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An LMS-Based Decision Feedback Equalizer for
1S-136 Recelivers

Wen-Rong Wu and Yih-Ming Tsuie

Abstract—in digital mobile communication systems, inter- fading environments [10]. In this paper, we consider the DFE
symbol interference is one of the main causes of degrading for the 1S-136 system.

system performance. Decision feedback equalization (DFE) is the - The DEE js a nonlinear equalization algorithm. Basically, it
commonly used remedy for this problem. Since the channel is ists of feedf d and feedback it The i ¢ bol
fast-varying, an adaptive algorithm possessing a fast convergence ©ONSISIS Of Teediorward and teedback hiiters. 1he input symbo

property is then required. The least mean square (LMS) algorithm  for the feedback portion is the output from the decision de-
is well known for its simplicity and robustness; however, its vice. Since the channel is time-varying, the coefficients of the
convergence is slow. As a consequence, the LMS algorithm isDFE are usually trained by some adaptive algorithm. To operate

rarely considered in this application. In this paper, we consider ; ; ; ; ; ; ;
an LMS-based DFE for the North American 1S-136 system. We in a highly variant mobile environment, the adaptive algorithm

propose an extended multiple-training LMS algorithm acceler- must haYe G fast. convergence property. Two well-known types
ating the convergence process. The convergence properties of theOf adaptive algorithms are least mean square (LMS) and recur-
multiple-training LMS algorithm are also analyzed. We prove that ~ sive least squares (RLS). The RLS algorithm has a fast conver-
the multiple-training LMS algorithm can converge regardless of gence property but requires high computational complexity. By

its initial value and derive closed-form expressions for the weight ; : B
error vector power. We further take advantage of the 1S-136 contrast, the LMS algorithm converges slowly, but its compu

downlink slot format and divide a slot into two subslots. Bidirec- _tat_lonal compl_exny is low. Due to the fast va_rylng_character-

tional processing is then applied to each individual subslot. The istics of the wireless channel, the RLS algorithm is the com-

proposed LMS-based DFE has a low computational complexity monly used algorithm [11]-[17]. As a consequence, the equal-

and is suitable for real-world implementation. Simulations with a  jzer consumes a large amount of the computational power in the

900- MHz carr_ier show that our algorithm can meet the 3% bit receiver.

error rate requirement for mobile speeds up to 100 km/hr. Besides the choice of the adaptive algorithm, there are other

Index Terms—becision feedback equalizer (DFE), equalizer, ways to improve the DFE performance. Nakial. [13] pro-
least mean square (LMS), IS-136. posed the use of CDVCC codes, which are located in the middle
of the IS-136 data slot, as an additional training sequence. The

l. INTRODUCTION CDVCC codes are used to distinguish the cochannel users and

. — . . are known before the digital transmission. Since the trainin
IGITAL mobile communications can provide higher J g

. ) symbols are increased, the DFE performance can be improved.
_capacn_y and other advantages over its _analog coun_terp e use of CDVCC codes as a training sequence can also be
The_mcreasmg.demand for personal mobile commumcatl%]und in [4] and [14] (for MLSE). Liuet al. [15] proposed a
serwc?s Eas r(]j g\ven _the Sﬁcﬁgsigjé (rj]evetl)opme;:t of mzmy q irectional equalization scheme. The idea is to conduct equal-
tems. In North America, the 15- as been the standard [0Lion poth in the forward and the reverse time direction and to
time-division multiple access (TDMA) digital cellular Systems,.,) ) ose one of them as the output using some criterion
One problem associated with digital wireless transmissionDue to the slow convergence property, the LMS-baséd DEE

is intersymbol interference (ISl). This problem is due to thg rarely considered in the literature. The only work we can find

multipath transmission channel between the base and mo él hat by Wei and Guo [19], in which they proposed a bidirec-

statiops. A general remedy to this problem is the use of chamﬂg al DFE with a multiple training LMS algorithm and showed
equalization [1]. When the relative speed between the base the DFE can operate for mobile speeds up to 60 km/h. The

mobille_ st?tior;?] Is high, It_he fadst fa_\dingl\iffect ariseT_. T?is grela ultiple training algorithm in [19] is similar to that proposed in
compiicates the equalizer design. Many equalization alg 8]; however, the purpose is different. The algorithm in [18] is

rithms have been developed. There are mainly two approaches y L
. S . revent the stability problem arising from the least squares
maximum likelihood sequence estimators (MLSESs) [2]-[9 pho\:j "yp 1SIng au

and decision feedback equalizers (DFESs) [11]-[22]. Genera Y| th'. ; LMS- DEE f
speaking, the MLSE can yield better performance. HoweV(ﬁ[I n this paper, we propose an improved LMS-based of

i tational lexitv is higher. S h ) ‘e 1S-136 system [20], [22]. This DFE, which can work at
'ﬂf ?(:rr]npu af|ona comp ?)t(r:y II\?ILgEer.d gnlgg reseqrc_l re_pofr ﬁt her vehicular speeds, has a simple structure and requires
at the performances ot the an are simiiar in tagt, computational complexity. Our approach is to develop

better adaptive algorithms and training strategies. We proposed
an extended multiple training LMS algorithm accelerating the
. el 20 convergence. We also theoretically analyze the convergence
The authors are with the Department of Communication Engineering, Na- . . . .
tional Chiao Tung University, Hsinchu, 300 Taiwan, R.O.C. properhe; of the muIt|pIe-.tra|n|ng LMS algorlthm.. We prove
Publisher Item Identifier S 0018-9545(02)00443-7. that if the iteration number is large enough, the multiple-training
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thelth block of data) can be mathematically described as fol-
W, (n) N v(n) lows.
! CD Form=1,2,...,M,andk = 1,2,.... K

