1-Rotationally Resolvable 4-Cycle
Systems of 2K,

Hung-Lin Fu,' Miwako Mishima?

' Department of Applied Mathematics, National Chiao Tung University,
1001 Ta Hsueh Road, Hsinchu, Taiwan, Republic of China,

E-mail: hlfu@math.nctu.edu.tw

?Department of Information Science, Gifu University, 1-1 Yanagido, Gifu 501-1193,
Japan, E-mail: miwako@info.gifu-u.ac.jp

Received October 18, 2000; revised October 18, 2001

Abstract: In this article, it is shown that there exists a 1-rotationally resolvable 4-cycle system
of 2K, if and only if v = 0 (mod 4). To prove that, some special sequences of integers are
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1. INTRODUCTION

For a graph G, let V(G) be the vertex-set of G and C be a collection of cycles of
length m (m-cycles) whose edges partition the edges of G. Then the pair (V(G),C)
is called an m-cycle system of G. An m-cycle system of AK, is also referred to as a
A-fold m-cycle system of order v. Here AK, is the graph on v vertices in which each
pair of vertices is joined by exactly A\ edges.

Let a pair (V,C) be an m-cycle system of AK,, and II be an automorphism group of
the m-cycle system (V,C), i.e., a group of permutations on v vertices leaving the
collection C of cycles invariant. If there is an automorphism 7 € II of order v, then
the m-cycle system (V,C) is said to be cyclic. If 7 is an automorphism of order v — 1
with a single fixed point, then the system (V,C) is said to be 1-rotational. For
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a l-rotational m-cycle system of AK,, the vertex-set V can be identified with
{0} UZ,4, i.e., a fixed point co and the residue group of integers modulo v — 1.
In this case, the automorphism can be represented by

mioo—00,i—i+ 1 (mod (v—1)) or 7= (c0)(0,1,...,9—2)

acting on the vertex-set V = {oo} U Z,_;.

Let C € C be a cycle of a 1-rotational m-cycle system of AK,, (V,C). A cycle orbit
of C is defined by {C + y:y € Z,_,}. The length of a cycle orbit is its cardinality. A
cycle orbit of length v — 1 is said to be full, otherwise short. A base cycle of a cycle
orbit O is a cycle C € O which is chosen arbitrarily. Any 1-rotational m-cycle system
is generated from base cycles.

For an m-cycle system of AK,, (V,C), if the collection C of cycles can be
partitioned into s(= A(v — 1)/2) 2-factors (in terms of block designs, resolution
classes or parallel classes), Ry, . . ., Ry, then the system (V,C) is said to be resolvable
or to have resolvability and R = {Ry,..., R} is called a resolution of the system.
Obviously, for the existence of a resolvable m-cycle system of AK,, m must divide v
and A(v — 1) =0 (mod 2).

A l-rotational m-cycle system is said to be l-rotationally resolvable when it
admits ™ = (00)(0,1,...,v — 2) as an automorphism leaving a resolution invariant.
A base resolution class can be defined in a manner similar to a base cycle.

For m-cycle systems of AK,, v is said to be (m, \)-admissible if m divides
Av(v—1)/2, AMv—1) =0 (mod 2), and either v =1 or v > m. The spectrum
problem for m-cycle systems of AK, has been investigated by many people (for the
history of the problem, see [5]). Rodger [7] surveyed the existence results of m-cycle
systems of AK,, and those with several properties including resolvability. However, as
far as the authors know, necessary and sufficient conditions for an m-cycle system of
MK, with A > 2 to be 1-rotational or resolvable are not available.

In this article, concerning the case (m, \) = (4,2), we will show that there exists a
1-rotationally resolvable 4-cycle system of 2K, if and only if v = 0 (mod 4), by use
of extended Skolem sequences and some other similar sequences.

