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Abstract
A robust evolutionary approach, called the Family Competition Evolutionary Algorithm
(FCEA), is described for the synthesis of optical thin-�lm designs. Based on family
competition and adaptive rules, the proposed approach consists of global and lo-
cal strategies by integrating decreasing mutations and self-adaptive mutations. The
method is applied to three different optical coating designs with complex spectral
quantities. Numerical results indicate that the proposed approach performs very ro-
bustly and is very competitive with other approaches.
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1 Introduction

The optical thin-�lm coating is a vital technology in the �eld of modern optics. It can
be broadly described as follows: any device or material deliberately used to change
the spectral intensity distribution or the state of polarization of the electromagnetic
radiation incident on it in order to satisfy performance speci�cation and some con-
straints (Macleod, 1986; Dobrowolski, 1995). Optical thin-�lm coatings have numerous
remarkable applications in many branches of science and technology, such as scien-
ti�c instrument manufacturing, spectroscope, medicine, and astronomy (Dobrowolski,
1997).

Many different approaches have been proposed for designing optical coatings.
They roughly include analytical, graphical, and numerical methods (Macleod, 1986;
Dobrowolski, 1995). The numerical methods are particularly powerful because they
can be applied to the design of coatings with complicated properties. In most numer-
ical methods the design of optical coatings is formulated as an optimization problem
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based on the use of merit functions, which are often extremely dif�cult due to the large
number of local minimum (Dobrowolski, 1989).

The two basic approaches to the design of numerical optical coatings are re�ne-
ment methods (Aguilera et al., 1988; Dobrowolski and Kemp, 1990)and synthesis meth-
ods (Dobrowolski, 1986; Li and Dobrowolski, 1992; Tikhonravov, 1993; Bovard, 1988).
Re�nement methods normally require a starting design, which is gradually modi�ed
to a desired solution. The quality of the solution is highly dependent on the start point.
Unfortunately, good starting designs are not readily available for many modern design
problems. Choosing a good starting design is often a time-consuming and dif�cult task
in a complex coating system. Contrary to re�nement methods, synthesis methods au-
tomatically generate their own starting designs and, due to poor solution quality, are
usually combined with numerical re�nement methods. Therefore, developing a good
synthesis method is an important research topic.

Recently, evolutionary algorithms (EAs) have been successfully applied to several
problems encountered in optical �lters and coatings that are inherently computation-
ally complex (Eisenhammer et al., 1993; Martin et al., 1995; Greiner, 1996; Yang and Kao,
1998). EAs are an adaptable concept for problem solving and especially well suited for
solving dif�cult optimization problems. They have been used to solve problems in-
volving large search spaces, where traditional optimization methods are less ef�cient.

Genetic algorithms (GAs) (Goldberg, 1989), evolution strategies (ES) (Bäck et al.,
1991), and evolutionary programming (EP) (Fogel, 1995) are independently devel-
oped but have related implementations. For GAs, the coding function of standard
binary codes may introduce an additional multimodality, making the combined objec-
tive function more complex than the original function. To achieve better performance,
gray-coded and real-coded GAs have been introduced (Eshelman and Schaffer, 1993;
Mühlenbein and Schlierkamp-Voosen, 1993; Deb and Agrawal, 1995). In contrast, ESs
and EP use mainly real-valued representation and focus on self-adaptive Gaussian mu-
tations in the design of optical coatings (Greiner, 1996; Bäck and Schütz, 1995; Schutz
and Sprave, 1996). This type of mutation has succeeded in continuous optimization
and has been widely regarded as a good operator for local searches. Unfortunately, ex-
periments show that self-adaptive Gaussian mutation leaves individuals trapped near
local optima for rugged functions (Yang and Kao, 2000b).

Many modi�cations have been proposed to improve solution quality and to speed
up convergence in EAs. In particular, one trend is to incorporate local search tech-
niques into EAs. Martin et al. (1995) combined a gradient method into a real-coded
genetic algorithm for synthesizing three complex inhomogeneous problems. This hy-
brid approach may make a better tradeoff between computational cost and the global
optimality of the solution. However, for existing methods, local search techniques and
genetic operators often work separately during the search process.