X(n) yii(m) = Wi (m — 1)Xi(m) )

d(n)
err(m) = di(m) — y,x(m) 2
\ + lek(m)

Wii(m) = Win(m — 1) + p—gr ¢, 3
Win-1) _&@ 1,k (m) Li(m—1) NXﬁ(m)lek(m)Clﬁ"(m) (3)

where the superscript” denotes the complex conjugate opera-
e(n) tion and “H” the Hermitian operation. The initial weight vector
for each block is obtained as

Fig. 1. The system identification model.

Wii(1) = Wi k(M) 4)

LMS algorithm can converge regardless of its initial value, Wi (1) = Wip—1 (M) ©)

and derive closed-form expressions for the weight error vector

power. To further improve the performance, we take advanta§Be final output for théth block is thery, x (m). Note that in
of the 1S-136 slot format and divide a slot into two subslot$3) the input vector is normalized with respect to its power. For

Bidirectional equalization is then applied to the individudihis reason, itis generally referred to as the normalized LMS al-
subslots. Here, the CDVCC codes are used. This appro&gfithm. We will drop the word “normalized” in the sequel for
is different from those in [15] and [19], where bidirectional€ference simplicity. This algorithm was orlgm.ally proposed in
processing is applied to the whole slot. Simulations with [8] @nd later used by [19]. We call the algorithm as the mul-
900-MHz carrier show that while the proposed algorithm cdfP!e-training LMS algorithm (MLMS).
achieve the required 3% bit error rate (BER) for mobile speeds .
up to 100 km/h, its computational complexity is still low. B. Convergence Analysis

This paper is organized as follows. In Section Il, we describe In this section, we analyze the convergence behavior of the
the the multiple training LMS algorithm and analyze its conMLMS algorithm. This was not done previously in the literature.
vergence behavior. In Section I, we discuss in detail the prde obtain a trackable result, we consider a system identification
posed DFE algorithms and make some comparisons with #ygplication as shown in Fig. 1. The update equations for the
existing algorithms. In Section 1V, we report some simulatiostandard LMS algorithm are given as
results demonstrating the adequacy of our theoretical analysis

and the effectiveness of the proposed algorithm. We draw con- y(n) = WH(n - 1)X(n) (6)
clusions in Section V. d(n) = W ()X (n) + v(n) @)
e(n) = d(n) —y(n) ®)
[I. THE MULTIPLE-TRAINING LMS ALGORITHM W(n) =W(n—1)+ NXH? ()7;)(( )e*(n) 9)

n n

A. Formulation

In this scheme, the input signal of an adaptive filter is firsvt\{here'/(n) denotes the white observation noise. Now, we con-

divided into blocks. In each block, data are repeatedly traimg&ier the iteration of the LMS algorithm in a single data block

by the LMS algorithm until a preassigned iteration number ggz;;zj%.eriﬁra)zv(%)di_ogﬂfth(e )Sggigrtfm:;ﬁg ;jtznovt/eesi t::g
reached. Then the filter outputs the data in the last iterati Mihenth time instant of the!:t% ﬁeration Fom — 1 frF())m (g)
and continues to process the next block with the previous\‘j‘\)/e have ' - '
converged tap weights as its initials. Consider a system iden-

tification application depicted in Fig. 1, where the unknown X(1)

system characterized B,.(n) is identified by an adaptive Wi(1) = W1i(0) - Nm@*(l)- (10)
filter W(n). Let n be the time indexM the block size, and

n=(-1)M+m,m=12...,M. Then, thenth symbolin - g pstituting (7) and (8) into (10), we obtain

the original input signal can be transferred into théth symbol

in the /th block. Let the iteration number index lieand the X(1)
total number of iterations per block k€. We use the nota- Wi(1) = W1(0) + MXAX D)
tion Wi 1(m) to denote the filter weight vector corresponding .
o therih ymbol in thelth block at thekth teraion. Simiar Ao (1) = WO X(0) 5 ()}
definitions are used for the outpyi.(m) and the error signal = W1(0) + NX(l)XH(l)
ei(m). Since in the same block the input vector and the de- XH(1)X(1)
sired signals are identical for every iteration, we &&ém) and X [Wope(1) — W1 (0)] + - X(1)

dy(m) to denote them. The multiple training LMS algorithm (in H(1)X (1) v*(1). (11)
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We then subtracdV,,;(2) from both sides of (11) and manipu-priori weight error vectors at = M of the Kth iteration can

late the right-hand side by adding and subtracting(1). This
leads to the following result:

Wl(l) - Wopt(z) = WI(O) - Wopt(]-) + Wopt(]-) - Wopt(z)

e ~H
+ iy Wons(h) = Wa(0)]
X1
+NXH(1()X(1)V*(1) (12)
e ~H
AWy (1) = 1= | ameo)
+T(1)+ V(1)
= P(1)AW1(0) + T(1) + V(1) (13)
where
_ X(1)XH(1)
P(1) = [I - NXH(l)X(l)} (14)
V() = NXHii()l)z'(l)l/*(l) (15)
T(l) = Wopt(l) - Wopt(2) (16)
AWI(]-) = Wl(]-) - Wopt(2)- (17)

be expressed as
AW (M) = P(M)AW k(M — 1) + V(M).
Inserting (19) into (21), we then obtain
K—-1
AW (M) = (A1) AWy (0) + Y (4})"
k=0

(21)

M+1
X Y AVT(k— 1)+ V(k = 1)] - T(M).
k=2

(22)
Before our further derivation, we consider some special proper-
ties of A}?. As we previously defined4d}! = P(M)P(M —
1)...P(1). Note thatP(i) = I — pQ(i), whereQ(i) is the
projection matrix that projects vectors to the subspace spanned
by X (). Let a vectorX be transformed by(:i) andY =
P(HX. Then,Y = X — nY,, whereY], is the vector pro-
jected ontaX (¢). Thus, if = 1, P(¢) corresponds to a pro-
jection matrix that projects vectors to the orthogonal subspace
of X (¢). Note that if X is not in the orthogonal subspace of
X (%), ||Y] is always smaller thafj X||. Using this property,
one can show that the eigenvaluesitfi) are all ones except
for one. The magnitude of the nonzero eigenvalue is always

Note that (17) corresponds to the a priori weight error vect@maller than one. Similarly, the eigenvaluesiefi)P(j) are

and later we will convert it to the a posteriori one. The vector ig)| ones except for two. The magnitudes of these two nonzero
(16) s the lag error vector due to the time-varying characteristigigenvalues are smaller than one. Thus, we can conclude that
ofthe unknown system. Let; = P(5) P(j—1)... P(i),where if x(1), X(2),..., andX (M) spanR", whereN is the filter

P(k) is defined as that in (14) with the input vector replacegngth, magnitudes of all eigenvalues4¥ will be smaller than

by X (k). Note that for the notationt!, ; must be greater or gne. As a resultf AM)¥ — 0whenK — co. Using the rela-

equal toi. However, we letd? ; = I. This will simplify the tjon T(M) = Wep (M) —

Wopt(1) = =31 M T(3) in (22)

expressions derived below. Using the recursive relation in (13hd |ettingk’ — oo, we finally obtain

we can obtain
AW (i) = ALAWL(0) + Y ALT(k — 1) + V(k — 1)].
k=2

(18)
Note that for the MLMS algorithmAW; 1(0) = AW;(M).

M
AWi(M) = [1 = AY] 73 (4l = AY) TGk - 1)
k=2
1 M+1
H[I-AY]T > AYV(k-1). (23)
k=2

Let K be the iteration number. Using the same recursive fohs (23) shows, the MLMS algorithm can converge in one block

mula, we can obtai Wi (¢) as
) K-2 X
AWL(0) + A7 Y (Al)

k=0

AW (i) = AL (AM)5

M41

x Y AVT(k— 1)+ V(k—1)]

41

+ Y AT - 1)+ V(k=1)]. (19)
k=2

regardless of its initial value. Also, the tap weight error vector
consists of two parts. The first term on the right-hand side of
(23) is due to the time variation &¥,,;(n), and we call it the
lag error vector (LEV); itis denoted asW; x (M ). The second
term is due to the observation noisén), and we call it the
fluctuation error vector (FEV); it is denoted a8V, x (M).

The resultin (23) corresponds to a particular input sequence.
Next, we analyze the mean-squared convergence of the weight
error vectorAW,y, (n). We calculate the mean value of the error
vector power, which iE{ AW () AWk (n)}. Let Wopi(n)

Now, we convert the a priori weight error vector to the a postee independent af(n). Then, we have

riori one. Using (9), we have
X(n)XH(n)
~ X)X )
X [W(n—1) = Wepi(n)]
gy (@)
Denote the a posteriori weight error vectéi(n) — Wi (n)

W(n) — Wop(n) = [1

E {AWHE(n) AWk (n)} =E {AW[ L (n) AW, i (n) }
+ E {AWEI((H)AWf7]((7'L)} .
(24)
For simplicity, we denoteE{ AW/, (n)AWy r(n)} as &;

and E{AW/L(n)AW; i (n)} as &. We first consider the
FEV power. As we can see from (23), exact evaluation of

as AW(n). Then, the relation between the a posteriori andthis value is almost impossible. Some approximations are
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Fig. 2. The baseband model for thg¢4 shifted DQPSK modulation.

