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Hybridization of electron, light-hole, and heavy-hole states in InAsÕGaSb quantum wells
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We have investigated the hybridization of the electron states, the light-hole states and the heavy-hole states
in InAs/GaSb broken-gap quantum wells. This effect is profound when the InAs layer and the GaSb layer are
sufficiently thick such that the electron level lies below the heavy-hole level and the light-hole level at zone
center. To calculate the dispersions and the wave functions in these structures we have applied the scattering
matrix algorithm to the eight-bandk•p model. We have found a hybridization gap as large as 20 meV resulting
from the anticrossing of the electron and the light-hole dispersion curves. A multiple anticrossing of the
electron states, the light-hole states and the heavy-hole states may occur when the heavy hole level lies in the
hybridization gap produced by the electron states and the light-hole states. This unusual hybridization of the
three subbands, which behaves differently for the ‘‘spin-up’’ and the ‘‘spin-down’’ states, has been investigated
in details around the anticrossing point. While the electronlike and light holelike states mix strongly, the heavy
holelike state may remain unperturbed.
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I. INTRODUCTION

In broken-gap heterostructures such as InAs/GaSb,
conduction band of InAs overlaps with the valence band
GaSb. They exhibit unusual physical properties which are
interest to both fundamental research and device app
tions. The InAs/GaSb resonant tunneling structures,1–4 the
InAs/GaSb/AlSb infrared detectors and laser dio
structures,5–7 the AlSb/InAs/GaSb/AlSb quantum wells,8–11

and the InAs/GaSb superlattices12,13 have been fabricated
and investigated. In these structures the conduction b
states in InAs couple strongly to the valence band state
GaSb, resulting in a significant interband tunneling transp
between the electronlike levels and the holelike levels w
they are separated by a weak barrier.1–4 The electron-hole
coupling in the quantum well structures and the superlatt
gives rise to a large optical absorption coefficient and
efficient stimulated emission at room temperature.5–7 The
coupling-induced charge transfer between the InAs layer
the GaSb layer manifests itself in a switch between the h
dominating transport and the electron-dominating transp
By varying the InAs layer thickness and the GaSb la
thickness in a quantum well, at zone center~the in-plane
wave vectorki50) the electronlike level can be pushed b
low the heavy-hole level. Hence, an anticrossing pheno
enon may occur at a finite value ofki . The so-produced
small hybridization gap (,10 meV) in the in-plane disper
sion has been observed recently.10–13

The electronic states of broken-gap heterostructures h
been studied with thek•p method,13–19 the tight-binding
method,20,21 the pseudopotential plane wave approach,22,23

and the effective bond orbital model.24,25 Band structure cal-
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culations have suggested interesting features in the in-p
dispersions of InAs/GaSb superlattices,13–15,22,23as well as of
InAs/GaSb quantum well structures.16,17,19,24,25The opening
of a hybridization gap as the InAs and the GaSb layer thi
nesses change was already mentioned above. Due to
spin-orbit interaction which may be significant in asymmet
cal structures, the in-plane dispersions become s
dependent.25 Hence, the magnitudes of the hybridizatio
gaps depend also on the spin orientation.

In this paper we will investigate the features of hybridiz
dispersions and the associated wave functions in InAs/G
quantum wells. We will use an eight-bandk•p model to
construct the bulk states in all layers, and then match
wave functions at interfaces with the boundary conditions
Burt’s envelope function theory.26,27 We will generalize the
scattering matrix algorithm, which was proposed in Ref.
for calculating the transmission coefficients, to calculate
energy levels. This algorithm does not invoke the invers
of nearly singular matrices and so avoids the problem
numerical instability when the quantum well thickness
creases. Recently, thick InAs/GaSb quantum wells have b
investigated experimentally.12

