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Abstract

We examine the analytic properties of the photon polarization function in a background magnetic field, using the technique
of inverse Mellin transform. The photon polarization function is first expressed as a power series of the photow evidrgy
w < 2m,. Based upon this energy expansion and the branch cut of the photon polarization function in the eppialex we
compute the absorptive part of the polarization function with the inverse Mellin transform. Our results are valid for arbitrary
photon energies and magnetic-field strengths. The applications of our approach are briefly disc&&&H Published by
Elsevier Science B.V.

PACS 12.20.Ds; 11.55.Fv

The behavior of a charged particle in a background magnetic field is rather well known. The energy of the
charged particle is quantized according to the Landau levels. For a non-relativistic electron moving in a uniform
magnetic field along the-z direction, its energy levels are given by

1 2
En,s- =|n+z+s5;)oc+ Pz s (1)
¢ 2 2m,

wherew, = eB/m, (e > 0) is the cyclotron frequency of the electron ands the electron spin projection along
the+z direction. For a relativistic electron (positron), the energy quantization becomes

Eis‘z =mg+pzz+eB(2n + 1+ 2s,), (2)

with the following correspondent wave function

Vit pyopeos. (Fr1) = €XR(—i Ent +ipyy +ip2)Fy , o (x'), (3)
WhereF,j,fpusj (x") is a four-component spinor with' = x — p, /eB. The detailed form foFff”,,Mz can be found,

for example, in [1].
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While the wave function of a charged fermion in the background magnetic field is well understood, it is often
rather non-trivial to compute a physical process occurring in a background magnetic field, particularly, if there
are more than one charged fermions involved in the reaction. A famous example is the pair production process
y — eTe™, which is relevant to the gamma-ray attenuation in the neutron star [2], and was first studied by
Toll [3] and Klepikov [4] independently. The approach by Toll and Klepikov is based upon a direct squaring
of y — eTe™ matrix elements using exact electron and positron wave functions in a background magnetic field.
The most updated calculation using this approach can be found in [5]. To understand this problem better, however,
one should demonstrate that the pair production width can also be obtained from the absorptive part of photon
polarization function in a background magnetic field. In this regard, Tsai and Erber [6] obtained the absorptive
part of the one-loop photon polarization function in the asymptotic linj> 2m, and B <« B, = mf/e. Their
result was shown [6] to agree with that of Toll and Klepikov. However, in the aforementioned asymptotic limit, the
threshold behavior of the pair-production width is completely absent. Later on Shabad [7] obtained the absorptive
part (and the dispersive part as well) of one-loop photon polarization function for a general photon energy and
magnetic-field strength. In that work, the threshold behavior of the pair-production width was worked out explicitly.
We remark that Refs. [6,7] employed Schwinger’s proper-time representation for the electron and positron Green'’s
functions [8] inside the photon polarization functions. To our knowledge, Ref. [7] is the first work which shows that
the proper-time representation for the photon polarization function gives equivalent pair-production width to that
obtained from squaring the — e™e~ amplitude directly. Unfortunately, the manipulations of Ref. [7] are rather
involved and the substantial details of them were given in some other unpublished preprints [9]. It is not very clear
how one can generalize the approach of Ref. [7] to other processes.

In this Letter, we will provide an alternative derivation of the pair-production width (or equivalently the
absorptive part of the photon polarization function) from the proper-time representation of the photon polarization
function. We shall also outline the procedure of obtaining the dispersive part of the polarization function, which is
relevant to the photon index of refraction. It will be clear that our approach is very straightforward and physically
intuitive. Furthermore, it is applicable to many processes occurring in a constant background electromagnetic field.
In fact, there are growing activities on computing the two-point and three-point current correlation functions in a
constant background field, using the string-inspired world-line formafisthe final results of these calculations
are expressed in terms of multiple integrals similar to the proper-time representations. Our approach will be very
useful for investigating the analytic properties of these integrals, hence the analytic behaviors of various current
correlation functions.