In this paper, we propose the Family Competition Evolutionary Algorithm (FCEA) to
synthesize optical thin-�lm systems with various numbers of layers. The FCEA com-
bines decreasing-based Gaussian mutation, self-adaptive Gaussian mutation, and self-
adaptive Cauchy mutation. The FCEA will incorporate family competition (Yang et al.,
1997) and adaptive rules to construct the relationship between mutations, whose per-
formance heavily depends on the same factor called step size. The self-adaptive muta-
tions adapt the step sizes with a stochastic mechanism. On the other hand, decreasing-
based mutations decrease the step sizes with a �xed rate , where . In order to
balance exploration and exploitation, these mutation operators are designed to cooper-
ate. The family competition is inspired from the -ES (Bäck, 1996) and is similar
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Figure 1: (a) The construction parameters of a coating system and (b) pro�les of the
target speci�cation and a real coating system.

to a local search procedure. The FCEA was successfully applied to solve �exible ligand
docking (Yang and Kao, 2000a) and to train neural networks (Yang et al., 2000).

We illustrate features of our FCEA using three different thin-�lm design problems.
The �rst is an infrared antire�ection coating problem. Over 60 published solutions to
this problem exist (Dobrowolski et al., 1996). Furthermore, we studied a �lter with
0.0, 0.5, and 1.0 transmission regions within the m wavelength range. This
problem was used to compare the FCEA to several synthesis methods (Dobrowolski,
1986; Li and Dobrowolski, 1992) on the performance and computation speed. The �nal
problem is the synthesis of a tristimulus �lter matching the CIE used in the tristimu-
lus colorimeters (Sullivan and Dobrowolski, 1996). Experimental results demonstrated
that the FCEA is an encouraging synthesis approach for optical thin-�lm coatings.

This paper is organized as follows. Section 2 describes the problem of optical thin-
�lm coatings. Section 3 introduces the evolutionary nature of the FCEA. In Section 4,
three syntheses of thin-�lm optical coatings are presented to illustrate the performance
of the FCEA. We also compare the FCEA with various approaches on these problems.
Section 5 investigates the main characteristics of the FCEA. We conclude in Section 6.

2 Problem De�nition

The goal in designing optical multilayer coatings is to �nd the construction parameters
of systems that satisfy the desired optical speci�cation. The construction parameters
include the number of layers , the thickness , and refractive indices of the medium,
substrate, and layers. In general, a coating method �nds the thickness ( , , ) and
indices ( , , ) of layers of a -layer system shown in Figure 1(a).

To design a multilayer coating system, it is necessary to specify the desired optical
requirement, which is often de�ned as the target transmittance or target re�ectance

at a number of wavelengths in the interesting spectral region. equals if
the materials of a multilayer coating system are all nonabsorbing. Designing a thin-
�lm system involves �nding the number of layers , the refractive indices , and the
thickness of the th layer, in order to match closely with the speci�ed performance,
where . A coating system is called a normal-incidence coating if the incident
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angle is zero (see Figure 1(a)). Otherwise it is called an oblique-incidence coating. The
dashed line in Figure 1(b) indicates a designed re�ection. In this paper, we consider
normal-incidence coating and nonabsorbing materials.

Let the spectral re�ectance of the -layer system shown in Figure 1(a) be denoted
as , where is the wavelength region of interest. The desired spectral re-
�ectance pro�les are �tted by minimizing a suitable merit function (Macleod, 1986)
that is composed of an appropriate function of de�ned within the wavelength
range of region: , where and are the lower and upper bound wavelengths,
respectively. A merit function is

(1)

where is the target re�ectance. Figure 1(b) shows an example of a target re�ection
( ) with a respective design re�ection ( ). In practical applications, this inte-
gral can be approximated by a summation over a discrete number , and Equation (1)
is represented as

(2)

where is the tolerance at wavelength , and in general, is set to 0.01. The most
used method of calculating is a matrix method, which is especially useful
when the number of optimizing parameters is large (Dobrowolski, 1995). According to
the matrix method, the re�ectance at wavelength is given by

(3)

where is the effective refractive index of the incident medium. and , the
electric and magnetic vector, respectively, are de�ned as

(4)

where . , , and are the effective refractive index, thickness,
and angle of incidence of the th layer, respectively. is the effective refractive index
of the substrate medium. In Equations (3) and (4), , , or is given by

polarization
polarization

(5)

depending on whether the incident radiation is polarized parallel ( ) or perpendicular
( ) to the plane of incidence. The is in Equation (3). In Equation (4), is or
when is or , respectively. At normal light incidence is equal to because the
value of is zero.