In Sec. II we present the theoretical model for the inve
tigation of electronic band structures using the eight-ba
k•p method. The scattering matrix algorithm is then d
scribed in Sec. III, and the calculated dispersions and w
functions are discussed thoroughly in Sec. IV. Due to
strong coupling between electrons and light holes, the res
ing energy gap can be as large as 20 meV. We have anal
the unusual features of wave functions when the electron,
heavy-hole, and the light-hole dispersion curves anticross
multaneously. It is interesting to see the complicated beh
©2001 The American Physical Society32-1
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ior of wave functions when a heavy-hole-like energy lev
lies within the gap produced by the hybridization betwe
the electronlike and the light-hole-like states. A conclusion
reached in the final Sec. V.

II. MODEL DESCRIPTION

We consider an InAs/GaSb broken-gap quantum well e
bedded in two wide gap AlSb layers, as shown in Fig. 1. T
energy band structure calculation is based on the eight-b
k•p model for theG point of zinc blende crystals, includin
the two lowest conduction bands and the six highest vale
bands. The growth direction̂010& of our sample is defined
as they axis. In order to obtain concrete numerical results
analyzing the physical properties, we will derive the in-pla
dispersion relation along thê100& direction, which we will
take as thex axis. Then, in terms of the basis functions

u15us1/2,1/2&5 i uS↑&, ~1a!

u25up3/2,3/2&5
2 i

A2
u~X1 iY!↑&, ~1b!

u35up3/2,21/2&5 iA1

6
u~X2 iY!↑&1 iA2

3
uZ↓&, ~1c!

u45up1/2,21/2&5 iA1

3
u~X2 iY!↑&2 iA1

3
uZ↓&, ~1d!

u55us1/2,21/2&5 i uS↓&, ~1e!

u65up3/2,23/2&5
i

A2
u~X2 iY!↓&, ~1f!

u75up3/2,1/2&52 iA1

6
u~X1 iY!↓&1 iA2

3
uZ↑&, ~1g!

u85up1/2,1/2&52 iA1

3
u~X1 iY!↓&2 iA1

3
uZ↑&, ~1h!

FIG. 1. Conduction and valence band diagrams of the Al
InAs/GaSb/AlSb broken-gap quantum well structure.
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the 838 Hamiltonian matrix can be written in the bloc
diagonal form26,27

Ĥ5S Ĥ1 0

0 Ĥ2

D . ~2!

The 434 blocksĤ6

Ĥ65S Ĥcc Pk̂6 Pk̂7 /A3 A2Pk̂7 /A3

k̂7P Ev1F̂6 R̂7 A2R̂7

k̂6 /A3P R̂6 Ev1Ĝ7 D̂7

A2k̂6 /A3P A2R̂6 D̂7 Ev1Ê72D

D ,

~3!

contain the operators

k̂657 i ~ k̂x6 i k̂y!/A2, ~4!

Ĥcc5Ec1 k̂Ack̂, ~5!

Ĝ65
\2

2m
@ k̂1~g22g1!k̂21 k̂2~g22g1!k̂1#

7
1

6
@ k̂1~N12N2!k̂22 k̂2~N12N2!k̂1#, ~6!

F̂652
\2

2m
@ k̂1~g21g1!k̂21 k̂2~g21g1!k̂1#

7
1

2
@ k̂1~N12N2!k̂22 k̂2~N12N2!k̂1#, ~7!

Ê652
\2

2m
@ k̂1g1k̂21 k̂2g1k̂1#

7
1

3
@ k̂1~N12N2!k̂22 k̂2~N12N2!k̂1#, ~8!

R̂652
\2A3

2m
@ k̂1g2k̂11 k̂2g2k̂2#

7
1

2A3
~ k̂2Nk̂22 k̂1Nk̂1!, ~9!

and

D̂652
\2

2m
A2@ k̂1g2k̂21 k̂2g2k̂1#

7
1

3A2
@ k̂1~N12N2!k̂22 k̂2~N12N2!k̂1#.

~10!