necessary. Here, we use the direct averaging method andwliere ); is theith component ofA. Then, we have the FEV
independence theory [28]. Let the correlation matrixXtfr) power as

be R, E{1/X"(n)X(n)} be p, and the observation noise N

variance ber2. Then, we have 20202 14 (1 — ppr)M
p g=3 (1—pp ‘)M_ (28)
H —~ 1 — (L= ppri)? 1= (1= pphi)
gf =E {AWﬁK(TL)AWﬁK(TL)} =1
=Tr {E{AW; x (n) AW (n)}} Calculation of the LEV power is similar to that of the FEV
M power. However, we need a model for the time-varying system.
~ Tr {(I — pMy~t <Z PM—’“R,,.PM—’“> A commonly used model is the random walk, i.e.,
k=1
Wopt(n +1) = Wopi(n) + G(n 4+ 1) (29)
x (I —PM)~! : - .
whereG(n) is the driving noise vector. We assume that each
M component of7(n) is independent of one another and denote
—Tr{R, ZpM—k(I — pMy—2pM—k (25) the power of theith component of7(n) aso?. From (23), we
=1 have
whereTy[ -] denotes the trace operation &=E {AWI,HK (n)AW, xc(n)}
R, = E{V(n)V(n)} ~ p*p*s R, = Tr {E { AW, x (n) AW/ (n) } }

and? = E{P(i)} ~ I — upR,. Expressk, asUAU*, where =

_ My—1 M—k k
U is a unitary matrix and\ is the diagonal matrix containing — Tr {(I -P) [Z P (=P
eigenvalues oRR,.. We can rewrite (25) as k=1

M k M—k My—1
x Ap(I — PP I-P
& ="Tr {u2p2031\ > (T = pp)MH t ) ( ) }
k=1 (30)
X [I — (I — pupA)YM] =31 — upA)M_k} - (26) whereA; = E{T(n)T"(n)} is a diagonal matrix consisting
of {o%,03,...,0%}. Letn ; denote theth diagonal element of
Letn;; denote theth diagonal element of the matrix inside théhe matrix inside the trace operator. After some manipulations,
trace operator. Then we can obtain
2,22 M o2
o pop oA _ \2(k—1) Ma = L
= T g A T apA) P
- M-1

2.2 2 \M 1 .
__ wpley 141 —ppi) 27) X > (1= ppXi )M — (1 - ppAi)*P. (31)
1= (1= ppAi)? 1= (1= ppr)M k=1
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TABLE | The receiver reverses the operations conducted in the trans-
SYSTEM PARAMETERS OF THE NORTH mitter. The received signal is first passed through the receiving

AMERICAN 1S-136 SANDARD filt d ler. Th l R d to eliminate the IS|
Access Method TDMA Iiter and sampler. en, an equalizer Is used to eliminate the

Transmission Rate 48.6kbps caused by the channel, the phage) of the equalizer output is
" Modulation | #/4 shifted DQPSK extracted, and the phase differenké(n) = ¢(n) —¢p(n—1)is
Transmitting SRRC calculated. The resulting phase difference is fed to a four-phase
Filter roll-off=0.35 decision circuit, producing dé&¢(n)], where def-] denotes
Recelving SRRC the phase decision operation. Using Table II,[de&(n)] is in-
Filter rolk-off=0.35 versely mapped intX (n), Y (n)). Then, the parallel-to-serial
TABLE I converter convert& (n) andY () into a bitstream.
THE MAPPING TABLE OF 7/ 4 SHIFTED DQPSK MODULATION The downlink (from base station to mobile unit) data slot
X(n) ) ) format of the 1S-136 _system is shown in Fig. 3. It consists of
1 1 3n/4 14 SYNC symbols, six SACCH symbols, 65 DATA symbols,
0 1 3r/4 six CDVCC symbols, 65 DATA symbols, and six RSVD sym-
0 0 /4 bols. The 14 SYNC symbols are designed for synchronization.
1 0 —n/4 The equalizer can also use these symbols for training. The six
] . ] CDVCC symbols are known to the receiver before the digital
Using the above expression, we obtain transmission. They are used to distinguish the cochannel users.

c _EN: (1 — pphi)*of
TSIV

B. The Extended Multiple Training Algorithm

The original MLMS algorithm has been used only in the

o 1 training mode [19]. Also, all 14 SYNC symbols are taken as
1—(1— ppr;)? a training block. There are some problems of this approach.
x [1—2(1 — ppA)M=1 = 2(1 — ppA))™ According to our analysis shown in Section Il, the block size