To illustrate our approach, let us begin with the proper-time representation of photon polarization fiilfjgtion
in a constant background magnetic field [12]:

3B 00 +1
,,(q) = —W f dsfdv {efiwo[(ngw - CIMQV)NO - (‘Il\zglwv - C]Hu‘]l\v)NH
o -1 + (QJZ_gJ_;w - QJ_MQJ_U)NJ_]

- eiismg (1 - U2) (nguv - QMQV) }s 4)

wheregq is the photon four-momentum wiuyﬁ‘ = (0,0,0,¢;) andg/| = (0, g, g, 0) for a magnetic field in the
+z direction,

1-v? , cogzv) —Cogz) ,
4 T T sing )

_ 2
¢o=m, —

1 For an overview on recent developments, see [10,11].
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with z = eBs, and

_cogzv) —vcol(z) sin(zv)

No= - ;
sin(z)
N = —cot(z) (1 —? + UZIL]((;U)) + C;;((Zzl;) )
__codzv) | vcot(z) sin(zv) cogqzv) — co9z) ©6)
L= sin(z) sin(z) sin’(z)

The two independent eigenmodes of the above polarization tensel‘f amdeﬁ which are, respectively, parallel
and perpendicular to the plane spanned by the photon momegtamd the magnetic field. They obey
the eigenvalue equationg’(—g%g,w + Myw)el = g% + M) = 0 and € (—g%gun + My)el = ¢* + M1 =0,
respectively, with/7 | = Gﬂlnuvﬂ'f,r It turns out that'T; and /7, are proportional taV; and N, respectively.
We shall not discuss the contribution ¥y since it does not correspond to an independent eigenmode. The
absorptive part of7; | gives rise to the photon absorption coefficient (pair-production width) via the relation
kpL=ImI | /o.

To study the analytic properties of Eq. (4), we employ the sum rule developed by us [13]:

1 dVl H
al \d(w2yn I+

where M and M, are threshold energies for pair productions wittf — g2 = 4mZ and M? — ¢Z = m2(1 +
VI+2B/B:)% yjL = M{ | /o®. One notes that the absorptive part/df | (»?) vanishes for the range Q

w? < MlﬁL [14]. Therefore one can effectively set the integration range of Eq. (7) as)ffam= 0 to y, | = oc.
Now, it is easily seen that the derivativesi@f, | at the zero energy are proportional to the Mellin transform of
Ki[,L - yﬁ/z =«),1 - w/M) 1. Once the L.h.s. of Eq. (7) is calculated, the absorption coefficigntsor Im T} 1
can be determined by the inverse Mellin transform.

In order to compute the derivatives Ojj, | at the zero energy, we note that a rotation of the integration contour
s — —is is permissible for a photon energy below the pair-production threshold. This rotation turns the oscillating
trigonometric functions in7; | into more manageable hyperbolic functions. In the limit tBa& B., one can
perform an asymptotic expansion By B.., which gives

1 dﬂ

n! (d(wz)" H“)
where6 is the angle between directions of the photon momentum and the magnetic field, and the neglected
terms are higher order iB/B.. Applying the inverse Mellin transform, we obtain absorption coefficiefts
in agreement with previous results by Tsai and Erber [6]. Such results are however not satisfactory. As one can
easily see, apart from the trivial mass faobojfz” , the first term on the r.h.s. of EqQ. (8) grows to infinityras
increases, no matter how small the raligB. is. This implies that the disregarded higher-order terms are in fact
non-negligible for a sufficiently large. As a result, the large momentsigf | are not accurately determined by the
first term of the above asymptotic expansion. Hence the threshold behaviqrs afe not seen after applying the
inverse Mellin transform. To generate correct threshold behaviors for absorption coefficients, we shall not expand
in the magnetic-field strength even#f <« B.. We will obtain photon absorption coefficients valid for arbitrary
photon energies and magnetic-field strengths.