2. TRANSLATION OF THE PROBLEM

It is known that for any (4,2)-admissible v, i.e., v =0, 1 (mod 4), there exists a 4-
cycle system of 2K,,. For a 4-cycle system of 2K, to be resolvable, it is necessary that
4 divides v. On the other hand, by noting that any 1-rotational 4-cycle system of 2K,
consists of v/4 full cycle orbits, v = 0 (mod 4) is a necessary condition also for the
existence of a 1-rotational 4-cycle system of 2K,. Therefore we have the following.

Lemma 2.1. A necessary condition for the existence of a 1-rotationally resolvable
4-cycle system of 2K, is that v =0 (mod 4).

Here we should remark that a 1-rotationally resolvable 4-cycle system of 2K, is
closely related to a Z-cyclic whist tournament Wh(v) with v = 0 (mod 4) (see [1] for
the definition of a (Z-cyclic) whist tournament). If the condition on partner pairs of a
Z-cyclic Wh(4n) is omitted, then the design is regarded as a 1-rotationally resolvable
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4-cycle system of 2K4,. Therefore, the existence of a Z-cyclic Wh(4n) implies that of
a l-rotationally resolvable 4-cycle system of 2Ky, although the converse is not true
in general. In fact, the known result (Theorem 53.8 in [1]) on a Z-cyclic Wh(4n)
ensures at least the following.

Lemma 2.2. There exists a 1-rotationally resolvable 4-cycle system of 2Ky, when
n <16.

A k-extended Skolem sequence of order t is a sequence (sy,...,s2+1) of 2t + 1
integers in which s, =0 and for each j € {1,...,t}, there exists a unique i €
{1,...,2t + 1}\{k} such that s; = s;;; = j. A k-extended Skolem sequence of order
t is also represented as a collection of ordered pairs {(a;,b;):1 < j <t, bj —a; =j}
with U_ {a;, b} = {1,2,...,2t + 1}\{k}. If k =1+ 1, the sequence is often re-
ferred to as a Rosa sequence or a split Skolem sequence (see [4] and [8]). Baker [2]
settled the spectrum of k-extended Skolem sequences of order .

It is well-known that base blocks for cyclic Steiner triple systems can be obtained
from Skolem sequences and split Skolem sequences. For more details, the reader may
see [9]. Skolem sequences and their generalizations are quite useful to get other
combinatorial designs as well (see [2], [3], [6], etc.).

In this section, we will show that extended Skolem sequences with certain
properties can also provide base cycles for 1-rotationally resolvable 4-cycle systems
of 2K,,, which is, in fact, a primary idea for proving the sufficiency of Lemma 2.1.

In what follows, a k-extended Skolem sequence of order ¢ is denoted by k-ext S,
for simplicity.

Theorem 2.3 ([2]). There exists a k-ext S;,1 < k < 2t + 1, if and only if either

(1) kis odd and t = 0 or 1 (mod 4); or
(2) kis even and t =2 or 3 (mod 4).

Now, we shall show how to utilize a k-ext S, to obtain a 1-rotationally resolvable
4-cycle system of 2Ky, 4. Since any 1-rotationally resolvable 4-cycle system of 2Ky, 4
consists of 7+ 1 full cycle orbits, it suffices to find the 7+ 1 base cycles which
partition the vertex-set of Ka;4.

It follows from Theorem 2.3 that there exist a (¢ + 1)-ext S, if = 0,3 (mod 4)
and a t-ext S; if t = 1,2 (mod 4). It should be mentioned that the necessary and
sufficient condition for the existence of a (¢ + 1)-ext S; was first shown by Rosa [8]
in 1966. By using these facts, we will present two constructions for I-rotationally
resolvable 4-cycle systems of 2Ky;.4 depending on the value of ¢.

Construction I (When r = 0,3 (mod 4)). Let {(a;,b;) : 1 < j<t}bea (r+ 1)-ext
S; and take 7+ 1 4-cycles as follows:

{(2a; — 1,2b; — 1,24;,2b;) : 1 < j < 1} U{(00,0,2 + 1,2 4 2)}. (2.1)

Then it is easily verified that (2.1) can be the set of base cycles (and thus the base
resolution class) for a 1-rotationally resolvable 4-cycle system of 2Ky, 4.

