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Abstract. Let M be a compact immersed surface in the unit sphere S3 with
constant mean curvature H. Denote by φ the linear map from Tp(M) into

Tp(M), φ = A − H
2
I, where A is the linear map associated to the second

fundamental form and I is the identity map. Let Φ denote the square of the
length of φ. We prove that if ||Φ||L2 ≤ C, then M is either totally umbilical or
an H(r)-torus, where C is a constant depending only on the mean
curvature H.

1. Introduction

Let M be a compact immersed hypersurface in the unit sphere Sn+1 with con-
stant mean curvature H . Denote by h = [hij ] the second fundamental form of M
and by φ the tensor φij = hij − H

n δij . Let Φ denote the square of the length of
φ. It is well known that if H = 0 and 0 ≤ Φ ≤ n, then M is either the equatorial
sphere or a Clifford torus [3]. Recently, H. Alencar and M. do Carmo extended the
above result to a hypersurface M with constant mean curvature H [1]. They proved
that M is either totally umbilical or an H(r)-torus if Φ satisfies a certain pointwise
pinching condition. In 1989, C. L. Shen proved that a minimal hypersurface M is
totally geodesic if M is of nonnegative sectional curvature, and Φ satisfies a certain
global pinching condition [8]. Later, the first author improved a result of Shen in
the case of n = 2 and found a sharp bound concerning the global pinching condition
[6]. The purpose of this paper is to extend our global theorem to a surface M with
constant mean curvature H and obtain the best constant.

Before stating our main result, let B be the constant B = 2 + H2

2 and m(B)

be the maximum value of the function q(x) = 2
√

2
√
Bx2+2(B−2)x+B

√
B

(
√
B+x)2((x2−B)2+8x2)

on [0,∞).
The following is our main result.

Theorem 1.1. Let M be a compact immersed surface in the unit sphere S3with
constant mean curvature H. Then

||Φ||2 ≥ 2π

√
2g

M(B)
,
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where g is the genus of M and ||·||2 is the L2-norm. The equality holds if and only if
M is either totally umbilical or an H(r)-torus. In particular, if ||Φ||2 ≤ 2π

√
2

M(B) ,

then M is either totally umbilical or an H(r)-torus.

It should be noted that for M to be either totally umbilical or an H(r)-torus,
||Φ||2 = 2π

√
2g(B2 )

3
4 . It turns out that there exists a constant H0 ≥ 2 such that

m(B) = ( 2
B )

3
2 for all |H | ≤ H0. As a immediate consequence of the above result,

we state

Corollary 1.2. Let M be a compact immersed surface in the unit sphere S3 with
constant mean curvature H, |H | ≤ H0. Then

||Φ||2 ≥ 2π
√

2g(
B

2
)

3
4 ,

where g is the genus of M and ||·||2 is the L2-norm. The equality holds if and only if
M is either totally umbilical or an H(r)-torus. In particular, if ||Φ||2 ≤ 2π

√
2(B2 )

3
4 ,

then M is either totally umbilic or an H(r)-torus.

For the proof of the main theorem, we shall need the following Bernstein-Hopf
theorem (see [2], [5]).

Theorem 1.3. Let M be a compact immersed surface in the unit sphere S3 with
constant mean curvature H. If M is a topological sphere, then M is totally umbil-
ical.

2. Notations and auxiliary results

Let M be a compact connected immersed surface in the unit sphere S3. Following
the notations of [1] and [3],

Lemma 2.1. 1
2∆Φ = Φ(B−Φ)+

∑
φ2
ijk where φijk denote the covariant derivative

of φij .

Lemma 2.2. |∇Φ|2 = 2Φ
∑
φ2
ijk .

Lemma 2.3. If Φ ≥ B, then Φ is a constant function, Φ ≡ B, and M is an
H(r)-torus.

Proof. By Lemmas 2.1 and 2.2, we have 1
2∆ log Φ = B − Φ at the points where Φ

is positive. It follows that Φ = B on M .

According to Lemma 2.1 and Lemma 2.3, we see that if Φ is a constant function,
then either Φ = 0 or Φ = B.

In the minimal case, H. B. Lawson proved that the set of all zeros of Φ is either
the whole space M or at most a finite set of points [7]. We need the following
analogous result for the case that M is with constant mean curvature.

Lemma 2.4. The set of all zeros of Φ is either the whole M or at most a finite
set of points.

Proof. The proof of the lemma is similar to that of Lawson. Let us sketch the proof
for completeness. We use an isothermal coordinate (u, v) on a neighborhood D in
M . Denote the position vector of this immersion by X and the unit normal of M
in S3 by N . Then the mean curvature H and the Gaussian curvature K are given
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by 1
F 2 (Xuu +Xvv) ·N and 1

F 4 [(Xuu ·N)(Xvv ·N)− (Xuv ·N)2] respectively, where
F 2 = Xu ·Xu = Xv ·Xv.