-2 1
L 1 ~1/2
- /dyn,L-YW,L '(’fn,un,f ). (7)
0

®?2=0

2 2 i n _ 2
_zaeme<B sm29> r@n—ur (2n><6n+1’3"+1)+ @)

3B2m?2 '(n)I"(4n) 4n+1

®?2=0 T
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Itis simpler to analyzél , in the special case that = 0, i.e.,q- B = 0. Without losing the generality, we may
further choosg* = (w, g, 0, 0). It is easy to show thall = —(otea)z/4rr)17” andlT;, = —(oteqx/4JT)HJ_ with

oo 41 o 41
my(w?, ¢?) :/dz/dv exd—is¢olNy, 1 (0% q?) =/.dz/dvexq-is¢o]NL. 9)
0 -1 0 -1

Clearly, for the general case that' = (a) qx,O q;) with qZ = qs 2cot 6, the photon polarization functions,
denoted asﬂH 1(w?, qx,e) are given byHH (@, ¢2,0) = — (o sm29/4n)17” (q” g?), with qH =w’ — qZ

w? — qs 2cof6; and 1| (w2, qx,e) —(ath /47{)1'[J_(q” qx) Let us now return to the special case. Rotating the
integration contous — —is and performing the energy expansioruinwe arrive at

2
my(w?, ¢2) = - ;: (A(tas Ba) + Blaw, Bp) + B(at), By) + Clae, Be) + C(al, BL)), (10)
and
2
(0% ¢%) = % (Aa, Ba) + Clac, Be) + C(al, BL) + D(aa, Ba)), (11)

where the functiong, B, C and D are defined a%

, (w/Z)nfl
A(Ol ﬁ)—ZKlmpp 2)(3/) (n—l)‘

e ¢]

1
x /dzz”_l eXF{—Zﬁ]/dv (1- vz)n—l(exqazv] +expl—azvl), (12)

0

/2)1171

/ (@
B(Ol :3)— ZKlmpp 2)(3/) (n—l)‘

ee]

1
x [z expi—zp / dv (1— )" (explazv] + expl—zv]), 13)
0
/2)n—l

/ (w
Clpy==Y Kf(a 2(3/) (n_l)‘

/dzz exp— zﬁ]/dvv - v2) (exp[azv] —exg—azv]), (14)
0
/Z)n—l

) (w
D@ ) =-Y K2, (¢ 2)(3/) —
1

e ¢]

x / dz 2" expi—zp] / dv(1—v?)" (explazv] + expl—azv]), (15)
0

0

2 For convenience, we shall suppress the subscripisasfd 8 except in some special cases.
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with > =322 (37 o> > OZ | pe0r @ ’25w2/4m B’ = B/B,, q’z—q /4m

A (ﬂ_zenHHum@nw+m+n
e ) = ) pla = p T+ 1)
1
B 12 12
Klmpp’(q ) EKlmpp (q )’

I+m+1
Kl(rjnpp’ (q/z) = Kl/:npp’ (q/z) (ﬁ)’

KP4 8(—1) Pt (2¢'2) T (1 +m +3) (I + 1)
mpp \ ) = L gl U+ 1= p)p U+ 2T m+ 1)

The actual arguments in the functioAs B, C andD are given by, =a. =a,. =p' —p+ L ap =, =g =
P—pBa=p+p +2m+1+1/B, By =B _1:,3£,=,3a+1:,362,3a1 ,Bé=,3a+2, andBs = By + 1.
Note that the various indices in the summation arise as follows: the indexmes from the photon-energy
expansion/ arises from the binomial expansion @fl — v%)w'2 + 2(cosh(zv) — coshz))q’?/zsinh(z))", p and
p’ arises from writing(coshzv) — coshz))! as a sum of exponential functions, amds due to expansions such
as sinh’ z = 2’ exg —Iz] Yo chm=lexg—2mz]. It may appear at a first glance that our expansion on$inh
and other similar terms are not convergent &t0. Forz € (0, €), one should expand sinhz in powers of; rather
than in powers of ex@-2z). Fortunately, ag — 0, the result obtained with a careful treatment of sinhdoes
reduce to the one with sinhz expanded naively.