Example 2.4. When ¢t = 7. The sequence (5,3,4,7,3,5,4,0,6,2,7,2,1,1,6) is an
8-ext S7, which is equivalently expressed by the collection {(13,14), (10, 12), (2,5),
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(3,7),(1,6),(9,15),(4,11)}. Then the set of base cycles of the form (2.1) for a
1-rotationally resolvable 4-cycle system of 2K3, will be as follows:

{(25,27,26,28), (19,23,20,24), (3,9, 4, 10), (5, 13,6, 14),
(1,11,2,12), (17,29, 18,30), (7,21,8,22), (00,0, 15, 16)}.

Construction II (When ¢ = 1,2 (mod 4)). Assume that {(aj,b;): 1 <j<t}isa
t-ext S; satisfying the condition (a;,b;) = (¢ + 1,2t + 1). This time, take ¢ + 1 base
cycles in the following way:

{(20j— 1,2bj— 1,20],2[7]') 1< j<tr— 1}
U{(0,2t,4t + 1,2t — 1), (00,2t + 1,21 + 2,4t + 2)}. (2.2)

Then it is straightforward to check that (2.2) is the set of base cycles (and thus the
base resolution class) for the desired 4-cycle system.

Example 2.5. When = 6. The collection {(10,11),(2,4),(9,12),(1,5),(3,8),
(7,13)} is a 6-ext Se containing the pair (z + 1,27 + 1). It is remarked that the 6-ext
Se is also expressed as the sequence (4,2,5,2,4,0,6,5,3,1,1,3,6). According to
(2.2), the set of base cycles for a 1-rotationally resolvable 4-cycle system of 2K5g can
be given as follows:

{(19,21,20,22),(3,7,4,8), (17,23, 18,24), (1,9, 2, 10),
(5,15,6,16),(0,12,25,11), (00, 13, 14,26)}.

We now know that by letting v = 4z + 4, the existence problem for 1-rotationally
resolvable 4-cycle systems of 2K, can be translated to that for suitable extended
Skolem sequences of order ¢. That is, the existence of a 1-rotationally resolvable 4-
cycle system of 2K, when v = 0,4 (mod 16) is equivalent to that of a (¢ + 1)-ext S,
when t = 3,0 (mod 4), and so is the cases v = 8,12 (mod 16) if there exists a t-ext
S; satisfying the required condition in Construction II when t = 1,2 (mod 4).

3. WHEN v= 0,4 (mod 16)

Since the existence of a (¢ + 1)-ext S; when = 0,3 (mod 4) implies that of a
1-rotationally resolvable 4-cycle system of 2K, when v = 4,0 (mod 16), Theorem
2.3 and Construction I ensure a half of the sufficiency of Lemma 2.1.

Proposition 3.1. There exists a 1-rotationally resolvable 4-cycle system of 2K,
whenever v = 0,4 (mod 16).

4. WHEN v= 38,12 (mod 16)

Although Theorem 2.3 assures the existence of a t-ext S; when r = 1,2 (mod 4), it
does not guarantee that the sequence satisfies the condition assumed at the beginning
of Construction II. That means, if only we can show the existence of a t-ext S; which
includes the pair (f+ 1,2r+ 1) when # = 1,2 (mod 4), then the other half of the
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sufficiency of Lemma 2.1, i.e., the cases v = 8,12 (mod 16), will be proved. Actually
it suffices to care for ¢ > 16, since we have Lemma 2.2. However, the existence
problem of a t-ext S, satisfying the required condition is of interest in its own right
and therefore we will investigate it for all # > 1 in this section.

Before going into the discussion, we will give a couple of definitions which were
brought by Baker [2] as generalizations of an extended Skolem sequence. Those se-
quences will be useful in constructing the required r-ext S;.

For odd n, a k-ext O, is a sequence (s, ..., S,+2) of n + 2 integers, s = 0 and all
the remaining entries odd with the property that for every j € {0,...,(n—1)/2},
there exists a unique i € {1,...,n+2}\{k} such that 5; = s;10j41 = 2j + 1. Baker
[2] proved that a 3-ext O, exists for any odd n > 5.

