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Abstract. In this paper, we make a comparative study on morpho-
logical skeletonization (MSK) and fuzzy medial axis transformation
(FMAT). Methods have been proposed to construct convex FMAT
from the morphological skeleton points and to translate FMAT to
MSK, respectively. For the case of translating MSK to convex FMAT,
the experimental results reveal that the combination of the proposed
method and the redundant removal algorithm is very effective. Es-
pecially, the combined method is faster than the original method for
constructing convex FMAT of smoothed images. © 2002 SPIE and
IS&T. [DOI: 10.1117/1.1426075]

1 Introduction

The skeleton transformation is a generally used geomet
shape representation in a computer vision system. The s
eton transformation can reduce the time and storage ne
for further computer processing. In the last decade, m
ematical morphology1 has been an useful tool for man
problems of the digital image processing, e.g., segme
tion, thinning, or skeletonization. Meanwhile, the fuzzy s
theory has been found a promising field of application
digital image processing.2–9 The fuzzy set theory ideally
fits human intuitive knowledge of the diffuse localization
limits of the image components. It is usually used to mo
uncertainty and imprecision of the image components.
cently, several attempts2,10–12 have been made to build
mathematical morphology relying on intrinsically fuzzy a
proaches. These interesting approaches motivated us t
vestigate the relations between morphological skeleton
tion and fuzzy medial axis transformation.
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It is well known that skeletons of binary images a
defined by the notion of maximal disks.13 Based on this
notion, morphological skeletonization~MSK! is developed
and generalized1,14–20 to find skeletons of gray-scale im
ages. On the other hand, based on the notion of maxim
fuzzy disks, fuzzy medial axis transformation~FMAT! is
proposed to find the fuzzy medial axis of gray-sca
images.21,22 Although both MSK and FMAT originated
from the notion of maximal disks, the morphological ske
eton and the fuzzy medial axis of a gray-scale image
not the same. Therefore, it is our purpose in this pape
make a comparative study on MSK and FMAT. In ne
section, we will briefly review the concepts of MSK an
FMAT. In Sec. 3, we will compare them and explore the
relations. In Sec. 4, we will propose the translation metho
between the convex FMAT and the MSK of an image.
Sec. 5, we will show and discuss some experimental res
on constructing convex FMAT from the MSK. Finally, i
Sec. 6, we will make some conclusions.

2 Morphological Skeletonization and FMAT

2.1 Morphological-Skeletonization MSK

The four basic morphological operations dilation, erosio
closing, and opening are usually denoted by%, *, d, and
s, respectively. Then the morphological skeleton SKB(X)
of a discrete binary imageX with respect to a discrete struc
turing elementB is defined1,15 as follows:

SKB
~n!~X!5@X*nB#\@~X*nB!sB#, n50,1,̄ ~1!

SKB~X!5 ø
n50

`
SKB

~n!~X!, ~2!

where ‘‘•\•’’ is the set difference operation, 0B is the
singleton consisting of the origin, and

;
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has

is
n
ro

uc

g
he
gi-

a
a

k

sks

y

.

of

Comparative study . . .

Downl
Moreover, the discrete imageX can be reconstructed from
its morphological skeleton by

X5 ø
n50

`

~SKB
~n!~X! % nB!. ~3!

For eachn, SKB
(n)(X) is thenth skeleton subset ofX. If B is

the unit disk centered at the origin, thenSKB
(n)(X) consists

of the centers of maximal disks inX with radiusn.
The earlier morphological skeleton representation

been generalized to gray-scale images16 and l images.23 In
order to simplify its comparison with fuzzy medial ax
transformation, we will make use of the following versio
of morphological skeletonization on gray-scale images p
posed by Maragos and Schafer.16 First, for any gray-scale
images f ,g:R2→(0,1, . . . ,L), the image difference off
andg, written asf \g, is defined by

~ f \g!~x!5H f ~x! if f ~x!.g~x!

0 otherwsie
. ~4!

Then for a gray-scale image and a symmetrical flat str
turing elementB, define~For a gray-scale imagef and a flat
structuring elementB, the dilation f % B and erosionf *B
are defined by (f % B)(x)5maxqPBf (x2q) and (f *B)
3(x)5minqPBf (x1q), respectively.!

