
higher resolution of time-frequency by wavelets and its capabilities 
for non-stationary analysis is useful for detecting the sudden burst 
in the signal that is useful for classification. In addition these fea- 
tures are found to be more robust than the features of MFCC and 
the 24-band filter based on AWP. 
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Text-independent speaker identification 
based on explicit exploitation of stochastic 
characteristics of test utterance 

W.H. Tsai, W.W. Chang and C.S. Huang 

The benefit of exploiting the stochastic characteristics of test 
utterance for speaker identification (speaker ID) via cross 
likelihood ratio and Bayesian information criterion is explored. 
Simulation results demonstrate the superiority of the proposed 
approaches over the conventional speaker ID based on maximum 
likelihood decision rule. 

Introduction: Conventional speaker-identification (speaker-ID) sys- 
tems [l] have been using maximum likelihood decision rule to 
hypothesise the identity of a test speaker by determining which cli- 
ent speaker model best matches the test utterance. This approach, 
however, does not fully compare the statistical similarities between 
the test speaker’s voice and the voice of each client speaker. Spe- 
cifically, a test utterance is simply used to compute the likelihood 
scores for client speaker models, while the stochastic characteris- 
tics themselves are largely ignored. As a result, such a system may 
suffer from unreliable likelihood scores owing to the defective 
models. To compensate for this shortcoming, we propose to bilat- 
erally compare the stochastic characteristics between the test 
speaker’s voice and the voice of the client speaker, instead of sim- 
ply taking the unilateral likelihoods into account. This study 
investigates two approaches based on cross likelihood ratio and 
Bayesian information criterion, respectively. 

Cross likelihood ratio: Denote Yi = { y , , ~ ,  yi,2, ..., Y ; , ~ ~ , , }  as the q,,i- 
length feature vectors extracted from enrolment speech of the ith 
client speaker, 1 2 i I P. The cross likelihood ratio (CLR) [2] 
between Y j  and an unknown test utterance X = {x,, x2, ..., xTZ} is 
defined by 
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where h, and h . are the stochastic models (e.g. Gaussian mixture 
model, (GMMClformed from X and Yi, respectively. CLR defined 
above accounts not only for how well a particular client speaker 
model matches a test utterance, but also for how well a test 
speaker model matches the enrolment speech of a particular client. 
A larger CLR signifies a higher similarity between the test speak- 
er’s voice and the voice of a client speaker, and therefore an iden- 
tifier should decide in favour of a speaker S satisfying 

(2) S = arg l<a<P max CLR(X,Y,)  

Bayesian information criterion: The Bayesian information criterion 
(BIC) [3] is a model selection criterion, which aims at choosing 
one among a set of candidate models having different model com- 
plexities to best represent the given data. Denote {Ai 1 1 < i < K )  
as the candidate model set and 0 = {ol, 02, ..., oT} the data set, 
the BIC for model Ai is defined by 

where p(O(A,) is the maximised model likelihood, y is a penalty 
weight with value between 0 and 1, and di is the number of free 
parameters in model Ai. Because a higher-complexity model usu- 
ally matches the data better, a penalising term is added to the log- 
likelihood so as to balance the measurements for non-nested mod- 
els. In applying the concept of BIC to the problem of speaker ID, 
we consider the following two hypothesis tests, Ho and Hi. Denote 
Zi = {x,, x2, ..., x7;, yi,l, yi,2, ..., as the concatenated 
sequence of X and Yi, and let h,, $,i and hz,i be the stochastic 
models formed from X, Yi and Zi, respectively. 
I f o :  X and Y j  are produced by the same speaker, and thus it is 
appropriate to use a single model hz,i for clarifying such a produc- 
tion. 
HI: X and Yi are produced by different speakers, and therefore 
two separate models h, and hy,; are needed to characterise the 
individual speaker’s voice. 
To evaluate which of the two hypotheses is favourable, we com- 
pute the BIC difference between Ho and If,: 

ABIct(Ifo, HI) BIC(X,,,) - BIC(Xz,Xy,i) 

1 + ~ ~ [ d z  10gTz + dy,i logTy,z - d z , i  log(Tz -t Ty,i)] (4) 

where d,, dY,; and dz,i denote the number of free parameters in 
model &, ky,i and Lz,,, respectively. In general, Ai?Z~(Ho, H I )  is 
large if X and Yi are of the same speaker, and small otherwise. 

In practice, computing the delta BIC above requires two extra 
models (1, and hZ,3 to be trained during the testing phase, making 
it rather expensive when GMMs are employed. To alleviate this 
problem, we propose using multiple uni-Gaussian models instead 
of a single GMM for speaker modelling. Specifically, feature vec- 
tors of each client speaker, Y, is segmented into Nj subsequence 
Yj,k having length Ty,i,k, 1 5 k 2 Ni, and the delta BIC is computed 
for each pair of (X, Yi,J. Assume that X - G‘(p,, E,), Yi,k ,. 
G ( ~ y , i , k ,  x y , i , k ) ,  and Zi,k .- G(Pz,i,k, xz,i,k), then 

ABICi,k(Ho, Hi) = 
1 
~ [ ( T z  f T y , i , k )  1% l ~ z , i , k l - T x  1% l x z l - T y , i , k  1% I c y , i , k l l  

- -y(M2 + 3 M )  log(Tz + T y , i , k )  ( 5 )  
1 
4 

where M is the dimension of the feature vectors. The decision rule 
takes into account the average of the delta BIC between test utter- 
ance and all subsequences of enrolment data, i.e. 