In the above equations,P is the interband momentum ma
trix element,Ec the conduction band edge,Ev the valence
band edge, andD the split-off energy.g1 , g2, andg3 are the

/

2-2
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modified Luttinger parameters, withm as the free electron
mass. The effect of remote bands on the electron effec
mass is contained inAc . All these parameters depend o
material, and thus are functions ofy. Therefore, their orders
with the momentum operators are important.N1 andN2 can
be expressed in terms of the modified Luttinger parame
as

N252~\2/2m!~g122g211!, ~11!

N152~\2/2m!~6g32g112g221!, ~12!

andN5N11N2 . In writing the block diagonal form of the
Halmiltonian in Eq.~2!, we have neglected terms containin
Kane’s asymmetry parameterB and setkz to be zero. The
linear-in-k terms of the spin-orbit interaction have also be
dropped since their effect is very small compared to tha
the k-independent spin-orbit interaction for the range of
plane wave vectors that we are interested in. The enve
functionsc i and the corresponding eigenenergiesE are then
obtained by solving the equations

(
j 51

8

Ĥ i j c j5Ec i , i 51,2, . . . ,8. ~13!

It has been shown27 that if Ac is finite, spurious solutions
with large real wave vectors appear in the band gaps of
blende crystals. To eliminate these nonphysical solutio
one setsAc50 and uses the remaining empirical paramet
to include the effect of remote bands on the electron effec
mass, as described in Ref. 27. Since the Hamiltonian h
block-diagonal form, we can solve separately the equati
for the ‘‘spin-up’’ block Ĥ1 and the ‘‘spin-down’’ blockĤ2 .
In fact, we need to solve the equations for the ‘‘spin-u
states only, because due to the time reversal symmetry
dispersions for the ‘‘spin-down’’ states can be obtained fr
those of the ‘‘spin-up’’ states by changing the sign of t
in-plane wave vector.

From the first (i 51) of the eight equations in Eq.~13!,
the conduction band envelope function of the ‘‘spin-u
states can be expressed in terms of the valence band e
lope functions as

c15
P

E2Ec
~ k̂1c21 k̂2c3 /A31A2k̂2c4 /A3!. ~14!

The conduction band envelope function for the ‘‘spin-dow
states,c5, can be expressed in a similar way. Consequen
the problem of the 434 block matrixĤ1 reduces to that of
the 333 block matrix Hamiltonian

Ĥ18 5S Ev1F̂18 R̂28 A2R̂28

R̂18 Ev1Ĝ28 D̂28

A2R̂18 D̂28 Ev1Ê28 2D
D , ~15!

where the elementsĜ28 , F̂18 , Ê28 , R̂68 , andD̂28 are obtained
from the corresponding elements given by Eqs.~6!–~10! by
replacingN, N1 , g1 , g2, andg3 with
23533
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N85N1
P2

E2Ec
, ~16!

N18 5N11
P2

E2Ec
, ~17!

g185g12
Ep

3~E2Ec!
, ~18!

g285g22
Ep

6~E2Ec!
, ~19!

g385g32
Ep

6~E2Ec!
. ~20!

HereEp52mP2/\2. The equation for the valence band e
velope functions of the ‘‘spin-up’’ states then becomes

Ĥ8C5EC, C5@c2 c3 c4#T. ~21!

III. SCATTERING MATRIX ALGORITHM

In the conventional transfer matrix method, the coe
cients of the forward and the backward waves in one la
are determined by those of the front layer and proper bou
ary conditions. This method may, however, give rise to
stability in numerical results as a rapid growing wave an
rapid decaying wave are both present in a thick layer. In t
case, the decaying wave is overwhelmed and neglected c
pared to the growing wave at one of the boundaries of
layer. Consequently, it is impossible to determine definit
the coefficient of the neglected decaying wave. In the pres
work, we use the scattering matrix algorithm in calculati
of band structures to avoid the problem with the trans
matrix technique. In this method, the coefficients of the o
going waves are obtained definitely from those of the inco
ing waves through the scattering matrix.