SKB
~n!~ f !5~ f *nB!\@~ f *nB!sB#, ~5!

for n51,2, . . . , and

SKB~ f !5 ∨
n50

`
SKB

~n!~ f !. ~6!

As in binary case,f can be reconstructed by

f 5 ∨
n50

`
~SKB

~n!~ f ! % nB!. ~7!

For eachn, SKB
(n)( f ) is the nth skeletal subimage off

with respect toB. Usually, the symmetrical flat structurin
elementB is chosen to be the unit disk centered at t
origin. In such case, we will simply denote the morpholo
cal skeleton and skeletal subimages off by SK(f ) and
SK(n)( f ), n50,1,2, . . . , respectively. Note that for eachn,
the result SK(n)( f )(x).0 indicates a maximal disk with
radiusn at level SK(n)( f )(x) and centered atx. Maximal
disks with a common center can be stacked up to form
‘‘morphological disk.’’ By a morphological disk, we mean
gray-scale imagem such that the threshold setmt

5$xu f (x)>t% is a disk for each gray levelt. Then for each
p in the supportM f of SK(f ), the morphological diskmp

f

can be obtained by

mp
f 5 ∨

n50

`
~Sp

~n!
% nB!, ~8!

where the imageSp
(n) is defined to be
oaded From: http://electronicimaging.spiedigitallibrary.org/ on 04/28/2014 T
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Sp
~n!~q!5H SK~n!~ f !~p! if p5q

0 otherwise
, ~9!

for each q in R2. Note that ∨pPM f
Sp

(n)5SK(n)( f ) and

(mp
f ) t5øn50

` @(Sp
(n)) t % nB# is either an empty set or a dis

for each gray levelt. Further note that the imagef can also
be reconstructed from the morphological disksmp

f ,
pPM f .

Proposition 1. Let M f denote the support of SK(f ).
Thenf can be reconstructed from those morphological di
defined in Eq.~8!, i.e., f 5∨pPM f

mp
f .

Proof. From Eqs.~7! and ~8!, we have

∨
pPM f

mp
f 5 ∨

pPM f
∨

n50
~Sp

~n!
% nB!

5 ∨
n50

` ∨
pPM f

~Sp
~n!

% nB!

5 ∨
n50

`
~~ ∨

pPM f
Sp

~n!! % nB!

5 ∨
n50

`
~SK~n!~ f ! % nB!

5 f .

Thus,f can be reconstructed frommp
f ’s.

Example 1. Let f 1 be a one-dimensional signal given b

p ... 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ..

f 1 ... 0 1 3 5 7 9 6 3 6 9 7 5 3 1 0 ...

and letB be the flat structuring element given by~21, 0, 1!.
All the intermediate results needed to find the skeleton
f 1 are listed

The morphological skeletal subimages SKh
(n)( f 1) are ob-

tained to be

Then the morphological disks off 1 can be expressed as
Journal of Electronic Imaging / January 2002 / Vol. 11(1) / 39
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2.2 Fuzzy-Medial-Axis Transformation (FMAT)

Based on the notion of fuzzy disks, Pal and Rosenfe21

define FMAT for gray-scale images. FMAT generalizes t
medial axis transformation for binary images to fuzzy su
sets of a metric space. LetD be a metric space with metri
d and letf be a fuzzy subset ofD. For eachpPD, a fuzzy
disk gp

f centered atp is a fuzzy set defined by

gp
f ~q![ inf

d~p,r !5d~p,q!

f ~r !. ~10!

Remind that a pointpPD is called a local maximum off if
p has no neighborsq such thatgp

f ,gq
f . The fuzzy medial

axis of f is defined by the setD f of such local maxima off,
and$gp

f upPD f% is called the FMAT off.
One important property of FMAT is that the origina

image can be completely reconstructed from its FMA
However, to record the FMAT information it needs a lot
memory, sometimes even more than to store the orig
image. Pal and Wang22 propose a redundant removal alg
rithm to tackle this problem. Their algorithm yields the
called reduced FMAT~RFMAT!.

