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An LMS-Based Decision Feedback Equalizer for
IS-136 Receivers
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Abstract—In digital mobile communication systems, inter-
symbol interference is one of the main causes of degrading
system performance. Decision feedback equalization (DFE) is the
commonly used remedy for this problem. Since the channel is
fast-varying, an adaptive algorithm possessing a fast convergence
property is then required. The least mean square (LMS) algorithm
is well known for its simplicity and robustness; however, its
convergence is slow. As a consequence, the LMS algorithm is
rarely considered in this application. In this paper, we consider
an LMS-based DFE for the North American IS-136 system. We
propose an extended multiple-training LMS algorithm acceler-
ating the convergence process. The convergence properties of the
multiple-training LMS algorithm are also analyzed. We prove that
the multiple-training LMS algorithm can converge regardless of
its initial value and derive closed-form expressions for the weight
error vector power. We further take advantage of the IS-136
downlink slot format and divide a slot into two subslots. Bidirec-
tional processing is then applied to each individual subslot. The
proposed LMS-based DFE has a low computational complexity
and is suitable for real-world implementation. Simulations with a
900- MHz carrier show that our algorithm can meet the 3% bit
error rate requirement for mobile speeds up to 100 km/hr.

Index Terms—Decision feedback equalizer (DFE), equalizer,
least mean square (LMS), IS-136.

I. INTRODUCTION

D IGITAL mobile communications can provide higher
capacity and other advantages over its analog counterpart.

The increasing demand for personal mobile communication
services has driven the successful development of many sys-
tems. In North America, the IS-136 has been the standard for
time-division multiple access (TDMA) digital cellular systems.
One problem associated with digital wireless transmission
is intersymbol interference (ISI). This problem is due to the
multipath transmission channel between the base and mobile
stations. A general remedy to this problem is the use of channel
equalization [1]. When the relative speed between the base and
mobile stations is high, the fast fading effect arises. This greatly
complicates the equalizer design. Many equalization algo-
rithms have been developed. There are mainly two approaches:
maximum likelihood sequence estimators (MLSEs) [2]–[9]
and decision feedback equalizers (DFEs) [11]–[22]. Generally
speaking, the MLSE can yield better performance. However,
its computational complexity is higher. Some research reported
that the performances of the MLSE and DFE are similar in fast
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fading environments [10]. In this paper, we consider the DFE
for the IS-136 system.

The DFE is a nonlinear equalization algorithm. Basically, it
consists of feedforward and feedback filters. The input symbol
for the feedback portion is the output from the decision de-
vice. Since the channel is time-varying, the coefficients of the
DFE are usually trained by some adaptive algorithm. To operate
in a highly variant mobile environment, the adaptive algorithm
must have a fast convergence property. Two well-known types
of adaptive algorithms are least mean square (LMS) and recur-
sive least squares (RLS). The RLS algorithm has a fast conver-
gence property but requires high computational complexity. By
contrast, the LMS algorithm converges slowly, but its compu-
tational complexity is low. Due to the fast varying character-
istics of the wireless channel, the RLS algorithm is the com-
monly used algorithm [11]–[17]. As a consequence, the equal-
izer consumes a large amount of the computational power in the
receiver.

Besides the choice of the adaptive algorithm, there are other
ways to improve the DFE performance. Nakaiet al. [13] pro-
posed the use of CDVCC codes, which are located in the middle
of the IS-136 data slot, as an additional training sequence. The
CDVCC codes are used to distinguish the cochannel users and
are known before the digital transmission. Since the training
symbols are increased, the DFE performance can be improved.
The use of CDVCC codes as a training sequence can also be
found in [4] and [14] (for MLSE). Liuet al. [15] proposed a
bidirectional equalization scheme. The idea is to conduct equal-
ization both in the forward and the reverse time direction and to
choose one of them as the output using some criterion.