oM—2 oM—1 of the MLMS algorithm should be chosen as a compromise
+ (1= ppdi) +2(1 = i) ] between the smoothing and tracking capabilities. Thus, the
+ (M —-1)(1- up)\i)Q(M—l)} (32) optimal block size may not be 14. Since multiple training is not
applied in the tracking mode, the decision information is not
From (28), we can see that if the other parameters{ and fully explored. Based on the above observations, we make some
)\z) are fixed, the FEV power is a decreasing function of t|~@(ten3i0n to the MLMS algorithm. First, we extend the MLMS
block sizeM. This gives the smoothing property of the MLMSalgorithm to the tracking mode. Second, we let the block size be
algorithm. The larger the block size, the more noise we can sipdesign parameter. For different signal-to-noise ratios (SNRs)
press. From (32), we can see that the LEV power is an increasffigmobile speeds, we may use different block sizes. Also,
function of M. This gives the tracking property of the MLMSDbIocks can even be overlapped. The proposed MLMS algorithm
algorithm. For a large block size, the variation of the system i Now described as follows. The received slot is first divided
the block is large. Since all data in the block will affect the findnto blocks. In each block, data are repeatedly equalized by the
output at a particular time instant, the tracking capability of tHaFE using the MLMS algorithm until a preassigned iteration
MLMS algorithm is then degraded. From the above analysidumber is reached. Then the DFE outputs the equalized data
we can conclude that the choice of the block siZzeshould be In the last iteration and continues to process the next block of
a compromise between the smoothing and tracking capabilitéafa. If the DFE is in the training mode, the SYNC sequence is

of the MLMS algorithm. used as the reference signal. If the DFE is in the tracking mode,
the output from the decision device is used as the reference
IIl. THE PROPOSEDLMS-BASED DFE signal. For ease of description, we let the slot be divided into

L blocks, and each block hdd symbols(LM = 162). The
A. The I1S-136 System weight update equations are identical to (1)—(5), except that the
In this section, we briefly describe the 1S-136 system. Thdesired signal becomes

system parameters for the IS-136 are summarized in Table I. As a(m) in training mode
dix( ):{ !

the table shows, the access method for IS-136 is TDMA. Each . X
dedy; x(m)] intracking mode

carrier is divided into three time slots. The baseband model for
ther /4 shifted DQPSK modulator and demodulator is shown iwhere a;(m) is the original transmitted symbol and def
Fig. 2. Bits from the data source are first passed through the denotes a decision operation. The final DFE output is then
rial-to-parallel converter; the resulting p&ik (n), Y (n)) then y; x,(on). For reference convenience, we call the algorithm
maps a phase differenced(n) according to the rule shown in here the EMLMS algorithm. The total number of iterations can
Table Il. The transmission signal phase is then differentially ehe different from block to block, denoted By;. For simplicity,
coded, i.e.®(n) = ®(n — 1) + A®(n). Thus, the resulting we only use two iteration numbers: one for the training mode,
signal constellation of (n) + jQ(n) is {+1,45} when the denoted as(;, and the other for the tracking mode, denoted
symbol indexn is odd, and is{4(1/v/2)(1 & j)} whenn is as K,. These two parameters control the convergence of the
even. EMLMS DFE. The DFE performs better for largéK, K>);

(33)
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6 65 6 65 6
symbols symbols symbols symbols symbols symbols
SYNC SACCH DATA cbvcc DATA RSVD
Fig. 3. The downlink slot format of the 1S-136 system.
CON ONAL FORWARD EQUALIZATION X BACKWARD EQUALIZATION
SCHEME T |
“ slot #1 > | +—slot#2 —»
1 14 86 91 163 176
SYNC 1 CDVCC 1 SYNC 2
FORWARD BACKWARD
EQUALIZATION EQUALIZATION
S ke ke RPN st i i
eracrary) L3 L¥1 L 311 %
BMTLMS FORWARD BACKWARD
EQUALIZATION EQUALIZATION
|“*|“*|“*|“’! l‘“l"“ﬂ'“|

Fig. 4. The proposed bidirectional equalization scheme.

TABLE Il
COMPARISON OFDFE ALGORITHMS DESIGNED FOR THEIS-136 SYSTEM
¢ use convergence decoding
YPe 1 cpvee 7 speed delay
RLS [13] RLS Yes fast small
small
BRLS [15] RLS No fast {
large
small
BMLMS [19] | LMS No medium 1
large
EMLMS LMS Yes medium small
small
Threshold
BEMLMS LMS Yes Fast .L
medium
Comparison .
BEMLMS LMS Yes Fast medium
TABLE IV

} ! ! > &
l r | r» ] ry | r» 1 T
—-— t—m— L—— :

[P,

L 1 L
< < <
L*1 %1 %1

As we mentioned, the LMS requires a reference signal to
adapt the filter weight vector. In the training mode, this signal
is provided by the encoded SYNC signal. In the tracking mode,
the reference signal is extracted from the received signal [15],
[23]. We first partition the symbol constellation of shift/4
DQPSK into two sets: Set#0{s-(1/v/2)(144)} and Set#1 s
{+£1, +5}. From the above description, we can see that the shift
7 /4 DQPSK coded symbol will be in Set #0 when the symbol
indexn is even, and in Set #1 whenis odd. Thus, if is even,
the phase of the encoded symbol will be an odd multiple /af
(Set #0). In other words(n) = ¢/ 4€e()] = ei*=/4 wherek
is the argument minimizingp(n) — kn /4|, k = £1,£3. If nis
odd, the phase of the encoded symbol will be a multiple &
(Set# 1). In this case(n) = ¢/ 48] = ci(k+1/4 where
k is the argument minimizings(n) — (k+1)w /4|, k = £1, £3.
Note that there is no guarantee that the extracted reference signal
is correct all the time.