The FMAT has a ‘‘convex’’ definition, if we define the
FMAT only using the maximal convex fuzzy disks. By
convex fuzzy disk, we mean a fuzzy diskgp such that for
all q1 , q2 with d(p,q1),d(p,q2) we have gp(q1)
>gp(q2). Now, given an imagef. For eachpPD, a con-
vex fuzzy diskcp

f centered atp is defined by

cp
f ~q!5H gp

f ~q! if gp
f ~r !5 inf

d~p,s!<d~p,r !

gp
f ~s!,

;r with d~p,r !<d~p,q!

0 otherwise

.

Let Cf be the set of allpPD such thatcp
f are maximal

among all convex fuzzy disks off. Then the setCf is called
the convex fuzzy medial axis off and$cp

f upPCf% is called
the convex fuzzy medial axis transformation~CFMAT! of f.

Proposition 2. All morphological disks of an imagef are
convex fuzzy disks.

Proof. Let mp
f be a morphological disk off centered atp.

First, we note that for any pointsq1 andq2 with d(p,q1)
,d(p,q2), we have

mp
f ~q1!5 ∨

n50

`
~Sp

~n!
% nB!~q1!5SKd~p,q1!~p!<SKd~p,q2!~p!

5 ∨
n50

`
~Sp

~n!btnB!~q2!5mp
f ~q2!.

This concludes thatmp
f is a convex fuzzy disk.
40 / Journal of Electronic Imaging / January 2002 / Vol. 11(1)
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Since conventional and morphological disks are conv
in the rest of this paper, we will restrict our discussion
comparing MSK and CFMAT.

Example 1 (continued). The maximal fuzzy disks and
maximal convex fuzzy disks forf 1 are

3 Relations between Morphological
Skeletonization and Fuzzy Medial
Axis Transformation

Similarities between morphological skeletonization a
FMAT are that~i! both of them are derived from the con
cept of ‘‘maximal disks;’’~ii ! both of them can be used t
reconstruct the original image; and~iii ! both the support of
SK( f ) and the setCf of an imagef contain all the peaks o
f. By a peak of f, we mean a pixelp such that f (p)
. f (q), for all q(Þp) in a neighborhood ofp. Similarity
~iii ! can be shown as follows. Suppose there exists a pep
which does not belong to the CFMAT off. Then there must
exist a convex fuzzy disk cq

f such that cq
f

5( f (q), f (q1),...,f (qk)5 f (p),...,f (qn)) for some inte-
gersk andn with 0,k<n. Let u be a neighbor ofp with
disk(q,u)5k21. By the definition of convex fuzzy disks
f (u)> f (qk21)> f (p). This contradicts to the assumptio
thatp is a peak. Therefore, the setCf contains all the peaks
of f. Similarly, since morphological disks are convex, t
setM f also contains all the peaks off.

However, they are some dissimilarities. First, the dis
cp

f ’s in CFMAT are all maximal fuzzy convex disks, whil
the morphological disksmp

f ’s are not. For instance, in ex

ample 1, we havem5
f 1,c5

f 1. That is,m5
f 1 is not a maximal

fuzzy convex disk. Next, the convex fuzzy medial ax
transformation does not satisfy the ‘‘threshold-max sup
position,’’ while the morphological skeletonization does.

Let C be an operation on gray-scale images. For a
binary imageA,R2, if we define

xA~x!5H L if xPA

0 otherwise

thenC can be applied to binary images by defining

C~A![C~xA!.

Now, an operationC on gray-scale images is said t
satisfy the threshold-max superposition1,24,25 if for any
gray-scale imagef:

C~ f !~x!5max$tuxPC~ f t!%,

for all pixel x. Wheref t5$xu f (x)>t% is the threshold set o
f at level t, t51,2, . . . ,L. Before proving the following
erms of Use: http://spiedl.org/terms
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proposition, we should note that for any sequence of gr
scale imagesf i ,i PI :

∨
i PI

f i~x!5max$tuxP ø
i PI

~ f i ! t%.

Proposition 3. The morphological skeletonization de
fined in formula~4!–~6! obeys thethreshold-max superpo
sition. That is

SK~ f !~x!5max$tuxPSK~ f t!%.