The computations o, B, C and D are rather similar in nature. For illustrations, we will go through the details
of computingA («, 8) and its relevant quantities. First of all, the integration avean be carried out to give

(16)

n 12\n—1 X 2
Aw.p)=Y V7 Kff,,,,,,,(q’z)(i> O [z ex- z,s]oF1<n_z+§ “—zz) 17)

B') T(n—1+3) 2" 4
0
whereg F1 is the generalized hypergeometric function. We then perform theegration which gives
1\ (2" T(n—1+1) n—Il+1 n—1+2 3 o?
A p) =D Kipyy(a? = F. : =143 25 ).
(o, B) Z Impp (l] )ﬁ<3/> (,3)"71+1 T(n—1+ %) 2 1( 2 2 " + 2 ,32>

(18)
For later conveniences, it is desirable to disentangle the indiegsl/. We do this by replacing — [ + 1 with n
and replacing the summatidn with the summatiory ' =Y "02; Y720 3> le’,p:O' This then gives rise to

em ,2 1 { @'? I'(n) n n~|—1 1 a?
o = =2 5 kit 0 6) (55) 5 (g 3 ) )
It is straightforward to compute the absorption coefficient by the inverse Mellin transform. We essentially invert
the sum rule given by Eq. (7). However, we should remark that Eq. (7) is derived under the assurfiption
with the angle betweeg andB kept general. Using this assumption, one@%\& w?sir? # with 6 being the angle
betweerng andB. It is then clear that there is no essential difference for analyzing the branch £yt oeither
in the complemf—plane or in the complew?-plane. This is the reason we have chos@ras the variable to set

up the sum rule in Eq. (7). However, in the current cads completely general. Hence it is more appropriate to
study the analytic structures of; | in the complemﬁ-plane. We generalize Eq. (7) into

1 < v -~
— 7 I,i)
n!\d(gf)"

m=2t %
|, L ~
lt / dup, s -l E (R, L), (20)
qf—o 0
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wherem? = 4m?2, m3 =m2(1+ 1+ 2B')2, andu) L = m? | /q?. Here we use the notatiod®, | andz), . to
emphasize that the above sum rule holds for a general angle bedveeeiB. \We also note that the differentiations
with respect togZ are understood as acting d (g7, ¢2) and IT; (42, q2) containing insider7; and I,
respectively. Taking the limi¢j - B = 0 in the above sum rule, we can calculate the absorption coeffioignts
through the following inverse Mellin transform:

1 )
k. (w? g7, B) =E/ds Fy.1(s. 4% B)(@), (21)
C

where F | (n,¢2, B) = ”, d(wZ)n IT), 1 |z2—0 With @ = ' for || polarization ando = 20'/(1 + ~/142B’) for L
polarization. The integral transform can be easily performed with the formula

2,2
1 . T 1 1 1 O(1l—x+2~
. dsxéL)le1<;,% S+ 532 2)=—u.

ni ) Te D VT

One can derive this formula using the integral representation of hypergeometric fupétiom b; c; z) =

[T'(c)/(T(B)T (c—b))] fol dt 11 (1—1)°~t=1(1—1z)~* and the fact thagl [..dsx~*u*~1 = 8(x —u). Therefore,
we arrive at

(22)

m / / 2

k). A ﬂ)——ae B’ E lmﬂp’(qlz)o(( - ’i’,’;)+(§ﬁz) )
o 20! / 2

’ B/l\/(l_ Zg) (gjz)

where}" =323 le’,p=0' To understand the structuregf 4, we rewrite the denominator of the above
equation as

BB aB'\? 1 B2
\/<1— F) + (m) = J (1)/2 - (ll +12)B/ + (ll - 12)24(1)/2, (24)

with (8 +@)B’ =1+ 2[1B’, and(8 — o) B’ = 1+ 2[5 B’. By a simple kinematic analysis, one can show that the
r.h.s. of Eq. (24) is justpi ;|/m.o’ = |p2;|/m.w’ Whereps , and py ; are thez-direction momenta o~ and
e™, respectively; whilg; andl, are the Landau levels occupied by ande™. The pair-production threshold
corresponds te1 , = p2 . = 0. This threshold behavior is seen explicitly from the step function in the expression
for «),4. It is worthwhile to point out that the variabless and g's, appearing first in Egs. (10) and (11), do
have physical meanings. TakiMya, 8) as an example, different values @fand 8 imply a different radius of
convergence for the infinite series éf (see Eq. (17)). The absorptive part &f«, 8) emerges once the scaled
photon energyy’, becomes greater than the radius of convergence. This is reflected by the inverse Mellin transform
given by Eq. (22).