The envelope functions of the entire heterostructure
constructed as linear combinations of the bulk eigenstate
each layer. For thenth layer the bulk eigenstates can b
expressed in forms of plane wavee(n)exp@ikxx1iky

(n)y#, where
e(n) is a 331 column vector:e(n)5@e2

(n) e3
(n) e4

(n)#T. Substi-
tuting the bulk eigenstates into Eq.~21!, we arrive at an
equation for the dispersions and the eigenvectors of thenth
layer

~B2
(n)ky

(n)21B1
(n)iky

(n)1B0
(n)!e(n)50. ~22!

The matricesB2
(n) , B1

(n) , B0
(n) are given by

B2
(n)5S 2~g281g18! 2A3g28 2A6g28

2A3g28 g282g18 2A2g28

2A6g28 2A2g28 2g18
D , ~23!
2-3
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B1
(n)5kxS 0 22A3g38 22A6g38

2A3g38 0 0

2A6g38 0 0
D , ~24!

B0
(n)5kx

2S 2~g281g18! A3g28 A6g28

A3g28 ~g282g18! 2A2g28

A6g28 2A2g28 2g18
D

2S e 0 0

0 e 0

0 0 e1d
D , ~25!

wheree52m(E2Ev)/\2 andd52mD/\2.
The nontrivial solutions of Eq.~22! satisfy a third order

polynomial equation inky
(n)2, in which the coefficients de

pend onE and kx . For a givenE and kx , there are six
complex solutions6ky,i

(n) with i 51, 2, 3, for the six corre-
sponding eigenvectorse6 i

(n) . Then, the envelope functions o
the entire heterostructure in thenth layer can be written as

C5exp~ ikxx! (
j 51,2,3

@aj
(n)exp@ iky, j

(n)~y2yn21!#

3e1 j
(n)1bj

(n)exp@2 iky, j
(n)~y2yn!# e2 j

(n)#]. ~26!

In the above equation,yn21 and yn are they coordinates
which define the left and right boundaries of thenth layer.
The coefficientsaj

(n) and bj
(n) are for, respectively, the for

ward and the backward waves in thenth layer. They are
determined by the boundary conditions, which are derived
integrating Eq.~21! across an interface. We define a mat
ĤB as

ĤB~kx ,k̂y!5S F̂B R̂2
B A2R̂2

B

R̂1
B ĜB D̂B

A2R̂1
B D̂B ÊB

D , ~27!

where

F̂B5
\2

2m
i ~g181g28!k̂y2

1

2
~N18 2N2!kx , ~28!

R̂6
B 5

\2

2m
iA3g28k̂y7

1

2A3
N8kx , ~29!

ĜB52
\2

2m
i ~g282g18!k̂y1

1

6
~N18 2N2!kx , ~30!

D̂B5
\2

2m
iA2g28k̂y1

1

3A2
~N18 2N2!kx , ~31!

ÊB5
\2

2m
ig18k̂y1

1

3
~N18 2N2!kx . ~32!
23533
y

The boundary conditions then imply that the vector functio
C and ĤBC are continuous at each interface.

Under these boundary conditions, the coefficients for t
neighbor layers can be connected by a transfer matrix

M (n11)5S D (n)21 0

0 I D M̄ (n11)S I 0

0 D (n11)D ~33!

as

S a(n)

b(n)D 5M (n11)S a(n11)

b(n11)D , ~34!

where I is the 333 identity matrix, andD (n) is a 333 di-
agonal matrix with the elements

Di j
(n)5d i j exp@ iky, j

(n)~yn2yn21!#. ~35!