Proof. First of all, we claim that SK(n)( f )(x)5max$tux
PSK(n)( f t)% for eachn.

Let SK(n)( f )(x)5s.
Case 1. Supposes50. Then

~ f *nB!~x!5@~ f *nB!sB#~x!.

Let (f *nB)(x)5@( f *nB)sB#(x)5s8. Then we ob-
serve that

xP~ f *nB! tù@~ f *nB!sB# t , for all 0<t<s8,

and

x¹~ f *nB! tø@~ f *nB!sB# t , for all t.s8.

Thus

x¹~ f *nB! t\@~ f *nB!sB# t , for all t.

Since (f *nB) t5( f t*nB) and @( f *nB)sB# t

5( f t*nB)sB, we have

x¹~ f t*nB!\@~ f t*nB!sB#5SK~n!~ f t!, for all t.

Therefore, max$tuxPSK~n!~ f t!%505SK~n!~ f !~x!.

Case 2. Supposes.0. In this case, we have

~ f *B!~x!.@~ f *nB!sB#~x! and ~ f *nB!~x!5s.

Let @( f *nB)sB#(x)5u. Then we observe that

xP~ f *nB! tù@ f ~ f *nB!sB# t , for all 0<t<u,

x¹~ f *nB! tø@~ f *nB!sB# t , for all t.s,

and

xP~ f *nB! t and x¹@~ f *nB!sB# t , for all u,t<s.

Thus

xP~ f *nB! t\@~ f *nB!sB# t , for all u,t<s

and

x¹~ f *nB! t\@~ f *nB!sB# t , for all t<u or t.s.

In other words

max$tuxP~ f *nB! t\@~ f *nB!sB# t%

5max$tuxP~ f t*nB!\@~ f t*nB!sB#%

5max$tuxPSK~n!~ f t!%5s.
oaded From: http://electronicimaging.spiedigitallibrary.org/ on 04/28/2014 T
-Therefore, we have

max$tuxPSK~n!~ f t!%5@SK~n!~ f !#~x!

xP~ f t*nB!\@~ f t*nB!sB#, for all u,t<s.

Combining the earlier two cases, we conclude that

SK~n!~ f !~x!5max$tuxPSK~n!~ f t!%.

Next, since

SK~ f !~x!5 ∨
n50

`
SK~n!~ f !~x!5max$tuxP ø

n50

`
SK~n!~ f t!%

5max$tuxPSK~ f t!%,

it follows that the morphological skeletonization MSK sa
isfies the threshold-max superposition.

Finally, let us revisit example 1 again. In there, we ha
M f 1

5$4,5,7,9,10%.Cf 1
5$4,5,9,10%. It seems that CFMAT

of a gray-scale image contains fewer points than M
does. Unfortunately, this is not true in general as the f
lowing example shows.

Example 2. Let f 2 be a one-dimensional signal given b

p ... 0 1 2 3 4 5 6 7 8 9 10 ...

f 2(p) ... 0 1 1 1 1 2 3 4 3 2 0 ...

and letB be the structuring element same as given in
ample 1. Then using the same expression as example 1
skeletal subimages are

p ... 0 1 2 3 4 5 6 7 8 9 10 ...

SK~0! ( f 2) ... 0 4 0 ...
SK~1! ( f 2) ... 0 3 0 ...
SK~2! ( f 2) ... 0 2 0 ...
SK~4! ( f 2) ... 0 1 0 ...

The maximal morphological disks are

m5
f 25~1,1,1,1,1!, m7

f 25~4,3,2!.

However, the maximal convex fuzzy disks forf 2 are

c5
f 25~2,1,1,1,1!, c6

f 25~3,2,1,1!, f 7
f 25~4,3,2!.

Thus, in this example, we haveM f 2
5$5,7%,Cf 2

5$5,6,7%.

4 Translations Between CFMAT and MSK

In the previous section, we discussed the relationship
tween FMAT and MSK. As we have known, both FMA
and MSK can be used to reconstruct a given image. Th
Journal of Electronic Imaging / January 2002 / Vol. 11(1) / 41
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there exists an indirect transformation between CFM
and MSK. It is then interesting to ask whether there ex
a direct transformation from CFMAT to MSK or from
MSK to CFMAT.

