results of the
morphological skeletonization of image S are 410 skeleton
points and 412 gray values accompany with 412 indexes of
skeleton subsets. The experiment results of algorithm A are
shown in Table 2. According with these experimental re-
sults, algorithm A spends more time to construct MSK from
the CFMAT than to compute MSK from the original image
directly. Thus, we will concentrate our discussion on algo-
rithm B proposed in section 4-2.

Tables 3 and 4 present the experimental results of the
test images. For the image S, the skeleton pdinds, cen-
ters of disk$ produced by morphological skeletonization
are 2736 pointgsee Table L The output of algorithm B is
2508 points. The size of the CFMAT vyielded by the method

(e) Smoothed "TOOLS"

Fig. 7 Fuzzy disk size distribution for CFMAT.

Table 7 Experiment results of the image Shapes.

FMAT produced by

FMAT using convex  RFMAT using  FMAT produced by  algorithm B+redundant

FMAT disks(CFMAT) convex disks algorithm B removal algorithm
# fuzzy disk 1100 238 410 238
# gray values 37213 37213 6979 11 936 6967
Time used for FMAT or CFMAT 491 s 1.28 s 1.28 s
Time used for MSK 5.18 s 5.18 s
Time used for redundant removal 97.25 s 3.46 s
Total time used 4,90 s 4.89 s 102.17 s 6.48 s 9.43 s
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of Pal and Want} is 2609 and the number of recorded gray the combination of algorithm B and the redundant removal
values is 11431. Figures 2 and 3 present the results of CFalgorithm can produce the convex FMAT for test images
MAT and algorithm B, respectively. The RFMAT output is and their smoothed versions, effectively.

2261 points(diskg and 9565 gray values. The RFMAT

outputs of test images and their smoothed versions arenafarences

shown in Fig. 4. Algorithm B combines the redundant re-
moval algorithm yields 2261 fuzzy disks and records 9564 ;
gray values. For this image, the experiment results reveal
that the method of Pal and Wafigs faster than algorithm 2
B, even when the redundant removal algorithm is applied.
The outputs of both methods are almost the same after the3s.
redundant removal algorithm is applied. Analogy results for
the image TOOLS are shown in Table 4. It should be noted
that the output images just present the skeleton points. Each>.
skeleton point keeps the original gray value, and the non-
skeleton point presents the blank. For the sake of clarity,
the image S and the results of the image S are enlarged five®:
times of their original sizes. The results of the Shapes im- 7.
age are thresholded for the same reason.

For smoothed images, the computation time increases in
the method of Pal and Wang. Tables 5 and 6 show the
experiment results for this situation. The outputs of CF- 9
MAT and algorithm B for the smoothed test images are

8.

shown in Figs. 5 and 6, respectively. A smooth area in the1o.

image will result in a large disk. For example, the radius of
the largest fuzzy disk found by CFMAT in the image S is
14 while that is 27 in the smoothed version. Figure 7 pre-

sents the convex fuzzy disk size distributions of the S and!?
TOOLS, and their smoothed images. It confirms that 13.

smooth areas trend to produce larger convex fuzzy disks.

Then the method of Pal and Wang has to spend more com-4

putation time for disk inclusion detection. Hence, in the
case of smoothed images, algorithm B is usually faster than
their method. This conclusion is confirmed again by the
experiment results of the image Shapes shown in Table 7.

The time used for REMAT is longer than the others. Most 6

of the time is spent in the redundant removal algorithm,

since it checks a large mount of points for each 1100 disks.17.
18.

We then apply the redundant removal algorifno the
output of algorithm B. The experiment results for this situ-

ation are shown in Fig. 8. Although it requires more com- 19

putation time than the method of Pal and Wang for test

images, it requires less for the smoothed images. The ex=20.

periment results reveal that the combination algorithm B
and the redundant removal algorithm is effective for both

original and smoothed image. For smoothed images, this22.
23,

combination is especially fast.

24.

6 Conclusions

In this paper, we discuss the similarities and dissimilarities
of MSK and FMAT and propose two algorithms to translate
between CFMAT and MSK. The MSK of an image can be
constructed by the CFMAT. However, the CFMAT cannot
always be constructed solely by the MSK. Fortunately, with
the help of the concept of the sponsor, we can construct
CFMAT from the MSK with adding the points without
sponsored points. The computation time of the method pro-
posed by Pal and Wang depends on the sizes of smootl
regions in an image, however, that of MSK depends only
on the image size. Thus, algorithm B is very effective for
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