COMPUTATIONAL COMPLEXITY COMPARISON OF THEDFE ALGORITHMS

DESIGNED FOR THEIS-136

C. The Bidirectional Equalization

Since the channel is fast-varying, the longer the DFE is in

the tracking mode, the higher the probability it may lose track

of the channel variations. Thus, the BER is generally higher

. Complex .

Algorithm Multiplications Divisions

RLS [13] 162(2.5N? + 4.5N) (2% 162)

BRLS [15] 176(2.5N2 + 4.5N) (2% 176) + 176
BMLMS [19] | (28K, + 148)(2N +1) | (28K, + 148) + 176

EMLMS | (20K; + 142K3)(2N +1) | (20K, + 142K5)

Threshold

BEMLMS | (40K1 +142K2)(2N +1) | (40K: + 142Kz) + L
Comparison

BEAIMS | (40K +142K)(2N +1) | (40K: + 142K0)

around the end of a slot. Note that we can have another SYNC
sequence if we continuously process the next slot, which may
not belong to the current user. Thus, if we can process the current
slot backward and use the SYNC sequence of the next slot, the
BER around the end of the current slot can be reduced. This is

causes a larger fluctuation error.

the basic idea of bidirectional equalization. The proposed bidi-
rectional equalization scheme is shown in Fig. 4. In the con-
however, the computational load also increases linearly witlentional bidirectional schemes [15], [19], forward equalization
these numbers. The other parameter influencing the convstarts from the beginning of the current slot and backward equal-
gence rate is the step size As we can see from Section I, aization starts from the last symbol (symbol 176) in SYNC 2. Our
large: increases the convergence speed of the DFE, but it alsdirectional processing is different from the conventional tech-
nigue. Making use of CDVCC, we divide the 176 symbols into
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two subslots with some overlap (see Fig. 4). Since the CDVG&herel is the block index. As we can see, this monitoring func-
symbols are known, we can use them as an additional trainitign is block-based. This is in contrast to that used in [15] and
sequence. In the first subslot, forward equalization starts frdi®], where the monitoring function is symbol-based. The mon-
the first symbol of the current slot and backward equalizatidgtoring function can be used to indicate the tracking status of the
starts from the last symbol in the CDVCC field (symbol 91). IDFE. Whenf(p) is smaller than a thresho}é we can consider
the second subslot, forward equalization begins from the fitthtat the DFE keeps good track of the channel variations. When
symbol in the CDVCC field (symbol 86) and backward equalf(p) is larger thary3, we consider that the DFE starts to lose
ization begins from the last symbol of SYNC 2 (symbol 176}rack of the channel variations. Using this threshold-based con-
The advantage of this bidirectional equalization scheme is aml mechanism, the proposed bidirectional equalization can be
parent. Since the CDVCC field is at the middle of the data sl&dummarized as follows.

the time that DFE operates in the tracking mode is shortened by1) Start the forward equalization using the EMLMS algo-
half. The output delay due to bidirectional processing may also  rithm and calculate the associated monitoring function. If
be reduced by half. f(P) > g atblockP andP < L/, pause the forward
To reduce the computational requirement per unit time,  equalization. Otherwise, proceed with the forward equal-
the backward and forward equalization are not performed jzation to the end of the subslot.
simultaneously. In other words, at a particular time instant, 2) Start the backward equalization (from blo&K) using
only one directional equalization is allowed. Thus, we require  the EMLMS algorithm and calculate the associated mon-
a control mechanism to determine in which direction the equal- jtoring function. If f(Q) > £ at block@ and Q@ >
ization should proceed. We designed two control mechanisms:  p 4 1, pause the backward equalization. Otherwise, pro-
a threshold-based and a comparison-based mechanism. The ceed with the backward equalization to blaBkt 1.
threshold-based control mechanism is similar to those used in3) If ) > P + 1, set a block index as
[15] and [19]. This control mechanism requires a monitoring

function and an empirical threshold valyge Let L’ be the S — {PJF QJ (35)
number of blocks in a subslot. Define the monitoring function 2
as where|z| denotes the integer part of
1 M 4) Continue the forward equalization from blogk+ 1 to
fi)=— Z le(d))? (34) block S and backward equalization from blogk- 1 back

M i=(—1)M+1 to block S + 1.
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With a proper choose of, the block indexS can approach here. We call this a bidirectional EMLMS (BEMLMS) algo-
the location of the mobile channel deep fade [15]. rithm. A similar bidirectional equalization structure was also
The drawback of the threshold-based algorithm is that viedependently developed in [17]. However, in [17], no detailed
need to determine the threshgldempirically. This may not be description was reported. The other main difference is that the
easy in many cases. To avoid that, we designed another coni®bS algorithm was used in [17]. A final remark is that the re-
mechanism that compares the values of the forward and baeiged 1S-136 standard does not guarantee the availability of the
ward monitoring functions. It is reasonable to assume that th¢NC word in the next slot. Adjacent slots may be transmitted
smaller the monitoring function, the better the tracking condat different power levels or not at all.
tion of the DFE. Thus, we can compare the values of the forward
and backward monitoring functions and determine in which diy - comparisons of DFE Algorithms
rection the DFE should proceed. If the forward monitoring func-
tion is smaller, the DFE proceeds in the forward direction and In this section, we compare the merits of various adaptive
vice versa. Using this comparison-based control mechanism, BfeE algorithms designed for the 1S-136 system. The algorithms

proposed bidirectional equalization can be summarized as fépnsidered include the RLS algorithms proposed by Nakai [13]
lows. and by Liu[15], the LMS-type algorithms proposed by Wei [19],