4.1 Construct MSK Using Convex Fuzzy Medial
Axis Transformation

One of similarities mentioned in the beginning of the p
vious section is that both CFMAT and MSK contain all th
peaks of an imagef. In other words, all peaks are commo
skeleton points in the CFMAT and the MSK of an imagef.
Another observation is that MSK satisfies the thresho
max superposition. Then we can develop an algorithm
construct the MSK from convex fuzzy disk set. The ma
idea of this transformation algorithm is using the thresho
max superposition to decompose the image then com
the morphological skeleton points for each decompo
component. The algorithm is described as follows.

Algorithm A. Construct MSK from CFMAT.
Input. A convex maximum fuzzy disk set.
Step 1. Select the radius values that appear in the con

maximum fuzzy disk set. Then sort these values in
scending order and store the result in a queue.

Step 2. If the queue is empty then stop.
Otherwise, remove a valuer from the queue.
Step 3. Mark the points whose gray values are equal tr.

The marked and unmarked areas may be treated as a b
image.

Step 4. Apply the distance transformation18 u to the bi-
nary image.

Step 5. Select the points with the maximum distance
morphological skeleton points. A pointp with the local
maximum distanceu(p) is a morphological skeleton poin

and belongs to the skeletal subimage SK(u(p)21).
Step 6. For each convex fuzzy disk, change the valu

marked points as its next radius value.
Step 7. Go to step 2.
The following example is a one-dimensional case

illustrating the operation in algorithm A.
Example 3. Let f 1 be a one-dimensional signal andB be

the flat structuring element as given in example 1. T
maximal convex fuzzy disks forf 1 are

c4
f 15~7,5,3,1!, c5

f 15~9,6,3,3,1!,

c9
f 15~9,6,3,3,1!, c10

f 15~7,5,3,1!.

Then the step-by-step process of algorithm A is illu
trated in the following table.
42 / Journal of Electronic Imaging / January 2002 / Vol. 11(1)

oaded From: http://electronicimaging.spiedigitallibrary.org/ on 04/28/2014 T
e

x
-

ry

s

f

4.2 Construct CFMAT Using Morphological
Skeleton

Although the MSK and CFMAT possess many comm
center points of the image and the CFMAT has been use
construct the MSK. However, to construct the CFMAT b
MSK is not a straight forward. Since CFMAT is differen

Fig. 1 Test images.
erms of Use: http://spiedl.org/terms
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from MSK, one cannot expect to obtain the CFMAT just
using points in MSK. A concrete example is given as f
lows.

Example 4. Let f 3 be a two-dimensional signal given b

Using morphological skeletonization formula~3! and
~4!, the MSK of f 3 can be obtained. The skeletal subimag
are

Table 1 Computation time and memory required for MSK.

# skeleton
points

# gray
values Time used (s)

Shapes image 410 412 5.30

S image 2736 5021 0.17

Smoothed S image 1037 2024 0.17

TOOLS image 20 538 36 970 2.26

Smoothed TOOLS image 6987 12 277 2.28
oaded From: http://electronicimaging.spiedigitallibrary.org/ on 04/28/2014 T
Note that the blank denotes that the pixel’s gray va
equal to 0. We construct maximal convex fuzzy disks ce

Table 2 Time used for construct MSK from CFMAT.

Time used for
CFMAT (s)

Time used
for MSK (s)

Total time
used (s)

Shapes image 6.15 3.27 9.43

S image 0.16 1.51 1.67

Smoothed S image 0.60 1.28 1.88

TOOLS image 1.48 16.85 18.33

Smoothed TOOLS image 23.74 12.80 36.54
Table 3 Experiment results of the image S.