It is desirable to further simplify Eq. (23). We first perform the summation over the ihiex

(23)

lmpp
o0 I i
rd 1
Sy #— Z *Pe T (p+m+ 1)L T (<), (25)
lzop’p,zo(—p)(—p) 2o
wherex = —2¢'2/B' = —q2/(2¢B), p =maxp, p'}, p =min{p, p'}, andL?? is the Laguerre polynomial. To

p+m
derive this equation, we have used the relatiphg(o; 8; x) = e 1F1(8 — «; 8; —x) and L% (x) = 1 Fi(—n; o +

1; x) x C*_ Atthis juncture, the summation” in Eq. (23) has already turned mEM,/:OZ _o- To proceed,
we recall that the actual values f@andg in this case are, = p’— p+1andB, = p+p’+2m+1+1/B’, which
correspond to the Landau levéls= p’ + m + 1 andl> = p + m. Therefore the above summation is equivalent to
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D1 20 S _o with [ = min{l; — 1, }. By collecting the relevant terms W), A(aa, 82)» W can further sum
over the indexn:

i -

Zx_m = = - ! ! = Ll:_i(—x), (26)
= Td-m+hri-m+1pTm+1) TI+1) !

wherel = max{l1 — 1, [2}. With the above summations ovieandm, we arrive at

/ oo o0 TA ()C)O ( ﬂg)_i_(aB')z)

o = 2B 3 2 = o2 (27)
l1=1 ;=0 \/(1 BE) +(£5;)
with 3
FATA X FO‘ + 1)
Thp (1) = (=D1x"e . A (=) LA (=), 28)

T(ig+7ra+1) Ly,

wherer, =1 —1 = |l1 — 1o — 1], andA4 =[= (I1+1—|l1— 1> —1| - 1)/2. The typeB contributions tac arise
from B(ayp, Bp) andB(cx;j, ,81’7). We write down the results without repeating the details:

atmeB/z N — Tlllz(x) %)@((1_ /B/)_’_(ST%)Z)

1.5 = 2.2 — , (29)
11=0 [=0 \/(1— )+ (552)
where
r r X F )\’ + 1
Tﬁ,z(x) = (=1)Bx"8 ﬁ AB( x)L3E " (—x)+ (g —> A — 1), (30)

with rg = |l1 — I2|, Ap = (I1 + I2 — |1 — I2]) /2. We note that the contribution US'(O{I/?, /31/;) is incorporated by the
replacementz — Ap — 1 in the above equation. Finally, the tygecontributions are given by

acm.B / SR (x)@((l_ﬂB/)—i_(gtf/z)z)

_ llz w'?2
Kle=—% "3~ Z Z — — (31)
[1=11=0 (1_ w/2) + (2(1)’2)
where
rCTC X 1—‘()L + 2) r r r r
T,Cl,z(x) — (=) Cx"Ce* (I —lz)m(LfC(—x)LfC(—x) - Lfﬁll(_ )L c+1( x))
+(c—=>Ac -1, (32)

with rc =r4 andic = A4. We like to emphasize that, i), the relation between’2 andg’? is still kept general. It
is the dispersive part di that determines the relation betwee't andg’2. The dispersive part can be calculated
using theKramers—Kronig relation:

P/d Im I7 (¢, q' )

12 12
ReHH(a) ,q )=; —w? (33)

1

3 The absorption coefficient is not written in a symmetrized form for saving the space. Nevertheless, the symmetrization with fgspect to
and/, can be easily done as one wishes.
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whereP stands for evaluating the principle part of the integral. It is well-known thd[Rie relevant to the photon
refractive index:| (') through the equatiop? + RelT; = 0. Hence

o]

P I(H(t)
dmer | TG —?)

n| (a)/) =1+ (34)

For illustrations, we evaluabq‘ for a below threshold energy < 1 and a super-critical magnetic fieRl>> B..
To the leading order iB./ B, it suffices to include the lowest Landau-level contribution on the r.h.s. of the above
equation. Such a contribution is containedijrg, i.e.,
B’ 2 12
lizle=0_ Gl oy 2 ) (35)
“I.B 202V w2 — 1 B’