Due to the slow convergence property, the LMS-based DFE
is rarely considered in the literature. The only work we can find
is that by Wei and Guo [19], in which they proposed a bidirec-
tional DFE with a multiple training LMS algorithm and showed
that the DFE can operate for mobile speeds up to 60 km/h. The
multiple training algorithm in [19] is similar to that proposed in
[18]; however, the purpose is different. The algorithm in [18] is
to prevent the stability problem arising from the least squares
method.

In this paper, we propose an improved LMS-based DFE for
the IS-136 system [20], [22]. This DFE, which can work at
higher vehicular speeds, has a simple structure and requires
a low computational complexity. Our approach is to develop
better adaptive algorithms and training strategies. We proposed
an extended multiple training LMS algorithm accelerating the
convergence. We also theoretically analyze the convergence
properties of the multiple-training LMS algorithm. We prove
that if the iteration number is large enough, the multiple-training
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Fig. 1. The system identification model.

LMS algorithm can converge regardless of its initial value,
and derive closed-form expressions for the weight error vector
power. To further improve the performance, we take advantage
of the IS-136 slot format and divide a slot into two subslots.
Bidirectional equalization is then applied to the individual
subslots. Here, the CDVCC codes are used. This approach
is different from those in [15] and [19], where bidirectional
processing is applied to the whole slot. Simulations with a
900-MHz carrier show that while the proposed algorithm can
achieve the required 3% bit error rate (BER) for mobile speeds
up to 100 km/h, its computational complexity is still low.

This paper is organized as follows. In Section II, we describe
the the multiple training LMS algorithm and analyze its con-
vergence behavior. In Section III, we discuss in detail the pro-
posed DFE algorithms and make some comparisons with the
existing algorithms. In Section IV, we report some simulation
results demonstrating the adequacy of our theoretical analysis
and the effectiveness of the proposed algorithm. We draw con-
clusions in Section V.

II. THE MULTIPLE-TRAINING LMS ALGORITHM

A. Formulation

In this scheme, the input signal of an adaptive filter is first
divided into blocks. In each block, data are repeatedly trained
by the LMS algorithm until a preassigned iteration number is
reached. Then the filter outputs the data in the last iteration
and continues to process the next block with the previously
converged tap weights as its initials. Consider a system iden-
tification application depicted in Fig. 1, where the unknown
system characterized by is identified by an adaptive
filter . Let be the time index, the block size, and

. Then, the th symbol in
the original input signal can be transferred into theth symbol
in the th block. Let the iteration number index beand the
total number of iterations per block be. We use the nota-
tion to denote the filter weight vector corresponding
to the th symbol in the th block at the th iteration. Similar
definitions are used for the output and the error signal

. Since in the same block the input vector and the de-
sired signals are identical for every iteration, we use and

to denote them. The multiple training LMS algorithm (in

the th block of data) can be mathematically described as fol-
lows.

For , and

(1)

(2)

(3)

where the superscript “” denotes the complex conjugate opera-
tion and “ ” the Hermitian operation. The initial weight vector
for each block is obtained as

(4)

(5)

The final output for theth block is then . Note that in
(3), the input vector is normalized with respect to its power. For
this reason, it is generally referred to as the normalized LMS al-
gorithm. We will drop the word “normalized” in the sequel for
reference simplicity. This algorithm was originally proposed in
[18] and later used by [19]. We call the algorithm as the mul-
tiple-training LMS algorithm (MLMS).

B. Convergence Analysis

In this section, we analyze the convergence behavior of the
MLMS algorithm. This was not done previously in the literature.
To obtain a trackable result, we consider a system identification
application as shown in Fig. 1. The update equations for the
standard LMS algorithm are given as

(6)

(7)

(8)

(9)

where denotes the white observation noise. Now, we con-
sider the iteration of the LMS algorithm in a single data block
with size . Here, we drop the subscript, which denotes the
block number in (1)–(5). Let denote the filter tap weights
at the th time instant of the th iteration. For , from (9),
we have

(10)

Substituting (7) and (8) into (10), we obtain

(11)
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We then subtract from both sides of (11) and manipu-
late the right-hand side by adding and subtracting . This
leads to the following result:

(12)

(13)

where

(14)

(15)

(16)

(17)

Note that (17) corresponds to the a priori weight error vector,
and later we will convert it to the a posteriori one. The vector in
(16) is the lag error vector due to the time-varying characteristics
of the unknown system. Let , where

is defined as that in (14) with the input vector replaced
by . Note that for the notation must be greater or
equal to . However, we let . This will simplify the
expressions derived below. Using the recursive relation in (13),
we can obtain

(18)

Note that for the MLMS algorithm, .
Let be the iteration number. Using the same recursive for-
mula, we can obtain as

(19)

Now, we convert the a priori weight error vector to the a poste-
riori one. Using (9), we have

(20)

Denote the a posteriori weight error vector
as . Then, the relation between the a posteriori and a

priori weight error vectors at of the th iteration can
be expressed as

(21)

Inserting (19) into (21), we then obtain

(22)

Before our further derivation, we consider some special proper-
ties of . As we previously defined,

. Note that , where is the
projection matrix that projects vectors to the subspace spanned
by . Let a vector be transformed by and

. Then, , where is the vector pro-
jected onto . Thus, if corresponds to a pro-
jection matrix that projects vectors to the orthogonal subspace
of . Note that if is not in the orthogonal subspace of

is always smaller than . Using this property,
one can show that the eigenvalues of are all ones except
for one. The magnitude of the nonzero eigenvalue is always
smaller than one. Similarly, the eigenvalues of are
all ones except for two. The magnitudes of these two nonzero
eigenvalues are smaller than one. Thus, we can conclude that
if and span , where is the filter
length, magnitudes of all eigenvalues of will be smaller than
one. As a result, when . Using the rela-
tion in (22)
and letting , we finally obtain

(23)

As (23) shows, the MLMS algorithm can converge in one block
regardless of its initial value. Also, the tap weight error vector
consists of two parts. The first term on the right-hand side of
(23) is due to the time variation of , and we call it the
lag error vector (LEV); it is denoted as . The second
term is due to the observation noise , and we call it the
fluctuation error vector (FEV); it is denoted as .

The result in (23) corresponds to a particular input sequence.
Next, we analyze the mean-squared convergence of the weight
error vector . We calculate the mean value of the error
vector power, which is . Let
be independent of . Then, we have

(24)

For simplicity, we denote as
and as . We first consider the
FEV power. As we can see from (23), exact evaluation of
this value is almost impossible. Some approximations are
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Fig. 2. The baseband model for the�=4 shifted DQPSK modulation.

necessary. Here, we use the direct averaging method and the
independence theory [28]. Let the correlation matrix of
be be , and the observation noise
variance be . Then, we have

(25)

where denotes the trace operation

and . Express as , where
is a unitary matrix and is the diagonal matrix containing

eigenvalues of . We can rewrite (25) as

(26)

Let denote theth diagonal element of the matrix inside the
trace operator. Then

(27)

where is the th component of . Then, we have the FEV
power as

(28)

Calculation of the LEV power is similar to that of the FEV
power. However, we need a model for the time-varying system.
A commonly used model is the random walk, i.e.,

(29)

where is the driving noise vector. We assume that each
component of is independent of one another and denote
the power of theth component of as . From (23), we
have

(30)

where is a diagonal matrix consisting
of . Let denote theth diagonal element of
the matrix inside the trace operator. After some manipulations,
we can obtain

(31)
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TABLE I
SYSTEM PARAMETERS OF THE NORTH

AMERICAN IS-136 STANDARD

TABLE II
THE MAPPING TABLE OF �=4 SHIFTED DQPSK MODULATION

Using the above expression, we obtain

(32)

From (28), we can see that if the other parameters ( and
) are fixed, the FEV power is a decreasing function of the

block size . This gives the smoothing property of the MLMS
algorithm. The larger the block size, the more noise we can sup-
press. From (32), we can see that the LEV power is an increasing
function of . This gives the tracking property of the MLMS
algorithm. For a large block size, the variation of the system in
the block is large. Since all data in the block will affect the final
output at a particular time instant, the tracking capability of the
MLMS algorithm is then degraded. From the above analysis,
we can conclude that the choice of the block sizeshould be
a compromise between the smoothing and tracking capabilities
of the MLMS algorithm.

