
Computer Physics Communications 142 (2001) 285–289
www.elsevier.com/locate/cpc

A new parallel adaptive finite volume method for the numerical
simulation of semiconductor devices

Yiming Li a,∗, Jinn-Liang Liub, Tien-Sheng Chaoc, S.M. Szea
a Department of Electronics Engineering and Institue of Electronics, National Chiao Tung University, Hsinchu 300, Taiwan

b Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan
c National Nano Device Laboratories, Hsinchu 300, Taiwan

Abstract

Based on adaptive finite volume approximation, a posteriori error estimation, and monotone iteration, a novel system is
proposed for parallel simulations of semiconductor devices. The system has two distinct parallel algorithms to perform a
complete set of I–V simulations for any specific device model. The first algorithm is a domain decomposition on 1-irregular
unstructured meshes whereas the second is a parallelization of multiple I–V points. Implemented on a Linux cluster using
message passing interface libraries, both algorithms are shown to have excellent balances on dynamic loading and hence result
in efficient speedup. Compared with measurement data, computational results of sub-micron MOSFET devices are given to
demonstrate the accuracy and efficiency of the system. 2001 Elsevier Science B.V. All rights reserved.

PACS: 73.40.Ty; 73.40.Qv; 02.70.Fj; 02.70.-c

Keywords: Adaptive FVM; Parallel semiconductor device simulation; Load balancing

1. Introduction

Parallel numerical simulation of semiconductor de-
vices has been proven to be an indispensable tool for
fast characterization and optimal design of semicon-
ductor devices (see [1] and references therein). Adap-
tive computation is currently one of the major con-
cepts in large-scale simulations [2]. Considerable ef-
forts have been directed to the development of high-
performance computational techniques for semicon-
ductor physics and devices. We propose here a proto-
type of parallel system for semiconductor device sim-
ulation. The main features of the system are adaptive
finite volume method (FVM) with 1-irregular mesh re-

* Corresponding author.
E-mail address: ymli.ee87g@nctu.edu.tw (Y. Li).

finement strategy, a posteriori error estimation, con-
structive monotone iteration [3], domain decomposi-
tion, and parallel I–V computations. Implemented on
a Linux-cluster with message passing interface (MPI),
the system has been tested on, such as PN diode,
MOSFET, and SOI devices [4].

For most practical semiconductor devices, the phys-
ical quantities such as potential and electron densities
exhibit extreme jump layers particularly in the neigh-
borhood ofp-n junctions [4]. The presence of lay-
ers results in highly unstructured grids and hence in
the complexity of coding structure and parallelization,
which can be alleviated by exploiting object-oriented
programming (OOP) principles [5,6] and by develop-
ing suitable parallel algorithms with good dynamic
load balancing. Two distinct parallel algorithms are
proposed in this paper. They are designed to perform

0010-4655/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(01)00347-2



286 Y. Li et al. / Computer Physics Communications 142 (2001) 285–289

a complete set of I–V simulations for any specific de-
vice model. The first algorithm is a domain decom-
position on 1-irregular unstructured meshes whereas
the second is a parallelization of multiple I–V points.
Compared with measurement data, simulation results
of LDD N-MOSFET [4] are given to show the accu-
racy and effectiveness of the system.

2. Semiconductor device model

Hydrodynamic (HD) equations are used to model
submicron MOSFET devices in which hot electron
and non-local effects are main concerns [4,7]. The
following is a commonly used model [8,9]:

�φ = q

εs

(
n − p + N−

A − N+
D

)
, (1)

1

q
∇ · Jn = R(n,p), (2)

−1

q
∇ · Jp = R(n,p), (3)

∇ · Sn = Jn · E − n

(
ωn − ω0

τnw(Tn)

)
, (4)

∇ · Sp = Jp · E − p

(
ωp − ω0

τpw(Tp)

)
, (5)

whereφ is the electrostatic potential,n andp carrier
concentrations,N−

A andN+
D ionized doping profiles,

Jn andJp carrier current densities,Sn andSp carrier
energy fluxes,R(n,p) the generation recombination
rate,E = −∇φ the electric field,ωn andωp carrier
energies,τnw andτnw carrier energy relaxation times,
and ω0 = 3

2kBTL the thermal equilibrium carrier
energy. Explicitly,Jn, Jp, Sn, andSp are as follows:

Jn = −qµnn∇φ + qDn∇n + nµnkB∇Tn, (6)

Jp = −qµpp∇φ − qDp∇p − pµpkB∇Tp, (7)

Sn = Jn

−q
ωn + Jn

−q
kBTL + Qn, (8)

Sp = Jp

q
ωp + Jp

q
kBTL + Qp. (9)

Hereµn, µp, Dn, Dp , Qn, andQp are the carrier mo-
bility, diffusion coefficient, and heat flow, respectively.
The model is subject to suitable boundary conditions.
In this simulation, based on Fermi–Dirac statistics [4,
10,11], the model also can be expressed in terms of
quasi-Fermi levels instead of carrier concentrations.

3. Adaptive numerical methods

We now briefly outline the adaptive algorithm and
numerical methods that are implemented in our device
simulation system.

Adaptive Algorithm.
Step 1. Initialization and initial mesh generation.
Step 2. Construction of data structure on the current

mesh.
Step 3. Outer loop iteration (i.e. Gummel’s

iteration [3,10]).
Step 3.1. Inner loop iteration on FV solution

of Eq. (1) forφ.
Step 3.2. Inner loop iteration on FV solution

of Eq. (2) forn.
Step 3.3. Inner loop iteration on FV solution

of Eq. (3) forp.
Step 3.4. Computation ofJn andJp .
Step 3.5. Inner loop iteration on FV solution

of Eq. (4) forTn.
Step 3.6. Inner loop iteration on FV solution

of Eq. (5) forTp .
Step 4. A posteriori error estimation.
Step 5. Run mesh refinement and go to Step 2

if stopping criteria aren’t satisfied.
Step 6. Postprocessing.

A description of FV approximation and a posteri-
ori error estimation for linear elliptical partial differ-
ential equations with unstructured mesh can be found
in [5]. For semiconductor device simulation, the error
estimation has to be modified to account for the funda-
mental principle of flux and charge conservation. For
each decoupled equation, FVM results in a system of
nonlinear algebraic equations which are solved by a
monotone iterative scheme similar to that of [3]. The
refinement process is guided by local error indicators
that are based on element-by-element calculations of
the maximum gradient of electrostatic potentialφ and
the variation of current densitiesJn andJp .

4. Parallel algorithms

Due to the nature ofp-n junction properties in semi-
conductor device, meshes adaptively generated by the
refinement procedure are highly unstructured and con-
sequently lead to complicated data structures. This



Y. Li et al. / Computer Physics Communications 142 (2001) 285–289 287

causes the load balancing a difficult task among mul-
tiple processors. In connection with special proper-
ties of the monotone iterative method [3], two paral-
lel algorithms are proposed here. The first algorithm
is a domain decomposition on 1-irregular unstructured
meshes whereas the second is a parallelization of mul-
tiple I–V points. Note that the I–V curve of a submi-
cron device is the main objective of device simula-
tion which in general require tremendous amount of
working-time for various parameters. The constructed
Linux-cluster system and network configuration are
including, such as cluster, NFS, NIS, UDP, server,
TCP/IP, and Internet in this work. The cluster contains
8 PCs in this study; files access and share are through
network file system (NFS) and network information
system (NIS). The user datagram protocol (UDP) that
controlled by MPI is applied to the short distance fast
communication.

Domain Decomposition Algorithm.
Step 1. Initialize the MPI environment and configura-

tion parameters.
Step 2. Generate a tree data structure of the current

mesh.
Step 3. All nodes are numbered in accordance with

refinement levels and the critical nodes are identi-
fied. Count the total number of regular nodes of the
mesh.

Step 4. In a server, uniformly partition the nodes into
two categories. One corresponds to the bulk region
and another to the surface region. Dynamically as-
sign nodes in each category to different processors
(clients) in which the same iterative solver is in-
stalled. The assignment is performed alongx- or
y-direction (from left to right and bottom to top)
in 2D device domain. In the neighborhood ofp-n
junction one may have to change the assignment di-
rection for obtaining a better load balancing config-
uration if necessary.

Step 5. All processors perform inner and outer itera-
tions in a synchronized way.

Step 6. Computed data that is relevant to the rele-
vant neighboring processors is exchanged among
the processor via MPI protocol until the stopping
criteria of both iterations are satisfied.