In designing an optical thin-�lm system, we should consider several practical lim-
itations. First, according to the maximum principle (Tikhonravov, 1993), it is not ad-
vantageous to use more than two materials of the lowest and highest refractive
indices at normal light incidence. That is, the best result will be achieved with the pair
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Figure 2: Overview of our algorithm: (a) FCEA (b) FC adaptive procedure.

of materials where both have either the lowest and highest refractive indices. Second,
the number of layers may be limited because the cost of coatings increases with the
number of layers. Finally, the thickness cannot be negative, and very thin layers are
dif�cult to control for some deposition processes.

According to the above discussions, we eliminate a layer if its thickness is less than
0.001 m. We also use only one pair of materials with and for the design of optical
coatings.

Generally, the implementation (merit function minimization procedure) of an evo-
lutionary algorithm to design a thin-�lm coating with only one pair of materials with

and can be described as

1. Initialize coating systems as the initial population. The number of layers and the
thickness of each coating system are randomly generated. Evaluate the objective
value (Equation (2)) of each coating system based on the merit function.

2. Adapt the thickness of the layers of a system using genetic operators. Evaluate the
objective value of the offspring (systems).

3. Select solutions with the lowest values of merit function from these systems.

4. Execute step 2 and step 3 repeatedly until the terminal criteria are satis�ed.

3 Family Competition Evolutionary Algorithm (FCEA)

In this section, we present the details of the FCEA for optical thin-�lm designs. The
FCEA is a multi-operator approach that integrates decreasing-based Gaussian muta-
tion , self-adaptive Cauchy mutation , and self-adaptive Gaussian mutation .
Performance depends heavily on the same factor step size that decides the perturbation
size of a mutation operator. The family competition and adaptive rules are designed to
incorporate these three mutations to balance the global search and local search.
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Figure 3: The main steps of the family competition.

The basic steps of the FCEA are (see Figure 2): solutions are randomly gener-
ated as the initial population. Then the FCEA enters the main evolutionary loop, in
which each generation consists of three nearly identical procedures. Each procedure is
realized by doing recombination, mutation, family competition, and selection. These
three procedures differ only in the mutation used: decreasing-based Gaussian muta-
tion, self-adaptive Cauchy mutation, or self-adaptive Gaussian mutation. Hence we
call the procedure “FC adaptive,” and we describe it later in detail. Note that the input
of an FC adaptive procedure is solutions. Then the output is a new quasi-population
with solutions that is the input of the next FC adaptive procedure.

The FC adaptive procedure (Figure 2(b)) employs three parameters to generate a
new quasi-population: the parent population with solutions, mutation operator

, and family competition length . The main procedures are the family competition
(Figure 3) and the adaptive rules. During the family competition procedure, each indi-
vidual sequentially becomes the “family father.” With a probability , this family
father and another solution randomly chosen from the rest of the parent popula-
tion are used as the parents in a recombination operation. Then the new offspring (or
the family father if the recombination is not conducted) is operated on by mutation to
generate an offspring . For each family father, this procedure is repeated times.
Finally, solutions ( ) are produced but only the with the best value
of merit function survives. The merit function is de�ned as Equation (2). Since we
create solutions from the same family father and perform selection, this family com-
petition strategy is similar to selection, i.e., the family father is not included. We
feel this is a good way to avoid premature convergence but also to keep the spirit of
local searches, based on the results of our previous study (Yang and Kao, 2000b).

Two adaptive rules are implemented to adapt step size when self-adaptive muta-
tion is used in the FC adaptive procedure. The adaptive rules are not applied when
decreasing-based mutation is used. The FCEA adjusts the step sizes while mutations
are applied, however, such updates may be insuf�cient. According to dynamic
evolutionary information, adaptive rules are designed to decrease the step sizes of
self-adaptive mutations or to grow the step sizes of decreasing-based mutations in
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order to create the relationship of mutations after the family competition procedure.
The mutation and recombination operators will be described in Subsections 3.1 and
3.2. Subsection 3.3 will introduce the adaptive rules.