III. T HE PROPOSEDLMS-BASED DFE

A. The IS-136 System

In this section, we briefly describe the IS-136 system. The
system parameters for the IS-136 are summarized in Table I. As
the table shows, the access method for IS-136 is TDMA. Each
carrier is divided into three time slots. The baseband model for
the 4 shifted DQPSK modulator and demodulator is shown in
Fig. 2. Bits from the data source are first passed through the se-
rial-to-parallel converter; the resulting pair then
maps a phase difference according to the rule shown in
Table II. The transmission signal phase is then differentially en-
coded, i.e., . Thus, the resulting
signal constellation of is when the
symbol index is odd, and is when is
even.

The receiver reverses the operations conducted in the trans-
mitter. The received signal is first passed through the receiving
filter and sampler. Then, an equalizer is used to eliminate the ISI
caused by the channel, the phase of the equalizer output is
extracted, and the phase difference is
calculated. The resulting phase difference is fed to a four-phase
decision circuit, producing dec , where dec denotes
the phase decision operation. Using Table II, dec is in-
versely mapped into . Then, the parallel-to-serial
converter converts and into a bitstream.

The downlink (from base station to mobile unit) data slot
format of the IS-136 system is shown in Fig. 3. It consists of
14 SYNC symbols, six SACCH symbols, 65 DATA symbols,
six CDVCC symbols, 65 DATA symbols, and six RSVD sym-
bols. The 14 SYNC symbols are designed for synchronization.
The equalizer can also use these symbols for training. The six
CDVCC symbols are known to the receiver before the digital
transmission. They are used to distinguish the cochannel users.

B. The Extended Multiple Training Algorithm

The original MLMS algorithm has been used only in the
training mode [19]. Also, all 14 SYNC symbols are taken as
a training block. There are some problems of this approach.
According to our analysis shown in Section II, the block size
of the MLMS algorithm should be chosen as a compromise
between the smoothing and tracking capabilities. Thus, the
optimal block size may not be 14. Since multiple training is not
applied in the tracking mode, the decision information is not
fully explored. Based on the above observations, we make some
extension to the MLMS algorithm. First, we extend the MLMS
algorithm to the tracking mode. Second, we let the block size be
a design parameter. For different signal-to-noise ratios (SNRs)
or mobile speeds, we may use different block sizes. Also,
blocks can even be overlapped. The proposed MLMS algorithm
is now described as follows. The received slot is first divided
into blocks. In each block, data are repeatedly equalized by the
DFE using the MLMS algorithm until a preassigned iteration
number is reached. Then the DFE outputs the equalized data
in the last iteration and continues to process the next block of
data. If the DFE is in the training mode, the SYNC sequence is
used as the reference signal. If the DFE is in the tracking mode,
the output from the decision device is used as the reference
signal. For ease of description, we let the slot be divided into

blocks, and each block has symbols . The
weight update equations are identical to (1)–(5), except that the
desired signal becomes

in training mode
dec in tracking mode

(33)

where is the original transmitted symbol and dec
denotes a decision operation. The final DFE output is then

. For reference convenience, we call the algorithm
here the EMLMS algorithm. The total number of iterations can
be different from block to block, denoted by . For simplicity,
we only use two iteration numbers: one for the training mode,
denoted as , and the other for the tracking mode, denoted
as . These two parameters control the convergence of the
EMLMS DFE. The DFE performs better for larger ;
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Fig. 3. The downlink slot format of the IS-136 system.

Fig. 4. The proposed bidirectional equalization scheme.