A{p,q}-extS, forp,q € {1,...,2m+ 2} is asequence (sy,. .., Syut2) of 2m + 2
integers satisfying that s, = s, = 0 and for every j € {1,...,m}, there exists a unique
ie{l,...,2m+2}\{p,q} such that s; = s5;;; = j. Of course, we may write these
two sequences as collections of ordered pairs as we did in Section 2.

The following technique will also be helpful as it is in [2]: a sequence can be
doubled and used to fill a sequence of either even or odd positions in a larger sequ-
ence. For example, (1, 1,2,3,2,0, 3) can be doubled to give (2,-,2,-,4,-,6,-,4,-,0,-,6).

Let (s1,...,8011) be the required f-ext S;. Since s,.; and s, are fixed as
assumed in Construction II, i.e., s, = 55,11 = ¢, we can describe the existence problem
of such a t-ext S; as that of a {r,#+ 1}-ext S,_; by omitting s5,,; and putting
si+1 = 0. Now, partition 27 — 2 entries {s;:i=1,...,t—1,¢4+2,...,2t} of the
{t,1+ 1}-ext S,_; into two subsets

Si={s1,...,81} and S = {sp42,...,5}

of size t — 1 each. We will look at the cases t = 1 and 2 (mod 4) independently and
will fix some entries in the {z,7 + 1}-ext S,_; beforehand at which certain integers
are allocated. In what follows, conforming to the expression as in [2], we say that j is
in (i,i +j), or, just that the sequence contains the pair (i,i + j), if s; = siy; = Jj.

Case I. When t =2 (mod 4). Let t =4n+ 2 for n > 1 and fix 2n — 1 ordered
pairs of the {z,7+ 1}-ext S,_; as follows:

2n+34+rin(dn—1-2r,6n+2—-r), 0<r<2n-2. (4.1)

Note that s4,,—1 -2, € S1 and sep+2—r € Sz. Then the 4n + 4 remaining entries in S} and
S,, more precisely, the 2n + 2 entries sy, 52,84, .., 8402, S4n, S4n+1 in S and the
2n 4 2 consecutive entries Se,i3,---,S8:44 10 Sy, are left for the 2n + 2 integers,
1,...,2n+ 2, to be allocated.

Case II. Whenr=1 (mod 4). Let t =4n+ 5 for n > 1 and fix 2n + 2 ordered
pairs of the sequence in the following way:
2n+3 in (4n+4,6n+7);
2n+4 in (4n+2,6n+ 6);
2n+5 in (4n+3,6n+ 8);
2n+6+r in (4n—1-2r6n+5—-r), 0<r<2n-2. (42)
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Again 4n + 4 entries remain for the 2n + 2 integers, 1,...,2n + 2, to be allocated.
In this case, the same 2n + 2 entries as in Case I are left in S| and the 2n + 2
consecutive entries Sg,19, - . ., Sg, 14 are left in S,.

Now, it is turned out that the two cases I and II eventually lead to the same
allocation problem.

Lemmad.1. Forn > 1, let J| and J, be two disjoint sets of n + 1 integers each such
that J; UJ, = {1,...,2n+ 2}. If there exist

(a) a sequence A= (ay,...,0uny1) of 4n+1 integers in which «az =
Qs == -3 = aqp—1 = 0 and for each j € J,, there exists a unique
i such that i,i+j€{l,...,4n+ 1}\{3,5,...,4n—3,4n— 1} and «; =
Qiyj = j; and

(b) a sequence B = (01,...,0mi2) of 2n+ 2 integers in which for each j € J,,
there exists a unique i € {1,...,2n + 2} such that §; = B =],

then there exists a t-ext S, containing the pair (t + 1,2t + 1) whenever t > 6 and
t=1,2 (mod 4).