The FC adaptive procedure is as follows:
Parameters: is the working population, is the applied mutation ( , , or ),

and denotes the family competition length ( or ).
1. Let be an empty set ( ).
2. for each solution , called family father, in the population

2.1 for to Family Competition
Generate a offspring by using a recombination ( =recombination ) with
probability or by copying the family father to ( ) with probability .
Generate a offspring by mutating as follows:

if is ; decreasing-based Gaussian mutation
if is ; self-adaptive Gaussian mutation
if is . self-adaptive Cauchy mutation

endfor
2.2 Select the one ( ) with the lowest objective value from , , . family competition
2.3 Apply adaptive rules only if is a self-adaptive mutation operator ( or )

Apply A-decrease-rule to decrease the step sizes ( or ) of or if the objective
value of the family father is better than , That is, .
Apply D-increase-rule to increase the step size ( ) of if the objective value
of the family father is worse than . That is, .

2.4 Add the into the set .
endfor
Return the set with solutions.

After the FC adaptive procedure, there are parents and children left. Based
on different stages, we employ various means of obtaining a new quasi-population
with individuals. In both Gaussian and Cauchy self-adaptive mutation procedures,
in each pair of family father and its child, the individual with a better merit function
value survives. This procedure is called family selection and is similar to
selection. On the other hand, population selection chooses the best individuals from
all parents and children. With a probability , the FCEA applies population
selection to speed up the convergence when the decreasing-based Gaussian mutation
is used. For the probability (1- ), family selection is still considered. In order to
reduce the ill effects of greediness on population selection, the initial is set to 0,
but it is changed to 0.2 when the mean step size of self-adaptive Gaussian mutation is
larger than that of decreasing-based Gaussian mutation.

The FCEA procedure is described as follows:
1. Set the initial step sizes ( , , and ), family competition lengths ( and ),

and crossover probabilities ( and ). Let .
2. Randomly generate an initial population with solutions. Each solution is

represented as , .
3. Evaluate the �tness of each solution in the population .
4. repeat

4.1 Decreasing-based Gaussian mutation ( )
Generate a children set with solutions by calling FC Adaptive with
parameters: , , and . That is, FC Adaptive( , , ).
Select the best solutions as a new quasi-population by population selection
from the union set with probability or by family selection with .

4.2 Self-adaptive Cauchy mutation ( ) : Generate a new children set by calling
FC Adaptive with parameters: , , and . Apply family selection to
select a new quasi-population with solutions from the union set .

4.3 Self-adaptive Gaussian mutation ( ) : Generate a new children set by calling
FC Adaptive with parameters: , , and . Apply family selection to
select a new quasi-population with solutions from the union set .
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4.4 Let and .
until (termination criteria are met)
Output the best solution and the value of merit function.

Regarding chromosome representation, we present each solution (Figure 4) of a
population as , where is the number of layers of a coating system.
The indicator represents the structure of the refractive indices because only one pair
of materials with and is used. The refractive index of the �rst layer is when
is 0 and is when is 1. The vector is the thickness vector of a coating system to
be optimized; , , and are the step-size vectors of decreasing-based mutation, self-
adaptive Gaussian mutation, and self-adaptive Cauchy mutation, respectively. In other
words, each solution is associated with three parameters for step-size control. The
number of element of each vector , , , and is . The initial value is randomly
chosen from , where and are the numbers of the lower bound and upper
bound layers, respectively. Initially, is randomly set to 1 or 0. The initial value of each
entry of is randomly chosen over a feasible region; , , and are set to 0.04, 0.01,
and 0.01.

In the remainder of this section, we explain each component of the FC adaptive
procedure: recombination operators, mutation operations, and rules for adapting
step sizes ( , , and ). For an easy description of the operators, we use

to represent the family father and
as another parent (only for the recombination operator). The offspring

is generated by a genetic operation. We also use to denote
the thickness of th layer of a solution .

3.1 Recombination Operators

The advantages and disadvantages of recombination for a particular objective function
cannot be fully accessed in advance (Bäck et al., 1997). Therefore, we have imple-
mented two simple recombination operators to generate offspring: modi�ed discrete
recombination and intermediate recombination (Bäck, 1996). Here, we mention again
that recombination operators are activated only with a probability . The optimizing
solution and a step size ( , , or ) are recombined in a recombination operator.