Combining Egs. (34) and (35), we find

B’ /2
nj(o) =1+ e 5 arctan | ——— — 1), (36)
Vi 404 \/w 1-w'?
which agrees with the previous result [7].
We now turn our attentions to the absorption coefficientlt is useful to rewrite Eq. (21) as
1 ~ 2
KJ_(CL)J])%, B)=%/dSFJ_(S,qf, B)(a)’) ! (37)
C
where F| (n, qx, B) = m d(w/z)n I |,2_q. With « written in this form, we can easily compuke using the

results from«;. Comparing Eqgs. (10) and (11), we can easily show ihaj = —(q’z/w’z);c”,A, and«, ¢ =
—(q’z/a)’z)xu’c. Finally, it is slightly involved to compute the typ@ contribution. We obtain

’ )
crp="2 (1 Z Z eI (38)
—1 01— \/ )+(2w,2)
with
r'(a 1
Tlllg(x)_S( 1)1+rD rp—1,x (Ap+1) VD+1(_ )LVD 1( —x), (39)

C(Ap +7rp) Lip—

with rp =rp andAp = Ap. Similar to the case df polarization, the dispersive part 6f; can also be calculated

using theKramers—Kronig relation. Since the technique is identical, we will not dwell upon this issue again.
We have compared our absorption coefficients with those obtained by squaring-the™e~ amplitude

directly.* Our results reduce to that of Daugherty and Harding in the special dfifit O which they have

assumed. This is similar to what Shabad has demonstrated in Ref. [9] as he compared his result with that of

Klepikov [4] in the above-mentioned limit fag2. Our approach differs from that of Refs. [7,9] in that Shabad

performs the calculation in the beyond-threshold energy where the algebraic manipulations are rather involved and
precautions are required, whereas we take the advantage of inverse Mellin transform which permits us to calculate
the polarization function near the zero energy with a convenient energy expansion. We wish to stress again that

our approach is physically intuitive. We have writtéf) ; as a multiple series i (photon energy)y andg. It
is possible to show that [15], for fixed valuesBind g, the series inw begins to diverge at the threshold energy

4 \We make comparisons with the most updated results in Ref. [5].
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wth = m.(v/1+ 2[1B’ + /1+ 2I>B") where the Landau levels and/, are given byl1 = (8 +a« — 1/B’)/2 and
lo=(B8—a—1/B’)/2. The divergence of the energy series beginningatw, implies the existence of absorptive
part beyond this point. We are able to compute the absorptive part as well as the dispersive part at any energy witt
the help of inverse Mellin transform am@amers—Kronig relation.

In closing, we have developed an integral-transform technique to compute the absorptive part of photon polar-
ization function in a background magnetic field, while the dispersive part can be obtained Kiamthers—Kronig
relation. Although we have chosen a special aasB = 0 for convenience, the result for a general angle between
q andB is easy to infer. Using the relation) (?, ¢2,0) = —(aew?sin?0/47) (g7, ¢?), [T (w2 q2.0) =
—(teq?/4m) T (g7, ¢?), andky, L = Im [T 1 /o, itis clear that) (&?, g2, 0) = — (. Si? 0 /4m) IM IT) (47, 42),
and k1 (w2, q2,0) = —(a.q?/4mw)IMITL(qF, q2). For 6 = /2, e, q-B =0, k| — x| = —(@.w/41) x
Im [Ty (0?, ¢?) andic; — k1 = —(aeq?/4nw) IM I (w?, g2). Hence, for example, by comparing the above ex-
pressions fok andk |, one realizes thal; can be inferred fromr) by first dividing the latter by, then replacing
the variablev? byq|2, and finally multiplying the entire expression bysin? 6. The procedure of obtaining,. from
k1 is also straight#orward. There are other generalizations to the current work. For example, one may analyze the
photon polarization function in a general background electromagnetic field, or study other current—current corre-
lation functions under the same external condition. To our knowledge, the vector—axial vector correlation function
relevant to weak interaction processes has not been analyzed as detailed as the fashion presented in this Letter. V
shall report the results of such analysis as well as some technical details omitted in this Letter in a forthcoming
publication [15].
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