1 N s  
S = arg max - ABIC,,k(Ho, H I )  (6) 

k=l I<a<p N, 

Experimental results: Speech data used for this study consist of a 
subset of The 1999 NIST Speaker Evaluation Database, in which 
25 males and 25 females were chosen as clients to conduct a close- 
set speaker-ID experiment. Two one-minute conversations, involv- 
ing two different handsets, were used as enrolment data of each 
client. The test set consists of around 300s conversational speech 
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per speaker. Speech features including 12 mel-frequency cepstral 
coefficients (MFCCs) and 12 delta MFCCs were extracted with 
20ms frame rate and lOms frame shift. Prior to training and test- 
ing, cepstral mean normalisation was applied to minimise channel- 
induced perturbations. The evaluation of speaker-ID experiment 
was performed in a segment-by-segment manner, with 1 s segment 
rate and 0.5 s segment shift. Each segment was treated as a sepa- 
rate test utterance. The speaker-ID rate was computed as the per- 
centage of correctly identified segments over all test segments. 

Within the CLR-based framework, the number of mixtures used 
in each of the client speaker GMMs were empirically set to be 32, 
while the number of mixtures used in a test speaker GMM was 
investigated for 1, 2 and 4, respectively. Within the BIC-based 
framework, feature vectors of each client speaker were empirically 
segmented into six uniform subsequences (each corresponds to 
around 20s duration) in this experiment, and the delta BIC was 
computed as expressed in eqn. 5. The penalty weight y was empir- 
ically determined to be 0.7. For performance comparison, a base- 
line system that uses conventional GMMs with diagonal 
covariance matrices was also evaluated. Fig. 1 summaries the 
speaker-ID results of the various approaches. As expected, the 
three approaches yield better performance with an increase in test 
utterance length. Compared with the baseline system, both the 
CLR-based approach and the BIC-based approach are superior to 
the conventional approach based on maximum likelihood decision 
rule, especially when the length of test utterance increases. 

74 t 
72 ‘ I I 

4 5 6 7 a 9 

)74211) test utterance length, s 

Fig. 1 Speaker ID performance of various approaches 
-0- baseline system (32-mixture GMM/speaker) 
- -0- - CLR using 1-mixture GMM for test utterance 
- -63- - CLR using 2-mixture GMM for test utterance 
- -.- - CLR using 4-mixture GMM for test utterance 
- A - BIC 

Conclusions: Explicit exploitation of the stochastic characteristics 
of test utterance for speaker ID has been validated via simulations 
on text-independent task. It is worth noting that while this study 
presented only experimental results in close-set identification task, 
the design techniques can be applied to more general problems in 
speaker recognition and language identification. 
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Fast IP packet delineator 

R.A. Bourne and C.I. Phillips 

A fast-acting synchronisation mechanism for Internet Protocol 
(IpV4) packet delineation from an ingress bitstream is presented. 
It builds on delineation and scrambling mechanisms developed for 
asynchronous transfer mode (ATM) technology, but provides 
enhancements that cater for variable-sized packets. Implications 
of the scheme for IP version 6 are considered. 

Introduction: Typically, IP data is transported over datalink layer 
technologies such as asynchronous transfer mode (ATM) or point- 
to-point protocol (PPP) that, in turn, are carried by physical and 
optical layer protocols. Each of these protocols provides a number 
of services to the layer above. Frequently, this can lead to a dupli- 
cation of functionality. Protocol de-layering is a process where 
several layers of a protocol stack are implemented as a single layer 
or eliminated, avoiding this duplication. De-layering a protocol 
stack can also enable various alarm timers to be set more strin- 
gently. For example, to avoid the inappropriate triggering of net- 
work layer restoration activity during the period when datalink or 
physical layer functions may be resolving the error condition, it is 
normal practice to set alarm timers higher up the stack to larger 
values. Removing lower layer continuity functionality allows for 
fast-acting IP layer protection to be implemented, possibly provid- 
ing a more cost-effective solution. 

This Letter describes a novel and efficient IP packet delineation 
mechanism that provides a vital step towards protocol de-layering 
by removing the need for datalink layer framing. It can be readily 
implemented in hardware, providing wire-speed delineation within 
local and metropolitan area networks. 

header checksum 

source address 

destination address 

options (+padding) 

data (variable) 

Fig. 1 IPv4 packet format 

Operation with IPv4: A detailed definition of IP is provided in [l] 
and the lPv4 packet format is shown in Fig. 1. Traditionally, 
delineation of IP packets, i.e. the identification of the packet 
boundaries within a data stream, is provided by the underlying 
datalink layer technology that encapsulates them. This is because 
IP is asynchronous, uses variable length packets and variable 
length headers, provides no byte alignment and has no explicit 
frame alignment sequence. 

However, IP version 4 (IPv4) provides a number of reference 
points within the header that are either invariant, or vary in an 
easily verifiable manner. For example, the first nibble in every 
I h 4  packet contains the binary version field identifier ‘0100’. 
Next, the header checksum field is always present at a fixed offset 
to this version field. This operates on the entire IP packet header 
including options fields, should they exist. The checksum algo- 
rithm is the 16 bit one’s complement of the one’s complement sum 
of all 16-bit words in the header. For the purposes of computing 
the checksum, the value of the checksum field is zero. This is sim- 
ple to compute and can be readily achieved using combinational 
logic. 

The packet delineation functionality is illustrated in Fig. 2. To 
obtain and maintain synchronisation the design assumes that the 
ingress stream is an abutted series of IPv4 packets. When user 
packets are unavailable for transmission, empty packets are 
inserted into the flow in a similar manner to the idle cells of the 
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