Note that the odd positions, except the Ist and the (4n + 1)-th entries, of the
sequence .4 are supposed to be filled with (4.1) or (4.2). Then to prove the other half
of the sufficiency of Lemma 2.1, we have only to show the existence of the sequences
A and B of Lemma 4.1, if we admit the setting of Cases I and II.

Here, suppose that for the sequence A,

2n—3 in (1,2n—2);

4.3
2n+1 in (2n,4n+1), (4.3)

and all the remaining entries at even positions are even. This means that finding
a proper allocation for those even positions of A is equivalent to finding a se-

quence A" = (a},...,a},) of 2n integers in which o/, | = o/, = 0 and for each j of
suitable n — 1 integers in {1,...,n+ 1}, there exists a unique i € {1,...,2n}\
{n — 1,n} such that o = aj,; = j. That is, if only there exists such a sequence A,

then it will be doubled and combined with (4.3) to give the desired sequence A.
It may be mentioned that the required property for the sequence A’ is quite similar
to that for a {m,m + 1}-ext S,,. It differs only on the range of integers j to be
allocated.

Theorem 4.2. Whenever m > 2, there exists a sequence (si, ..., Sami2) of 2m+2
integers such that s, = sy+1 = 0 and there exists a unique i € {1,....2m+2}\
{m,m + 1} satisfying s; = s;; = j for each

(Hhje{l,....m—1,m+2} ifm=0,1 (mod 4); or
2 je{l,....m—=2,mm+2} ifm=23 (mod4).
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Proof. Case1l. m =0 (mod 4). Let m =4M. For M > 2, put
4M +2 in (2M,6M + 2);

M —1 in (4M +2,6M + 1);
2r+1 in (6M+1—r,6M+2+7r), 1<r<M-2
(6M+2—r,6M+3+7r), M<r<2M-1;
2r in M —r,2M+7r), 1<r<2M -1,
1 in (7M +1,7M + 2); and

0 at 4M and 4M + 1.
For M = 1, the desired sequence is given by (6,1,1,0,0,3,6,2,3,2).
Case 2. m=1 (mod 4). Let m=4M + 1. For M > 1, put
AM+3 in (2M +1,6M +4);

M 41 in (M +2,4M + 3);
2r+1 in CM+1-r2M+2+7r), 1<r<M-1,
M —r2M +1+7r), M+1<r<2M-1;
2r in (6M +4 —r,6M +4+r), 1<r<2M;
1 in (M,M+1); and

0 at 4M + 1 and 4M + 2.
Case 3. m =2 (mod 4). Let m =4M + 2. For M > 2, put
AM+4 in (2M + 1,6M + 5);

in

M —1 in (2M +2,4M + 1);
2r+1 in CM+1—-r2M+2+7r), 1<r<M-2;
QM —r2M +147), M<r<2M—1;
2r in (6M+5—r,6M+5+7r), 1<r<2M+1;
(

M+ 1,M +2); and
0 at 4M + 2 and 4M + 3.

For M =0 and 1, the desired sequences are given by (4,0,0,2,4,2) and
(8,1,1,4,6,0,0, 4,8,3,6,2,3,2), respectively.

Case 4. m =3 (mod 4). Let m = 4M + 3. For M > 2, put
AM+5 in (2M +1,6M + 6);

2M +3 in (4M +2,6M +5);
2r+1 in (6M+5—r,6M+6+7r), 1<r<M;
(6M+6—r,6M+7+r), M+2<r<2M+1;
2r in 2M4+1—-r2M+1+7r), 1<r<2M;
in (7M +7,7M + 8); and

0 at 4M + 3 and 4M + 4.
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For M =0 and 1, the desired sequences are given by (5,3,0,0,3,5,1,1) and
(4,2,9,2,4,5,0,0,7,3,5,9,3,1,1,7), respectively. O

It should be remarked that to obtain the sequence .A’, Theorem 4.2 can be applied
withm =n—1.

We will need a companion result to Theorem 4.2 for the sequence B in
Lemma 4.1.