TABLE III
COMPARISON OFDFE ALGORITHMS DESIGNED FOR THEIS-136 SYSTEM

TABLE IV
COMPUTATIONAL COMPLEXITY COMPARISON OF THEDFE ALGORITHMS

DESIGNED FOR THEIS-136

however, the computational load also increases linearly with
these numbers. The other parameter influencing the conver-
gence rate is the step size. As we can see from Section II, a
large increases the convergence speed of the DFE, but it also
causes a larger fluctuation error.

As we mentioned, the LMS requires a reference signal to
adapt the filter weight vector. In the training mode, this signal
is provided by the encoded SYNC signal. In the tracking mode,
the reference signal is extracted from the received signal [15],
[23]. We first partition the symbol constellation of shift
DQPSK into two sets: Set #0 is and Set #1 is

. From the above description, we can see that the shift
4 DQPSK coded symbol will be in Set #0 when the symbol

index is even, and in Set #1 whenis odd. Thus, if is even,
the phase of the encoded symbol will be an odd multiple of4
(Set #0). In other words, dec , where
is the argument minimizing . If is
odd, the phase of the encoded symbol will be a multiple of2
(Set # 1). In this case, dec , where

is the argument minimizing .
Note that there is no guarantee that the extracted reference signal
is correct all the time.

C. The Bidirectional Equalization

Since the channel is fast-varying, the longer the DFE is in
the tracking mode, the higher the probability it may lose track
of the channel variations. Thus, the BER is generally higher
around the end of a slot. Note that we can have another SYNC
sequence if we continuously process the next slot, which may
not belong to the current user. Thus, if we can process the current
slot backward and use the SYNC sequence of the next slot, the
BER around the end of the current slot can be reduced. This is
the basic idea of bidirectional equalization. The proposed bidi-
rectional equalization scheme is shown in Fig. 4. In the con-
ventional bidirectional schemes [15], [19], forward equalization
starts from the beginning of the current slot and backward equal-
ization starts from the last symbol (symbol 176) in SYNC 2. Our
bidirectional processing is different from the conventional tech-
nique. Making use of CDVCC, we divide the 176 symbols into
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Fig. 5. The relation between the fluctuation error power" and the block sizeM ; N = 5; � = 0:1.

Fig. 6. The relation between the lag error power" and the block sizeM ; N = 5; � = 0:1.
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Fig. 7. Tracking capabilities of the conventional LMS DFE, EMLMS DFE, BMLMS DFE, and BEMLMS DFE (V = 60 km/h,� = T ).

two subslots with some overlap (see Fig. 4). Since the CDVCC
symbols are known, we can use them as an additional training
sequence. In the first subslot, forward equalization starts from
the first symbol of the current slot and backward equalization
starts from the last symbol in the CDVCC field (symbol 91). In
the second subslot, forward equalization begins from the first
symbol in the CDVCC field (symbol 86) and backward equal-
ization begins from the last symbol of SYNC 2 (symbol 176).
The advantage of this bidirectional equalization scheme is ap-
parent. Since the CDVCC field is at the middle of the data slot,
the time that DFE operates in the tracking mode is shortened by
half. The output delay due to bidirectional processing may also
be reduced by half.

To reduce the computational requirement per unit time,
the backward and forward equalization are not performed
simultaneously. In other words, at a particular time instant,
only one directional equalization is allowed. Thus, we require
a control mechanism to determine in which direction the equal-
ization should proceed. We designed two control mechanisms:
a threshold-based and a comparison-based mechanism. The
threshold-based control mechanism is similar to those used in
[15] and [19]. This control mechanism requires a monitoring
function and an empirical threshold value. Let be the
number of blocks in a subslot. Define the monitoring function
as

(34)

where is the block index. As we can see, this monitoring func-
tion is block-based. This is in contrast to that used in [15] and
[19], where the monitoring function is symbol-based. The mon-
itoring function can be used to indicate the tracking status of the
DFE. When is smaller than a threshold, we can consider
that the DFE keeps good track of the channel variations. When

is larger than , we consider that the DFE starts to lose
track of the channel variations. Using this threshold-based con-
trol mechanism, the proposed bidirectional equalization can be
summarized as follows.