Step 7. Each processor computes local error indica-
tors on an element-by-element basis and subdivides
each one of elements that exhibit large errors into

four sub-elements provided that the global stopping
criteria are not satisfied.

Step 8. Repeat steps 2–7, if the refinement process
is invoked. Otherwise, stop the iteration and run
postprocessing for the final data.

Parallel I–V Algorithm.
Step 1. Initialize the MPI environment and configura-

tion parameters for all processors.
Step 2. Corresponding to a set of I–V points that are

to be calculated for some device model, a queue of
jobs with various biasing voltages is created in the
server. Each job represents a complete process of
adaptive computations as described above.

Step 3. The server assigns a job to the next available
processor until the queue is empty.

Step 4. Each processor performs its own job (an I–
V point) independent of the other (another I–V
point corresponding to a set of different boundary
conditions) due to the global convergent property of
the monotone iterative method [3].

5. Numerical results

Organized into two examples, we now present
some numerical results of our device simulation.
The first example is given to show the effective-
ness of the adaptive algorithm and the efficiency of
the domain decomposition algorithm. A 0.35 µm
LDD N-MOSFET device model with biasing condi-
tions VDS = 2V and VGS = 2V is used for this ex-
ample. The adaptive process begins with an initial
mesh of 16 elements on the solution domain and
ends with the final mesh as shown in Fig. 1. The

Table 1
Efficiency and CPU time for parallel domain decomposition simu-
lation on a 6-processors Linux-cluster

Nodes Sequential Parallel Speedup Efficiency

time (s) time (s)

2000 29 8 3.62 60.4%

4000 101 28 3.61 60.1%

8000 1250 306 4.08 68.0%

16,000 5233 1192 4.39 73.1%

22,000 9878 2054 4.81 80.2%



288 Y. Li et al. / Computer Physics Communications 142 (2001) 285–289

Fig. 1. Adaptive final refined mesh for the simulated device.

Fig. 2. Speedup for parallel domain decomposition and I–V points
calculation algorithms.

same adaptive process was first performed on a sin-
gle processor then on a Linux cluster of 6 proces-
sors. Table 1 shows a comparison of the perfor-
mance in CPU time and efficiency. The lower line,
in Fig. 2, indicates the achieved speedup for a typi-

Fig. 3. Measured and simulated device I–V characteristics.

cal mesh with 22,000 nodes on an 8-processors Linux-
cluster.

For the same device, the second example presents
the excellent performance of the parallel I–V algo-
rithm applied to compute a set of 189 I–V points on



Y. Li et al. / Computer Physics Communications 142 (2001) 285–289 289

the Linux-cluster. The speedup factor is larger than 7
as shown in Fig. 2 (middle line). A subset of those sim-
ulated I–V points are plotted in Fig. 3 along with the
fabricated and measured data obtained from National
Nano Device Laboratories, Taiwan.

Acknowledgements

This work was supported in part by the National
Science Council of Taiwan under contract numbers
NSC-89-2215-E-317-009.

References

[1] N.R. Aluru et al., IEEE Trans. CAD 15 (1996) 1029–1047.
[2] V. Verfurth, A Review of a Posteriori Error Estimation

and Adaptive Mesh-Refinement Techniques, Teubner-Wiley,
Stuttgart, 1996.

[3] Y. Li et al., in: Proc. IEEE Int. Symp. VLSI-TSA, 1999,
pp. 27–30.

[4] S.M. Sze, Physics of Semiconductor Devices, 2nd edn., Wiley-
Interscience, New York, 1981.

[5] T. Gallonet et al., SIAM J. Num. Anal. 37 (2000) 1935.
[6] J.-L. Liu et al., Appl. Num. Math. 21 (1996) 439–467.
[7] M. Ieong, T.-W. Tang, IEEE Trans. ED 44 (1997) 2242–2251.
[8] P. Degond et al., SIAM J. Sci. Comp. 22 (2000) 986–1007.
[9] K. Bløtekjer, IEEE Trans. ED 17 (1970) 38–47.

[10] W. Jerome, SIAM J. Appl. Math. 45 (1985) 565–590.
[11] J.W. Slotboom, IEEE Trans. ED 20 (1973) 669–679.