. o . the EMLMS algorithm, and the BEMLMS algorithm. The prop-

1) Initially, perform fprward equalization to bloc_k ON€ USING, a5 of these algorithms are summarized in Table Ill. For refer-
t_he EMLMS_aIgorlthm and calculate the momtqnng funC'ence convenience, we use the abbreviation BRLS to denote the
tion f(l,)' Similarly, perfo/rm backward equalization toalgorithm in [15] and BMLMS the algorithm in [19]. First, we
block L and calculatef(L’). discuss the processing delay. For the bidirectional algorithms

2) Let b|'OCkp be the latest block that has been forwardlyn [15] and [19], the processing delay can be large when the
equalized and bIo_ch be the latest block that has bee orward DFE meets a deep fade in its early stage. This is be-
backwardly equalizedg > p + 1). It f(p) < f(a). cq,se the backward equalization will not be initiated until the
then proceed to e_quahze blopk-1 forwardly; otherwise entire slot is received. Since we divide the slot into two subslots,
proceed to equallzg the blogk— 1 backwardly. the processing delay is inherently smaller than that in [15] and

3) Repeat Step 2) unif = p + 1. [19]. The processing delay of the comparison-based BEMLMS

Using this scheme, we do not have to determine the thresh@darger than that of the threshold-based BEMLMS because the

value 3. Also, the normalization factor /B4 is not required comparison-based control mechanism needs to compute both
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monitoring functions for the forward and backward equalizave let the identified system be time-invariant and noisy; for the
tion. Thus, the DFE has to wait until all of the subslot symbolsecond one, we let the system be time-varying but noise free.
are received. Fig. 5 shows the simulation results for the first case. Each of the
Next, we compare the computational complexity of each alesults corresponds to the average of 200 simulation trials. This
gorithm (for processing one slot of symbols). This is shown iiigure gives the relation between the FEV power and the block
Table IV. In the tableV represents the tap length of the DFEsize M. The variance of/(n) was 0.1. The theoretical curves
andK; and K, denote the iteration numbers in the training anshdicate that the larger th&/, the smaller the FEV power we
tracking modes, respectively. Here, we assume that the standzad obtain. The simulation curves also show this trend. We also
RLS algorithm and LMS algorithms are used. In the bidiresee that the simulation results are always larger than the theoret-
tional processing, additional divisions may be required for theal one. This is due to the approximations (the direct averaging
calculation of the monitor function. Note that the bidirectionahethod and the independence theory [28]) we used in the deriva-
algorithms of [15] and [19] require 176 additional divisions fotion. We assume that the input vectors are independent, which is
the control mechanism. The threshold-based BEMLMS algnet true in practice. Thus, many values are underestimated. The
rithm requiresl. (number of blocks) additional divisions, whileother thing we can observe is that the smaller the step size, the
the comparison-based BEMLMS requires no extra divisions.dimaller the FEV power we can obtain. This is similar to the stan-
is clear that the computational complexity of the proposed algdard LMS algorithm. Next, we consider the second case. Each
rithm greatly depends on the iteration numbghs , K ). weight of W,.(n) is modeled as a random walk process. We
let all the driving noises have the same poweér which was
0.1. The simulation result is shown in Fig. 6. As we can see, the
larger the block size, the higher the LEV power. We also see that
In this section, we report some simulation results demothe larger the step size the better results we can obtain. The is
strating the effectiveness of the proposed algorithm. We firagain similar to the standard LMS algorithm. We also note that
consider the adequacy of the theoretical results derived in St theoretical results match the simulated ones quite well.
tion Il. The input signaz(n)} in Fig. 1 was set to be white  We then consider the performance of the proposed algorithm.
Gaussian with unit power and the filter lengthto be five. As We adopted the so-called two-ray Rayleigh-fading channel
we have shown, the filter weight vector error has two compoaodel according to the 1S-136 standard recommendation.
nents: the fluctuation error caused by the observation noise &wath of the independent Rayleigh faders was generated by
the lag error caused by the time-varying system. To see the dakes fading model [26], [27]. The carrier frequency of the
dividual effect, we designed two experiments. For the first ongimulation system was assumed to be 900 MHz. The DFE