Since matrixD (n) is diagonal, its inversion can be obtaine
by inverting each matrix element.M̄ (n11) is a nonsingular
invertible matrix which can be expressed as

M̄ (n11)5S e1
(n) e2

(n)

f1
(n) f2

(n) D 21S e1
(n11) e2

(n11)

f1
(n11) f2

(n11) D , ~36!

where e6
(n)5(e61

(n) e62
(n) e63

(n) ) and f6
(n)5(f61

(n) f62
(n) f63

(n) ), f6 j
(n)

5ĤBe6 j
(n) , where in operatorĤB , k̂y is replaced by6ky, j

(n) .
The coefficientsa(n) andb(m) of the outgoing waves and

the coefficientsa(m) andb(n) of the incoming waves are con
nected by a scattering matrixS(m,n) as

S a(n)

b(m)D 5S~m,n!S a(m)

b(n) D . ~37!

Using Eqs.~34! and~37!, we can derive the following recur
sive formula for submatricesSi j (m,n) of the scattering
matrix28

S11~1,n11!5@ I 2M11
(n11)21S12~1,n!M21

(n11)#21

3M11
(n11)21S11~1,n!, ~38a!

S12~1,n11!5@ I 2M11
(n11)21S12~1,n!M21

(N11)#21

3M11
(n11)21@S12~1,n!M22

(n11)2M12
(n11)#,

~38b!

S21~1,n11!5S22~1,n!M21
(n11)S11~1,n11!1S21~1,n!,

~38c!

S22~1,n11!5S22~1,n!M21
(n11)S12~1,n11!

1S22~1,n!M22
(n11) . ~38d!

The submatrices ofM (n11) are obtained from Eq.~33! as

M11
(n11)215M̄11

(n11) 21D (n), ~39a!

M12
(n11)5D (n)21M̄12

(n11)D (n11), ~39b!

M21
(n11)5M̄21

(n11) , ~39c!
2-4
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M22
(n11)5M̄22

(n11)D (n11). ~39d!

SettingS(1,1) to be the identity matrix, from the recursiv
relations ~38! we can construct all the scattering matric
S(1,n) for n52,3, . . . ,N. Similarly, settingS(m,m)5I , all
matricesS(m,n) with n5m11,m12, . . . ,N, can be found.

Then using Eq.~37! we can derive the following relations

a(m)5S11~1,m!a(1)1S12~1,m!b(m), ~40a!

b(1)5S21~1,m!a(1)1S22~1,m!b(m), ~40b!

a(N)5S11~m,N!a(m)1S12~m,N!b(N), ~40c!

b(m)5S21~m,N!a(m)1S22~m,N!b(N), ~40d!

where a(1) and b(1) are the coefficients for the left barrie
layer, whilea(N) andb(N) are for the right barrier layer. We
set the coefficients of incoming wavesa(1) and b(N) to be
zero to determine the energy levels of the states confine
the quantum well. Substituting Eq.~40a! into Eq. ~40d!, we
have the equation

@ I 2S21~m,N!S12~1,m!#b(m)50, ~41!

from which the energy levels and the corresponding coe
cientsb(m) are derived. Knowingb(m), the coefficientsa(m),
b(1), and a(N) are readily obtained from Eqs.~40a!, ~40b!,
and ~40c!, respectively.

IV. RESULTS AND DISCUSSION

For our numerical calculation on the InAs/GaSb broke
gap quantum well as shown in Fig. 1, the material para
eters such as values of the energy gap, the split-off ene
the interband momentum matrix elements, and the Luttin
parameters are taken from Ref. 25. In contrast to the c
studied in Ref. 25, we will consider thicker quantum we
such that atki50 the first electron level lies below the firs
light hole level. Several heavy hole levels are then a
above the first electron level. Then multiple electron-h
anticrossings can produce multiple minigaps. Such effec
long-period superlattices has been discussed recently.23 Be-
cause the spin-orbit interaction breaks the double spin de
eracy in an asymmetric quantum well, we will see that fo
finite value ofki , the dispersion curves and the spatial pro
ability densities are different for the ‘‘spin-up’’ states and t
‘‘spin-down’’ states. This phenomenon was also detected
Ref. 25.