1) Start the forward equalization using the EMLMS algo-
rithm and calculate the associated monitoring function. If

at block and , pause the forward
equalization. Otherwise, proceed with the forward equal-
ization to the end of the subslot.

2) Start the backward equalization (from block) using
the EMLMS algorithm and calculate the associated mon-
itoring function. If at block and

, pause the backward equalization. Otherwise, pro-
ceed with the backward equalization to block .

3) If , set a block index as

(35)

where denotes the integer part of.
4) Continue the forward equalization from block to

block and backward equalization from block back
to block .



138 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 51, NO. 1, JANUARY 2002

Fig. 8. Effect of the block sizeM on BEMLMS DFE performance (� = T; (K ;K ) = (7; 1)).

With a proper choose of, the block index can approach
the location of the mobile channel deep fade [15].

The drawback of the threshold-based algorithm is that we
need to determine the thresholdempirically. This may not be
easy in many cases. To avoid that, we designed another control
mechanism that compares the values of the forward and back-
ward monitoring functions. It is reasonable to assume that the
smaller the monitoring function, the better the tracking condi-
tion of the DFE. Thus, we can compare the values of the forward
and backward monitoring functions and determine in which di-
rection the DFE should proceed. If the forward monitoring func-
tion is smaller, the DFE proceeds in the forward direction and
vice versa. Using this comparison-based control mechanism, the
proposed bidirectional equalization can be summarized as fol-
lows.

1) Initially, perform forward equalization to block one using
the EMLMS algorithm and calculate the monitoring func-
tion . Similarly, perform backward equalization to
block and calculate .

2) Let block be the latest block that has been forwardly
equalized and block be the latest block that has been
backwardly equalized . If ,
then proceed to equalize block forwardly; otherwise
proceed to equalize the block backwardly.

3) Repeat Step 2) until .

Using this scheme, we do not have to determine the threshold
value . Also, the normalization factor 1 is not required

here. We call this a bidirectional EMLMS (BEMLMS) algo-
rithm. A similar bidirectional equalization structure was also
independently developed in [17]. However, in [17], no detailed
description was reported. The other main difference is that the
RLS algorithm was used in [17]. A final remark is that the re-
vised IS-136 standard does not guarantee the availability of the
SYNC word in the next slot. Adjacent slots may be transmitted
at different power levels or not at all.

D. Comparisons of DFE Algorithms

In this section, we compare the merits of various adaptive
DFE algorithms designed for the IS-136 system. The algorithms
considered include the RLS algorithms proposed by Nakai [13]
and by Liu [15], the LMS-type algorithms proposed by Wei [19],
the EMLMS algorithm, and the BEMLMS algorithm. The prop-
erties of these algorithms are summarized in Table III. For refer-
ence convenience, we use the abbreviation BRLS to denote the
algorithm in [15] and BMLMS the algorithm in [19]. First, we
discuss the processing delay. For the bidirectional algorithms
in [15] and [19], the processing delay can be large when the
forward DFE meets a deep fade in its early stage. This is be-
cause the backward equalization will not be initiated until the
entire slot is received. Since we divide the slot into two subslots,
the processing delay is inherently smaller than that in [15] and
[19]. The processing delay of the comparison-based BEMLMS
is larger than that of the threshold-based BEMLMS because the
comparison-based control mechanism needs to compute both



WU AND TSUIE: LMS-BASED DECISION FEEDBACK EQUALIZER 139

Fig. 9. Effect of iteration numbers(K ;K ) on BEMLMS DFE performance (� = 2 ; M = 6; V = 100 km/h,� = T ).

monitoring functions for the forward and backward equaliza-
tion. Thus, the DFE has to wait until all of the subslot symbols
are received.