Theorem 4.3. Whenever n > 3, there exists a sequence (s1,...,Sm,12) of 2n+2
integers such that there exists a unique i € {1,...,2n+ 2} satisfying s; = si1j = j for
each

() je{,3,....2n—7,2n—5,2n —2,2n — 1,2n} ifn=1,2 (mod 4); or
@) je{l,3,...2n1—7.2n—5,2n—4,2n— 1,2n} ifn=0,3 (mod 4).

Proof. Casel1l. n=1,2 (mod 4). For n > 3 (thus n > 5), put

2n in (2,2n+2);

2n—1 in (1,2n);

2n—2 in (3,2n+1); and

2r+1 in (n+1—-rn+2+r), 0<r<n-3.

Case 2. n=0,3 (mod 4). When n = 3 and 4, the required sequences are given
by (5,6,1,1,2,5,2.6) and (7,8,4,1,1,3,4,7,3,8), respectively. For n > 5 (thus
n>7), put 2n in (2,2n 4 2) and 2n — 1 in (1, 2n). Since there exists a 3-ext O, for
any odd p > 5 (see Remark of Lemma 2 in [2]), there exists a 3-ext (,,_5 whenever
n > 5. Fill the 3-ext Oy,_5 in (s3,...,52,—1). Then (s3,...,52,-1) consists of odd
integers 2r + 1,0 < r < n — 3, and 55 = 0. Thus by putting 2n — 4 in (5,2n + 1), the
desired sequence can be obtained. O

In consequence of Lemma 4.1, Theorems 4.2 and 4.3, the existence of a t-ext
S, satisfying the condition required in Construction II is guaranteed whenever
t=1,2 (mod 4) and ¢ > 14. This result, together with Lemma 2.2, proves the other
half of the sufficiency of Lemma 2.1. But for our interest, we will further investigate
the existence of a r-ext S, containing the pair (r + 1,27 + 1) for the rest cases, i.e.,
t=1,2,5,6,9,10, and 13.

Lemma 4.4. When t = 6,9, 10, and 13, there exists a {t,t + 1}-ext S;_;.
Proof. When t = 6 and 9. For the case ¢t = 6, put
5 in (3,8); 4 in (1,5 3 in (9,12)"

2 in (2,4)% 1 in (10,11)™;
0O at 6and?7.
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For the case t = 9, the pairs with * are used as they are, the pairs (x,y)™ are replaced
by (x,y) + 6, and the rest are given as follows:

8 in (3,11); 7 in (7,14); 6 in (6,12);
5 in (8,13);
0 at 9 and 10.

When ¢ = 10 and 13. For the case t = 10, put

9 in (3,12); 8 in (5,13); 7 in (9,16);

6 in (14,20); 5 in (2,7); 4 in (15,19)";
3 in (1,4)% 2 in (6,8)" 1 in (17,18)";
0 at 10 and 11.

For the case ¢t = 13, the pairs with * are used as they are, the pairs (x,y)"" are
replaced by (x,y) 4+ 6 and the others are given as follows:

12 in (3,15); Il in (5,16); 10 in (12,22);
9 in (10,19); 8 in (9,17); 7 in (11,18);
0 at 13 and 14. O

Lemma 4.1, Theorems 4.2 and 4.3, and Lemma 4.4 enable us to state the
following.

Theorem 4.5. Whenever t =1,2 (mod 4) and t > 6, there exists a t-ext S,
containing the pair (t + 1,2t 4 1).

Unfortunately it can be checked even by hand that when ¢ = 1,2, and 5, there does
not exist a r-ext S, satisfying the required condition. This means that Construction 11
cannot be applied for the cases v = 8,12, and 24, which should be covered by
Lemma 2.2 instead.

By Lemma 2.2, Proposition 3.1, and Theorem 4.5, the main theorem is established
after all.

Theorem 4.6. There exists a 1-rotationally resolvable 4-cycle system of 2K, if and
only if v =0 (mod 4).

Remark. Theorem 4.6 eventually shows the necessary and sufficient condition for
the existence both of a 1-rotational 4-cycle system of 2K, and a resolvable 4-cycle
system of 2K,,.
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