FMAT

FMAT
using

convex
disks

CFMAT

RFMAT
using

convex
disks

FMAT
produced

by
algorithm B

FMAT
produced

by
algorithm B
1redundant

removal
algorithm

# fuzzy disk 3233 2609 2261 2508 2261

# gray values 36 145 11 431 9565 10 946 9564

Time used for
FMAT or CFMAT

0.13 s 0.14 s 0.13 s

Time used for MSK 0.16 s 0.16 s

Time used for
redundant removal

0.03 s 0.01 s

Total time used 1.40 s 0.14 s 0.16 s 0.30 s 0.30 s
Journal of Electronic Imaging / January 2002 / Vol. 11(1) / 43
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Table 4 Experiment results of the image TOOLS.

FMAT

FMAT
using

convex
disks

(CFMAT)

RFMAT
using

convex
disks

FMAT
produced

by
algorithm B

FMAT
produced

by
algorithm B
1redundant

removal
algorithm

# fuzzy disk 24 677 19 317 16 841 18 601 16 840

# gray values 532 444 80 646 67 855 77 230 67 846

Time used for
FMAT or CFMAT

0.98 s 1.00 s 0.99 s

Time used for MSK 2.21 s 2.21 s

Time used for
redundant removal

0.20 s 0.04 s

Total time used 81.51 s 1.00 s 1.20 s 3.23 s 3.26 s
h

lue
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tered at these points and use them to build an image. T
built image is

We observe that the image we just built has gray va

Fig. 2 Outputs of CFMAT.
tronic Imaging / January 2002 / Vol. 11(1)
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is121 at the point~4, 6! @the left down corner is the origin~0,
0!# while the original gray value at this point is 170.

To find a convex FMAT of an image, some points mu
be added to the set MSK for keeping the reconstruct
property. Our approach is to check the sponsoring po
for MSK points. The concept of sponsoring points is pr
posed by Pal and Wang,22 and used to check the redun
dancy fuzzy disks, originally. If every point in a fuzzy dis
has more than one sponsoring point other than itself, t
this fuzzy disk is redundant and can be removed from
FMAT. In the current study, we use this representation
check whether the point sponsored by the other poin
Once the points without sponsoring point are found,
then find additional maximal convex fuzzy disks center
at these points. They, together with those centered at M
points, form a CFMAT. This CFMAT can be further re

Fig. 3 Outputs of algorithm B.
erms of Use: http://spiedl.org/terms
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duced by removing the redundant points. We summa
our approach in the following.

Algorithm B. Construct CFMAT from MSK.
Input. The morphological skeleton SK(f ). Let M f be

the support of SK(f ).
Step 1. Mark all morphological skeleton pointspPM f

as the centers of the fuzzy disks.
Step 2. If all morphological skeleton pointspPM f are

unmarked, then go to step 7. Otherwise, select one
marked skeleton pointq and unmark it.

Step 3. Radius521.
Step 4. Radius5radius11.
Step 5. If radius exceeds the object boundary then g

step 2.
Otherwise, compute the value

l 5 min
r P@sud~s,r !5radius#

max$SK~n!~r !un50,1,2,...,N%.

Step 6. If l less than the precedent one, then recordl in
the fuzzy disk center atq and go to step 4. Otherwise, go
step 2.

Fig. 4 RFMAT options.
oaded From: http://electronicimaging.spiedigitallibrary.org/ on 04/28/2014 T
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Step 7. Check each point inM f and mark its sponsoring
points. If there exist points with no sponsoring points, th
add these points to the setM f and find the corresponding
convex fuzzy disks centered at them.

Step 8.~Inclusion detection! Check eachp in M f . If the
fuzzy disk cp

f is contained in another fuzzy diskcq
f , then

the pointp is removed fromM f .
The set$cp

f upPM f% is the desired CFMAT off. This
algorithm is essentially the same as the algorithm propo
by Pal and Wang except that we use morphological skel
points to initialize an approximation for CFMAT.

Example 4. ~continued! Note that the pixel~4, 6! has no
sponsored points. Thus, we add~4, 6! to Cf and find the
maximal fuzzy convex diskc(4,6)

f 5(170,44,39).
Before ending this section, a one-dimensional exam

is used to illustrate the operation of algorithm B.
Example 5. Let f 1 be a one-dimensional signal andB

be the flat structuring element as given in example 1. T
morphological skeletal subimages forf 1 are shown in
example 1.