For a given InAs layer thickness and a GaSb layer thi
ness in the AlSb/InAs/GaSb/AlSb broken-gap quantum w
structure, we investigate the band structure as well as
spatial distribution of the probability density for the zon
center states and for the states in the vicinity of anticross
The results for the structure with a 15 nm InAs layer and
10 nm GaSb layer are shown in Figs. 2, 3, and 4. Choos
the InAs conduction band edge as the zero reference en
the dispersions are plotted in Fig. 2~a! for the ‘‘spin-up’’
states, and Fig. 2~b! for the ‘‘spin-down’’ states. There are si
subbands of interest, labeled as 1hh, 2hh, 3hh, for heavy-
hole states, 1lh for light-hole states, and 1e, 2e for elec-
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trons. The assignment of carrier type to various subba
follows the associated wave function properties atki50. As
is well known, such symmetry can no longer be defined fo
finite value ofki . The in-plane wave vector is measured
units nm21, and for our system the wave vectors at the zo
boundaries are about610 nm21. At the zone center there i
only a weak coupling between the conduction band sta
and the states in light-hole bands. With increasingki the
coupling strength between the electrons and the light hole
much enhanced, resulting a large hybridization gap of ab

FIG. 2. Subband dispersions for the quantum well structure w
a 15 nm InAs layer and a 10 nm GaSb layer.

FIG. 3. Normalized probability densityuc6(y)u2 for the zone
center states in a quantum well with a 15 nm InAs layer and a
nm GaSb layer.
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20 meV aroundki50.14 nm21. At the same time, the cou
pling between electron states and heavy-hole states deve
causing the complicated multiple anticrossings. This can
seen aroundki50.2 nm21 where the three 1hh, 2hh, and
1lh subbands are separated by two hybridization gaps. W
further increase ofki , the anticrossing between the 1e sub-
band and the 3hh subband occurs. The position and the ma
nitude of each hybridization gap are spin dependent.

The hybridization phenomenon can be demonstrated m
clearly with the probability density uc1(y)u2

5( i 51
4 uc i(y)u2 for a ‘‘spin-up’’ state, and uc2(y)u2

5( i 55
8 uc i(y)u2 for a ‘‘spin-down’’ state. Because of th

spin-degeneracy at the zone centeruc1(y)u25uc2(y)u2, and
the results are plotted in Fig. 3. Each probability density
normalized to unity, and the curves are displaced and ord
according to their corresponding energies at the zone ce
The flat parts at both sides of each curve mark the z
referenceuc1(y)u250 or uc2(y)u250. We see clearly tha
only the electron states and the light-hole states are we
coupled. As a result, the heavy-holes are confined in
GaSb layer.

The difference betweenuc1(y)u2 anduc2(y)u2 shows up
when ki becomes finite, as demonstrated in Fig. 4 forki
50.14 nm21, where panel~a! is for uc1(y)u2 and panel~b!
is for uc2(y)u2. While the 1e state and the 1lh state are
strongly coupled, the 1e state also couples to the 2hh state.
This is the reason why both the 1e wave function and the
1lh wave function have significant amplitude in the Ga

FIG. 4. Normalized probability densityuc1(y)u2 of the ‘‘spin-
up’’ states @panel ~a!# and uc2(y)u2 of the ‘‘spin-down’’ states
@panel~b!# at ki50.14 nm21 in a quantum well with a 15 nm InAs
layer and a 10 nm GaSb layer.
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layer, where the 1e, 1lh, and 2hh wave functions are
heavily distorted.