IV. SIMULATIONS
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used in simulations is fractionally spaced. The feedforwarsd not linear. Whenk; is increased from one to five, a large
filter consists of four taps witf’/2 time space, wher& is improvement is obtained. However, the improvement is soon
the symbol period and the feedback filter is one tap. Each sditurated when we further increasie. The increase oK, also
the simulation results is obtained from 1000 data slots. Fig.hélps, but the performance improvement is insignificant. Thus,
demonstrates the tracking capabilities of the DFE adapted Wg can conclude that the influencefst, which corresponds to
the conventional LMS, EMLMS, BMLMS [19], and BEMLMS the iteration number in the training mode, is much larger than
algorithms for 60 km/h mobile speed (denoted’ais the figure that of K5, which is the iteration number in the tracking mode.
caption). Here, the delay for the second path of the two-rais is different from the EMLMS algorithm, whet&, has a
model, denoted as, was set tdl'. In Fig. 7, the horizontal larger influence on the final result [20]. This result may be due
axis represents the symbol index and the vertical axis giviesthe proposed bidirectional equalization scheme, where the
the symbol error rates (SERS). A high SER indicates that ttracking period is effectively shortened. Thus, the iteration in
probability of losing track of the channel is high. It is obvioushe tracking mode does not produce a further advantage. Since
that the conventional LMS algorithm cannot cope with the faite computational complexity is proportional {d(;, K5),
varying characteristics of the mobile channel. The EMLMSome tradeoff must be made. Based on the above discussion,
algorithm improves the convergence rate of the DFE and the suggest thak(; be set to a value between five and nine and
SER in the second half of the slot. The BMLMS algorithm ha&; be set to one. As we mentioned, the threshold-based control
a low SER around both ends of the slot. However, in the middheechanism requires a parameter Fig. 10 shows the BER
of the slot, the SER is still high. Only the BEMLMS algorithmresults versug. It is clear that3 should be chosen around 0.3.
has alow SER for the entire slot, indicating its superior tracking Fig. 11 shows the simulation results for the BEMLMS
capability. algorithm with the two control mechanisms at mobile speeds of
Since the BEMLMS is a block-iterated algorithm, thes0 and 100 km/h (SNR= 22 dB, g = 0.3, M = 6). From this
block size may have great influence on the final performandegure, we see that the comparison-based control mechanism
Fig. 8 shows the BER versus the block si¥e Here, we let performs better than the threshold-based one. However, the
(K1, K>) = (7,1). From Fig. 8, we find thafl/ = 6 gives an consequence is a longer processing delay. Finally, we compared
optimal result. In the next experiment, we explored the effettte performance of various LMS-based DFE algorithms. This
of the iteration number paifK, K5). The result is shown in is shown in Fig. 12, which includes the BMLMS, the EMLMS,
Fig. 9. It is seen that the equalization performance is improvadd the BEMLMS. We can see that the performance of the
as the values ofK7, K») increase. However, their relationshipBEMLMS DFE with (K7, K») = (7,1) at 100 km/h is similar
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TABLE V

COMPUTATIONAL COMPLEXITY COMPARISON OF THEDFE ALGORITHMS

DESIGNED FOR THEIS-136 &STEM (J\T =4)

Algorithm Muﬁ(i):)lllil;::’i(ons R Remarks
RLS [13] 13770 100%
BRLS [15] 14960 109%

BMLMS [19] 5632 41% K, =13
EMLMS 12210 89% | (K1, K2) = (20,5)
BEMLMS 4642 34% | (K1, K2) =(7,1)

to those of BMLMS DFE withK

also compared the computational complexity of various DFE
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(2]

(3]

(4]

(5]

(6]

1 = 13 and the EMLMS
DFE with (K;,K>) = (20,5) at 60 km/h. The BER of [7]
BEMLMS DFE at 60 km/h is much lower than the others. We

algorithms. The parameters of the LMS-based DFEs are those
used in Fig. 12. Since the conventional adaptive algorithm[9]
uses the RLS algorithm, we used its complexity as a reference.
Only complex multiplications were compared. We define a1

complexity ratioR as

R

~ MULaLg
~ MULRpLg

(11]

(36)

(12]

where MULgi1s denotes the complex multiplications required

by the standard RLS DFE (to process one slot) and M4

[13]

denotes the complex multiplications required by the algorithm
to be compared. The complexity ratio for various adaptive algo-

rithms can be obtained using Table IV with the proper parame

ters substituted. The results are shown in Table V, from which
we can see that the computational complexity of the BEMLMJ15]
algorithm is the smallest among all and is only one-third of the

standard RLS algorithm.

V. CONCLUSION

(16]

(17]

In this paper, we propose a bidirectional LMS-based DFE for
the North American IS-136 cellular radio system. The proposedis]
algorithm combines an extended multiple training and bidirec-
tional processing techniques. This combination enables the DF,
to effectively equalize symbols distorted by the channel and at
the same time maintains the low computational complexity of

the LMS algorithm. The convergence properties of the MLMS!2

algorithm are also analyzed. Simulation results show that the
proposed DFE can be applied at vehicle speeds as high as 160!
km/h and that the required computational complexity is only
34% of that for the standard RLS DFE. To achieve good perforg2]
mance at a high mobile speed, the conventional DFE usually has

to use the RLS algorithm. For the first time, to the best of our,

knowledge, the LMS algorithm can be used to achieve a sim-
ilar performance as the RLS algorithm. Due to the simple struc-
ture and low computational complexity, the proposed algorithn]24]
is very suitable for real-world implementation. As a matter of[25]
fact, a highly efficient application-specific IC design has been

developed in [25].
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