The translation results are

c4
f 15~7,5,3,1!, c5

f 15~9,6,3,3,1!,

c9
f 15~9,6,3,3,1!, c10

f 15~7,5,3,1!.

Based on algorithm B, we choose all of the morpholo
cal skeletal points as centers of the fuzzy disks. Then
sequentially check the radii to search the minimum g
values. For example, the coordinate 4 is a morpholog
Table 5 Experiment results of the smoothed image S.

FMAT

FMAT
using

convex
disks

(CFMAT)

RFMAT
using

convex
disks

FMAT
produced

by
algorithm B

FMAT
produced

by
algorithm B
1redundant

removal
algorithm

# fuzzy disk 1936 1573 602 966 602

# gray values 27 425 18 693 6202 10 752 6169

Time used for
FMAT or CFMAT

0.54 s 0.23 s 0.24 s

Time used for MSK 0.16 s 0.16 s

Time used for
redundant removal

0.98 s 0.15 s

Total time used 0.92 s 0.54 s 1.52 s 0.39 s 0.55 s
Journal of Electronic Imaging / January 2002 / Vol. 11(1) / 45

erms of Use: http://spiedl.org/terms



Jan and Hsueh

Downl
Table 6 Experiment results of the smoothed image TOOLS.

FMAT
FMAT using convex

disks (CFMAT)
RFMAT using
convex disks

FMAT produced by
algorithm B

FMAT produced by
algorithm B1redundant

removal algorithm

# fuzzy disk 14 112 11 503 3101 6412 3075

# gray values 36 998 216 152 51 083 118 979 50 503

Time used for FMAT or CFMAT 18.04 s 5.76 s 5.65 s

Time used for MSK 2.21 s 2.21 s

Time used for redundant removal 46.08 s 7.01 s

Total time used 46.06 s 18.09 s 64.13 s 8.00 s 14.88 s
isk
are
s is
dis
vex

t
age

-
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ar
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rn
rcle
age

tion
be
in
r o
ica
skeletal point, and is selected as the center of a fuzzy d
The minimum gray values corresponding to radii 1, 2, 3
5, 3, 1, respectively. The search for minimum gray value
finished when the radius equal to 4 which exceeds the
tance from point 4 to the object boundary. Thus, the con
fuzzy disk center at 4 isc4

f 5(7,5,3,1).

5 Experimental Results and Discussions

For demonstrating the proposed methods, we apply them
the test images presented in Fig. 1. The sizes of test im
‘‘S,’’ ‘‘Shapes,’’ and ‘‘TOOLS’’ are 54369, 2563256, and
275393, respectively. All of them are 8-bits gray level im
ages. The Shapes is a synthesis image. The gray valu
the background are 0, the ellipse at the up-left corner
100, the rectangle are 180, the outer square at the
bottom corner are 60, the inner square at the same co
are 160, the circle are 200, and the ellipse inside the ci
are 230. The simulation programs are written in C langu
and run on a Pentium II 300 over clock to 450 PC.

In the experiments, we observed that the computa
times for MSK are less than the CFMAT, and MSK can
obtained from the CFMAT using algorithm A proposed
Sec. 4.1. Table 1 presents the computation time, numbe
skeleton points, and storage required for the morpholog

Fig. 5 (a) CFMAT output of smoothed image S; (b) output of
smoothed image S derived from algorithm B.
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Fig. 6 (a) CFMAT output of smoothed image TOOLS; (b) output of
smoothed image TOOLS derived from algorithm B.
erms of Use: http://spiedl.org/terms



to
ets
he
ton

of
are
e-
m
e
o-

the

n

od

Comparative study . . .

Downl
Fig. 7 Fuzzy disk size distribution for CFMAT.
oaded From: http://electronicimaging.spiedigitallibrary.org/ on 04/28/2014 T
skeletonization of each image. In this case, we have
record the indexes of the morphological skeleton subs
for each gray value in MSK. For example, the results of t
morphological skeletonization of image S are 410 skele
points and 412 gray values accompany with 412 indexes
skeleton subsets. The experiment results of algorithm A
shown in Table 2. According with these experimental r
sults, algorithm A spends more time to construct MSK fro
the CFMAT than to compute MSK from the original imag
directly. Thus, we will concentrate our discussion on alg
rithm B proposed in section 4-2.