Next, we compare the computational complexity of each al-
gorithm (for processing one slot of symbols). This is shown in
Table IV. In the table, represents the tap length of the DFE,
and and denote the iteration numbers in the training and
tracking modes, respectively. Here, we assume that the standard
RLS algorithm and LMS algorithms are used. In the bidirec-
tional processing, additional divisions may be required for the
calculation of the monitor function. Note that the bidirectional
algorithms of [15] and [19] require 176 additional divisions for
the control mechanism. The threshold-based BEMLMS algo-
rithm requires (number of blocks) additional divisions, while
the comparison-based BEMLMS requires no extra divisions. It
is clear that the computational complexity of the proposed algo-
rithm greatly depends on the iteration numbers .

IV. SIMULATIONS

In this section, we report some simulation results demon-
strating the effectiveness of the proposed algorithm. We first
consider the adequacy of the theoretical results derived in Sec-
tion II. The input signal in Fig. 1 was set to be white
Gaussian with unit power and the filter lengthto be five. As
we have shown, the filter weight vector error has two compo-
nents: the fluctuation error caused by the observation noise and
the lag error caused by the time-varying system. To see the in-
dividual effect, we designed two experiments. For the first one,

we let the identified system be time-invariant and noisy; for the
second one, we let the system be time-varying but noise free.
Fig. 5 shows the simulation results for the first case. Each of the
results corresponds to the average of 200 simulation trials. This
figure gives the relation between the FEV power and the block
size . The variance of was 0.1. The theoretical curves
indicate that the larger the , the smaller the FEV power we
can obtain. The simulation curves also show this trend. We also
see that the simulation results are always larger than the theoret-
ical one. This is due to the approximations (the direct averaging
method and the independence theory [28]) we used in the deriva-
tion. We assume that the input vectors are independent, which is
not true in practice. Thus, many values are underestimated. The
other thing we can observe is that the smaller the step size, the
smaller the FEV power we can obtain. This is similar to the stan-
dard LMS algorithm. Next, we consider the second case. Each
weight of is modeled as a random walk process. We
let all the driving noises have the same power, which was
0.1. The simulation result is shown in Fig. 6. As we can see, the
larger the block size, the higher the LEV power. We also see that
the larger the step size, the better results we can obtain. The is
again similar to the standard LMS algorithm. We also note that
the theoretical results match the simulated ones quite well.

We then consider the performance of the proposed algorithm.
We adopted the so-called two-ray Rayleigh-fading channel
model according to the IS-136 standard recommendation.
Each of the independent Rayleigh faders was generated by
Jakes fading model [26], [27]. The carrier frequency of the
simulation system was assumed to be 900 MHz. The DFE
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Fig. 10. Effect of the threshold value� on the BEMLMS DFE performance (� = 2 ; M = 6; (K ;K ) = (7; 1); � = T ).

used in simulations is fractionally spaced. The feedforward
filter consists of four taps with 2 time space, where is
the symbol period and the feedback filter is one tap. Each of
the simulation results is obtained from 1000 data slots. Fig. 7
demonstrates the tracking capabilities of the DFE adapted by
the conventional LMS, EMLMS, BMLMS [19], and BEMLMS
algorithms for 60 km/h mobile speed (denoted asin the figure
caption). Here, the delay for the second path of the two-ray
model, denoted as, was set to . In Fig. 7, the horizontal
axis represents the symbol index and the vertical axis gives
the symbol error rates (SERs). A high SER indicates that the
probability of losing track of the channel is high. It is obvious
that the conventional LMS algorithm cannot cope with the fast
varying characteristics of the mobile channel. The EMLMS
algorithm improves the convergence rate of the DFE and the
SER in the second half of the slot. The BMLMS algorithm has
a low SER around both ends of the slot. However, in the middle
of the slot, the SER is still high. Only the BEMLMS algorithm
has a low SER for the entire slot, indicating its superior tracking
capability.