Since M is of constant mean curvature, the Weingarten equations imply that
Xuv · N is harmonic in the (u, v) coordinate, Xuu · N and Xvv · N differ by a
constant if Xuv · N is constant on D, and the zero set of Xuv · N and that of
(Xuu −Xvv) ·N intersect transversely at the points where the gradient of Xuv ·N
does not vanish. Let G be the set of all points where the gradient of Xuv · N
vanishes. Since Xuv · N is harmonic, G is either isolated or the whole D. For G
being isolated, the set of all zeros of Φ is isolated. In the other case, the set of all
zeros of Φ is either empty or the whole D.

Lemma 2.5. If M is not totally umbilical, then

lim
ε→0

k∑
i=1

∫
∂Bε(pi)

Φr
Φ

= 16π(g − 1)

where p1, p2, · · · , pk constitute all the zeros of Φ and Φr denotes the derivative of
Φ on ∂Bε(pi) in the radial direction from pi. In particular, if Φ is positive on M ,
then M is a topological torus.

Proof. At the points where Φ is positive, by Lemma 2.2, we get

∆ log Φ = B − Φ.(2.1)

Integrating (2.1) over Mε = M \
⋃k
i=1 Bε(pi), we get, from the Gauss equation

2K = B − Φ,(2.2)

where K is the Gaussian curvature of M , the assertion by Stokes’s theorem and
the theorem of Gauss-Bonnet.

Lemma 2.6.∫
M

(
π

2
+ tan−1 H −

√
2Φ

2
− tan−1 H +

√
2Φ

2
)(B − Φ) + 2

√
2Φ ≥ 4π2(1 + g).

Proof. Regard M as an immersed surface of R4. Then the total absolute curvature
of M in the sense of [4] is given by

T (M) =

∫
M

∫ 2π

0

|(sin θ +
H +

√
2S −H2

2
cos θ)(sin θ +

H −
√

2S −H2

2
cos θ)|dθdV

=

∫
M

(
π

2
+ tan−1 H −

√
2Φ

2
− tan−1 H +

√
2Φ

2
)(B − Φ) + 2

√
2Φ.

By the well-known inequality of Chern-Lashof [4], we have

T (M) ≥ π2

2
(b0 + b1 + b2),

where bi is the ith Betti number relative to the real field, for i = 0, 1, 2. Since M
is two-dimensional, b0 = 1, b1 = 2g and b2 = 1.
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3. Proof of main results

We are now in position to prove the main result of Theorem 1.1. We may
assume that Φ is positive except possibly at a finite set of points (see Lemma 2.4).
By Lemmas 2.2 and 2.6, we get∫
M

2
√

2B +m(B)
∑

φ2
ijk − (

π

2
+ tan−1 H −

√
2Φ

2
− tan−1 H +

√
2Φ

2
)(B −Φ)− 2

√
2Φ

=

∫
M
m(B)

∑
φ2
ijk + [

2
√

2√
B +

√
Φ
− (

π

2
+ tan−1 H −

√
2Φ

2
− tan−1 H +

√
2Φ

2
)](B − Φ)

= lim
ε→0

∫
Mε

m(B)
|∇Φ|2

2Φ
+

1

2
[

2
√

2√
B +

√
Φ
− (

π

2
+ tan−1 H −

√
2Φ

2
− tan−1 H +

√
2Φ

2
)]∆ log Φ

= lim
ε→0

∫
Mε

m(B)
|∇Φ|2

2Φ
+

1

2
∇[

2
√

2√
B +

√
Φ
− (

π

2
+ tan−1 H −

√
2Φ

2
− tan−1 H +

√
2Φ

2
)]∇ log Φ

− lim
ε→0

∫
∂Mε

[
2
√

2√
B +

√
Φ
− (

π

2
+ tan−1 H −

√
2Φ

2
− tan−1 H +

√
2Φ

2
)]

Φr

2Φ

= 8π(1− g)( 2
√

2√
B
− π

2
) +

∫
M

[m(B) − 2
√

2

√
BΦ2 + 2(B − 2)Φ +B

√
B

(
√
B + Φ)2((Φ2 − B)2 + 8Φ2)

]
∑

φ2
ijk

≥ 8π(1− g)( 2
√

2√
B
− π

2
),

where the equality holds if and only if Φ is constant. On the other hand, according
to Lemma 2.6, we get

2
√

2BArea(M) +m(B)
∫
M

∑
φ2
ijk ≥ 8π2g − 2

√
2
B

8π(g − 1).(3.1)

By combining (2.2) with the inequality (3.1), it follows from Lemma 2.1 that

m(B)
∫
M

Φ2 ≥ 8π2g + (Bm(B) − 2

√
2
B

)
∫
M

Φ ≥ 8π2g.

It remains to show that the second assertion holds. Suppose now that ||Φ||2 ≤
2π
√

2
m(B) . The first assertion implies that g = 0 or 1. If g = 1, then ||Φ||2 =

2π
√

2
m(B) and Φ is a constant function. If g = 0, then by Theorem 1.3, M is

totally umbilical. This completes the proof of Theorem 1.1.
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