Tables 3 and 4 present the experimental results of
test images. For the image S, the skeleton points~i.e., cen-
ters of disks! produced by morphological skeletonizatio
are 2736 points~see Table 1!. The output of algorithm B is
2508 points. The size of the CFMAT yielded by the meth

Fig. 8 Outputs derived from combination of algorithm B and redun-
dant removal algorithm.
Table 7 Experiment results of the image Shapes.

FMAT
FMAT using convex

disks(CFMAT)
RFMAT using
convex disks

FMAT produced by
algorithm B

FMAT produced by
algorithm B1redundant

removal algorithm

# fuzzy disk 1100 1100 238 410 238

# gray values 37 213 37 213 6979 11 936 6967

Time used for FMAT or CFMAT 4.91 s 1.28 s 1.28 s

Time used for MSK 5.18 s 5.18 s

Time used for redundant removal 97.25 s 3.46 s

Total time used 4.90 s 4.89 s 102.17 s 6.48 s 9.43 s
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of Pal and Wang21 is 2609 and the number of recorded gr
values is 11431. Figures 2 and 3 present the results of
MAT and algorithm B, respectively. The RFMAT output
2261 points~disks! and 9565 gray values. The RFMA
outputs of test images and their smoothed versions
shown in Fig. 4. Algorithm B combines the redundant
moval algorithm yields 2261 fuzzy disks and records 95
gray values. For this image, the experiment results rev
that the method of Pal and Wang21 is faster than algorithm
B, even when the redundant removal algorithm is appli
The outputs of both methods are almost the same after
redundant removal algorithm is applied. Analogy results
the image TOOLS are shown in Table 4. It should be no
that the output images just present the skeleton points. E
skeleton point keeps the original gray value, and the n
skeleton point presents the blank. For the sake of cla
the image S and the results of the image S are enlarged
times of their original sizes. The results of the Shapes
age are thresholded for the same reason.

For smoothed images, the computation time increase
the method of Pal and Wang. Tables 5 and 6 show
experiment results for this situation. The outputs of C
MAT and algorithm B for the smoothed test images a
shown in Figs. 5 and 6, respectively. A smooth area in
image will result in a large disk. For example, the radius
the largest fuzzy disk found by CFMAT in the image S
14 while that is 27 in the smoothed version. Figure 7 p
sents the convex fuzzy disk size distributions of the S a
TOOLS, and their smoothed images. It confirms th
smooth areas trend to produce larger convex fuzzy di
Then the method of Pal and Wang has to spend more c
putation time for disk inclusion detection. Hence, in t
case of smoothed images, algorithm B is usually faster t
their method. This conclusion is confirmed again by t
experiment results of the image Shapes shown in Tabl
The time used for RFMAT is longer than the others. Mo
of the time is spent in the redundant removal algorith
since it checks a large mount of points for each 1100 dis

We then apply the redundant removal algorithm22 to the
output of algorithm B. The experiment results for this sit
ation are shown in Fig. 8. Although it requires more co
putation time than the method of Pal and Wang for t
images, it requires less for the smoothed images. The
periment results reveal that the combination algorithm
and the redundant removal algorithm is effective for bo
original and smoothed image. For smoothed images,
combination is especially fast.

6 Conclusions

In this paper, we discuss the similarities and dissimilarit
of MSK and FMAT and propose two algorithms to transla
between CFMAT and MSK. The MSK of an image can
constructed by the CFMAT. However, the CFMAT cann
always be constructed solely by the MSK. Fortunately, w
the help of the concept of the sponsor, we can const
CFMAT from the MSK with adding the points withou
sponsored points. The computation time of the method p
posed by Pal and Wang depends on the sizes of sm
regions in an image, however, that of MSK depends o
on the image size. Thus, algorithm B is very effective
smoothed images. The experimental results also reveal
48 / Journal of Electronic Imaging / January 2002 / Vol. 11(1)
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the combination of algorithm B and the redundant remo
algorithm can produce the convex FMAT for test imag
and their smoothed versions, effectively.
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