Since the BEMLMS is a block-iterated algorithm, the
block size may have great influence on the final performance.
Fig. 8 shows the BER versus the block size. Here, we let

. From Fig. 8, we find that gives an
optimal result. In the next experiment, we explored the effect
of the iteration number pair . The result is shown in
Fig. 9. It is seen that the equalization performance is improved
as the values of increase. However, their relationship

is not linear. When is increased from one to five, a large
improvement is obtained. However, the improvement is soon
saturated when we further increase. The increase of also
helps, but the performance improvement is insignificant. Thus,
we can conclude that the influence of , which corresponds to
the iteration number in the training mode, is much larger than
that of , which is the iteration number in the tracking mode.
This is different from the EMLMS algorithm, where has a
larger influence on the final result [20]. This result may be due
to the proposed bidirectional equalization scheme, where the
tracking period is effectively shortened. Thus, the iteration in
the tracking mode does not produce a further advantage. Since
the computational complexity is proportional to ,
some tradeoff must be made. Based on the above discussion,
we suggest that be set to a value between five and nine and

be set to one. As we mentioned, the threshold-based control
mechanism requires a parameter. Fig. 10 shows the BER
results versus . It is clear that should be chosen around 0.3.

Fig. 11 shows the simulation results for the BEMLMS
algorithm with the two control mechanisms at mobile speeds of
60 and 100 km/h (SNR dB, ). From this
figure, we see that the comparison-based control mechanism
performs better than the threshold-based one. However, the
consequence is a longer processing delay. Finally, we compared
the performance of various LMS-based DFE algorithms. This
is shown in Fig. 12, which includes the BMLMS, the EMLMS,
and the BEMLMS. We can see that the performance of the
BEMLMS DFE with at 100 km/h is similar
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Fig. 11. Performance comparison of the threshold-based and comparison-based control mechanisms (BEMLMS,� = 1=2; (K ;K ) = (7; 1)).

Fig. 12. Performance comparison of the BMLMS DFE, EMLMS DFE, and BEMLMS (with the comparison-based control algorithm) DFE (� = 1=2; SNR
= 22 dB).
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TABLE V
COMPUTATIONAL COMPLEXITY COMPARISON OF THEDFE ALGORITHMS

DESIGNED FOR THEIS-136 SYSTEM (N = 4)

to those of BMLMS DFE with and the EMLMS
DFE with at 60 km/h. The BER of
BEMLMS DFE at 60 km/h is much lower than the others. We
also compared the computational complexity of various DFE
algorithms. The parameters of the LMS-based DFEs are those
used in Fig. 12. Since the conventional adaptive algorithm
uses the RLS algorithm, we used its complexity as a reference.
Only complex multiplications were compared. We define a
complexity ratio as

(36)

where MUL denotes the complex multiplications required
by the standard RLS DFE (to process one slot) and MUL
denotes the complex multiplications required by the algorithm
to be compared. The complexity ratio for various adaptive algo-
rithms can be obtained using Table IV with the proper parame-
ters substituted. The results are shown in Table V, from which
we can see that the computational complexity of the BEMLMS
algorithm is the smallest among all and is only one-third of the
standard RLS algorithm.

V. CONCLUSION

In this paper, we propose a bidirectional LMS-based DFE for
the North American IS-136 cellular radio system. The proposed
algorithm combines an extended multiple training and bidirec-
tional processing techniques. This combination enables the DFE
to effectively equalize symbols distorted by the channel and at
the same time maintains the low computational complexity of
the LMS algorithm. The convergence properties of the MLMS
algorithm are also analyzed. Simulation results show that the
proposed DFE can be applied at vehicle speeds as high as 100
km/h and that the required computational complexity is only
34% of that for the standard RLS DFE. To achieve good perfor-
mance at a high mobile speed, the conventional DFE usually has
to use the RLS algorithm. For the first time, to the best of our
knowledge, the LMS algorithm can be used to achieve a sim-
ilar performance as the RLS algorithm. Due to the simple struc-
ture and low computational complexity, the proposed algorithm
is very suitable for real-world implementation. As a matter of
fact, a highly efficient application-specific IC design has been
developed in [25].
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