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ABSTRACT. Let M be a compact immersed surface in the unit sphere S3 with
constant mean curvature H. Denote by ¢ the linear map from T3, (M) into
Tp,(M), ¢ = A — g[, where A is the linear map associated to the second
fundamental form and I is the identity map. Let ® denote the square of the
length of ¢. We prove that if ||®||;2 < C, then M is either totally umbilical or
an H(r)-torus, where C is a constant depending only on the mean
curvature H.

1. INTRODUCTION

Let M be a compact immersed hypersurface in the unit sphere S”*! with con-
stant mean curvature H. Denote by h = [h;;] the second fundamental form of M
and by ¢ the tensor ¢;; = hi; — 513 Let ® denote the square of the length of
¢. It is well known that if H =0 and 0 < ® < n, then M is either the equatorial
sphere or a Clifford torus [3]. Recently, H. Alencar and M. do Carmo extended the
above result to a hypersurface M with constant mean curvature H [1]. They proved
that M is either totally umbilical or an H (r)-torus if ® satisfies a certain pointwise
pinching condition. In 1989, C. L. Shen proved that a minimal hypersurface M is
totally geodesic if M is of nonnegative sectional curvature, and ¢ satisfies a certain
global pinching condition [8]. Later, the first author improved a result of Shen in
the case of n = 2 and found a sharp bound concerning the global pinching condition
[6]. The purpose of this paper is to extend our global theorem to a surface M with
constant mean curvature H and obtain the best constant.

Before stating our main result, let B be the constant B = 2 + H2 and m(B)

- VBaxz?42(B— 2);c+B\/_
2\/_ VB+z)2((x2—B)2+8x2)

be the maximum value of the function ¢(z) = on [0, c0).

The following is our main result.

Theorem 1.1. Let M be a compact immersed surface in the unit sphere S3with
constant mean curvature H. Then
29

Dy > 21y | ——
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where g is the genus of M and ||-||2 is the L?-norm. The equality holds if and only if
M is either totally umbilical or an H(r)-torus. In particular, if ||®]|2 < 2, /ﬁ,

then M is either totally umbilical or an H(r)-torus.

It should be noted that for M to be either totally umbilical or an H (r)-torus,
[|®]|2 = 277@(%)%. It turns out that there exists a constant Hy > 2 such that
m(B) = (%)% for all |H| < Hy. As a immediate consequence of the above result,
we state

Corollary 1.2. Let M be a compact immersed surface in the unit sphere S® with
constant mean curvature H, |H| < Hy. Then

B, s
1912 > 2m/29(5) %,

where g is the genus of M and ||-||2 is the L>-norm. The equality holds if and only if
M s either totally umbilical or an H (r)-torus. In particular, if ||®||2 < 277\/5(%)%,
then M is either totally umbilic or an H (r)-torus.

For the proof of the main theorem, we shall need the following Bernstein-Hopf
theorem (see [2], [B]).

Theorem 1.3. Let M be a compact immersed surface in the unit sphere S3 with
constant mean curvature H. If M is a topological sphere, then M 1is totally umbil-
ical.

2. NOTATIONS AND AUXILIARY RESULTS

Let M be a compact connected immersed surface in the unit sphere S3. Following
the notations of [1] and [3],

Lemma 2.1. 3A® = ®(B-®)+)" ¢7,;, where ¢iji denote the covariant derivative
of bij.

Lemma 2.2. |[V®|? = 2@2(1%‘1@'
Lemma 2.3. If ® > B, then ® is a constant function, ® = B, and M is an
H(r)-torus.

Proof. By Lemmas 2.1 and 2.2, we have %Alog@ = B — ® at the points where ®
is positive. It follows that ® = B on M. O

According to Lemma 2.1 and Lemma 2.3, we see that if ® is a constant function,
then either & =0 or ® = B.

In the minimal case, H. B. Lawson proved that the set of all zeros of ® is either
the whole space M or at most a finite set of points [7]. We need the following
analogous result for the case that M is with constant mean curvature.

Lemma 2.4. The set of all zeros of ® is either the whole M or at most a finite
set of points.