With increasing the layer thickness of InAs and/or GaS
the spatial confinement gets weaker and so more subb
appear in the quantum well. Here we discover an interes
phenomenon that a heavy-hole subband lies in the wide
bridization gap between an electron subband and a light-h
subband. The subband structure for the broken-gap quan
well with an 18 nm thick InAs layer and a 12 nm thick GaS
layer is shown in Fig. 5, with panel~a! for ‘‘spin-up’’ states
and panel~b! for ‘‘spin-down’’ states. The physics around th
zone center is not affected qualitatively because at zone
ter only the heavy-hole states are still decoupled from
other states. Also, the characteristic behavior of
1lh-1hh-2hh multiple anticrossing is not sensitive to th
width of the quantum well. However, a qualitatively ne
feature appears aroundki50.2 nm21, where the strong hy-
bridization between the 1e and the 1lh subbands creates
large gap. In panel~a! the 3hh subband passes through th
gap almost unperturbed. On the other hand, in panel~b! the
3hh subband is pushed upward by the 1e subband due to the
energy closeness of the subbands. This difference indica
possible spin-dependent coupling between electron st
and heavy-hole states.

To clarify this aspect, we show the probability dens
uc1(y)u2 in Fig. 6, anduc2(y)u2 in Fig. 7. In both figures,
the values ofki are 0.18 nm21 for panel~a! and 0.2 nm21

for panel~c!. For panel~b!, we haveki50.19 nm21 for Fig.

FIG. 5. Subband dispersions for the quantum well structure w
an 18 nm InAs layer and a 12 nm GaSb layer.
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6, but ki50.188 nm21 for Fig. 7. A strong hybridization
between the electron states and the light-hole states is se
all cases, leading to a profound anticrossing of the 1e sub-
band and the 1lh subband. However, a strong mixing of th
heavy-hole states and the electron states appears only in
7 for the ‘‘spin-down’’ states. We see in Fig. 7 that the 3hh
state no longer remains unperturbed from the electron sta
Instead, the wave function of the 3hh state spreads over th
whole coupled quantum wells atki50.188 nm21, indicating
a strong mixing with the electron states. Furthermore, si
there is also a strong mixing between the 1e and the 1lh
states, we conclude that the electron, the heavy-hole, and
light-hole states couple strongly with one another. As a c
sequence of this mixing, aski approaching 0.2 nm21, the 1e
state becomes heavy-hole-like, the 1lh state becomes elec
tronlike, and the 3hh state becomes light-hole-like stat

FIG. 6. Normalized probability densityuc1(y)u2 of the 1e,
3hh, and 1lh ‘‘spin-up’’ states atki50.18 nm21 @panel ~a!#, ki
50.19 nm21 @panel~b!#, andki50.2 nm21 @panel~c!# in a quan-
tum well with an 18 nm InAs layer and a 12 nm GaSb layer.
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With further increase ofki , the 1e state turns into light-hole-
like, and the 3hh state goes back to heavy-hole-like.

V. CONCLUSION

We have investigated the in-plane dispersions of AlS
InAs/GaSb/AlSb broken-gap quantum wells, using the eig
band k•p model and the scattering matrix algorithm. Th
wide hybridization gaps resulting from the strong mixin
between the electron states and the light-hole states are f
to be spin dependent. The magnitude and the position of
hybridization gaps in the dispersion relations are sensitive
the widths of the InAs layer and the GaSb layer. Quant
wells with thick layers exhibit multiple anticrossing fo
which the heavy-hole subband lies in the hybridization g

FIG. 7. Normalized probability densityuc2(y)u2 of the 1e,
3hh, and 1lh ‘‘spin-down’’ states atki50.18 nm21 @panel ~a!#,
ki50.188 nm21 @panel ~b!#, and ki50.2 nm21 @panel ~c!# in a
quantum well with an 18 nm InAs layer and a 12 nm GaSb lay
2-7
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produced by the mixing of the electron subband and
light-hole subband. Depending on the spin state, at the a
crossing point the heavy-hole subband may remain alm
unperturbed, or the heavy-hole may spread over the en
quantum well.
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