Proof. The proof of the lemma is similar to that of Lawson. Let us sketch the proof
for completeness. We use an isothermal coordinate (u,v) on a neighborhood D in
M. Denote the position vector of this immersion by X and the unit normal of M
in S by N. Then the mean curvature H and the Gaussian curvature K are given
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by 2z (Xuu 4+ Xoo) - N and 27 [(Xyw - N)( Xy - N) — (Xuo - N)?] respectively, where
F?=X, X.=X, X,.

Since M is of constant mean curvature, the Weingarten equations imply that
Xuv - N is harmonic in the (u,v) coordinate, X,, - N and X,, - N differ by a
constant if X, - N is constant on D, and the zero set of X, - N and that of
(Xyuw — Xyo) - N intersect transversely at the points where the gradient of X, - N
does not vanish. Let G be the set of all points where the gradient of X, - IV
vanishes. Since X, - N is harmonic, G is either isolated or the whole D. For G
being isolated, the set of all zeros of ® is isolated. In the other case, the set of all
zeros of @ is either empty or the whole D. [l

Lemma 2.5. If M is not totally umbilical, then

k

P
lim / — =167(g — 1)
6*0; 8B.(p:)
where p1,po, -, pr constitute all the zeros of ® and ®, denotes the derivative of

® on OBc(p;) in the radial direction from p;. In particular, if ® is positive on M,
then M is a topological torus.

Proof. At the points where ® is positive, by Lemma 2.2, we get

(2.1) Alog®d = B — ®.

Integrating (2.1) over M, = M \ Ule B.(pi), we get, from the Gauss equation
(2.2) 9K = B — O,

where K is the Gaussian curvature of M, the assertion by Stokes’s theorem and
the theorem of Gauss-Bonnet. |

Lemma 2.6.

H— /23 H+ /23
/ (g +tan~! =—*— — tan™’ %)(B — ®) +2v28 > 4n2(1 + g).
M

Proof. Regard M as an immersed surface of R*. Then the total absolute curvature
of M in the sense of [ is given by

cos 0)(sin 6 + 3

27 — 2 _ — 2
T(M):/ / |(sing + V25— H? VQQSH H= V25— H? o oVdoav
M JO

)(B — ®) + 2v20.

/ i L H -2 L H V28
—+tan ——— —tan e
2 2 2

By the well-known inequality of Chern-Lashof 4], we have

2

T(M) 2 T (bo + b + bo),

where b; is the ¢th Betti number relative to the real field, for ¢ = 0,1,2. Since M
is two-dimensional, by = 1, by = 2¢ and by = 1. O
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3. PROOF OF MAIN RESULTS

We are now in position to prove the main result of Theorem 1.1. We may
assume that @ is positive except possibly at a finite set of points (see Lemma 2.4).
By Lemmas 2.2 and 2.6, we get

/ Q@er(B)Zd)?jk — (E +tan~! m —tan~?! H—’—7\/ﬁ)(3 — @) — 2v20
M 2 2 2

- /Mm(B) S 62+ [% - (g + tan~! H%/ﬁ —tan~! H%‘/ﬁ)]us — o)

= lim Mem(B) ‘2?2 % \/EZZQ\/E - (g +tan~! H%@ —tan~! H%@)]Alogq)
= 615% Mem(B) ‘V;;P + %V[% - (g +tan~1 H%\/ﬁ —tan~! H%@)]Vlogyb
=sx1 =32 - T+ [ fmim) - 2v2 (gi P o g)l > 2

> sfrufg)(% -2

where the equality holds if and only if ® is constant. On the other hand, according
to Lemma 2.6, we get

2
(3.1) 2vV2BArea(M) + m(B)/ > 7y = 8mPg — 24/ =8m(g —1).
M B
By combining (2.2) with the inequality (3.1), it follows from Lemma 2.1 that

m(B)/Mq>2 > 8n2g + (Bm(B) — 2\/%)/Mq> > 8n?g.

It remains to show that the second assertion holds. Suppose now that ||®||2
27,/ m(QB). The first assertion implies that ¢ = 0 or 1. If g = 1, then ||®||2

IN

2, /ﬁ and ® is a constant function. If g = 0, then by Theorem 1.3, M is
totally umbilical. This completes the proof of Theorem 1.1.
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