Modi�ed Discrete Recombination The original discrete recombination (Bäck,
1996) generates a child that inherits genes from two parents with equal probability.
Here the two parents of the recombination operator are the family father and another
randomly selected solution. Our experience indicates that the FCEA can be more ro-
bust if the child inherits genes from the family father with a higher probability (Yang
and Kao, 2000b). Therefore, we modi�ed the operator as follows:

with probability 0.8
with probability 0.2.

(6)

For a family father, applying this operator in the family competition is viewed as
a local search procedure because this operator is designed to preserve the relationship
between a child and its family father.

Intermediate Recombination We de�ne intermediate recombination as:

and (7)

(8)
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Figure 4: The chromosome representation and recombination operators: Family parent
(a) and the other parent (b) in the self-adaptive Gaussian mutation procedure used
a recombination operator to generate an offspring (c). The and are updated by
modi�ed discrete recombination and intermediate recombination, respectively; and

are unchanged.

where is , , or based on the mutation operator applied in the family competition.
We follow the evolution strategies work of Bäck and Schwefel (1993) to employ only
intermediate recombination on step-size vectors , , and .

Figure 4 shows a recombination example in the self-adaptive Gaussian mutation
procedure. The offspring is generated from the family father and another parent

by applying modi�ed discrete recombination for thickness and intermediate re-
combination for step size . In other words, the and remained unchanged in the
self-adaptive Gaussian mutation procedure. Note that the values of and of the
offspring were directly inherited from the family father.

3.2 Mutation Operators

Mutations are main operators of the FCEA. After recombination, a mutation operator is
applied to the family father or the new offspring generated by a recombination. In the
FCEA, the mutation is performed independently on each vector element of the selected
individual by adding a random value with expectation zero:

(9)

where is the thickness of the th layer of , is the th variable of mutated from
, is a random variable, and is the step size. In this paper, is evaluated

as or if the mutations are Gaussian mutation or Cauchy mutation,
respectively.

Self-Adaptive Gaussian Mutation We adapted Schwefel’s (1981) proposal to use
self-adaptive Gaussian mutation. The mutation is accomplished by �rst mutating the
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Figure 5: Density functions of Gaussian and Cauchy distributions.

step size and then the thickness :

(10)
(11)

where is the standard normal distribution. is a new value with
distribution that must be regenerated for each index . For the FCEA, we
adopted Bäck and Schwefel (1993) by setting and as and ,
respectively.

Self-Adaptive Cauchy Mutation The self-adaptive Cauchy mutation (Yao and
Liu, 1997) works as follows:

(12)
(13)

In our experiments, is 1. Note that self-adaptive Cauchy mutation is similar to
self-adaptive Gaussian mutation except that Equation (11) is replaced by Equation (13).

Decreasing-Based Gaussian Mutations Our decreasing-based Gaussian muta-
tion uses the step-size vector with a �xed decreasing rate as follows:

(14)
(15)

Previous results (Yang and Kao, 2000b) demonstrated that self-adaptive muta-
tions converge faster than decreasing-based mutations but, for rugged functions, self-
adaptive mutations can be more easily trapped into local optima than decreasing-based
mutations.

Figure 5 compares density functions of Gaussian distribution ( and Cauchy
distributions ( (1)). Clearly Cauchy mutation is able to make a larger perturbation than
Gaussian mutation. This implies that Cauchy mutation has a higher probability of es-
caping from local optima than Gaussian mutation does. For decreasing mutation, it
is like searching for a better child in a hypersphere centered at the parent. However,
for self-adaptive mutation, the search space becomes a hyperellipse. Figure 6 illus-
trates this difference by using two-dimensional contour plots. Therefore, children are
searched in two different types of regions. For these reasons, we use these three types
of mutations.
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Figure 6: (a) and (b) show the difference in search space between self-adaptive (ellipses)
and decreasing-based mutations (circles) on the two-dimensional contour plots.

3.3 Adaptive Rules

The performance of Gaussian and Cauchy mutations is largely in�uenced by the step
sizes. The FCEA adjusts the step sizes while mutations are applied (e.g., Equations (10),
(12), and (14)). However, such updates have insuf�ciently considered the performance
of the whole family. Therefore, after the family competition, some additional rules
are implemented. Note that the adaptive rules are applied in the procedures of self-
adaptive mutations but not of decreasing-based mutations.

1. A-decrease-rule Immediately after self-adaptive mutations, if objective values of
all offspring are greater than or equal to that of the family father, we decrease the
step-size vectors (Gaussian) or (Cauchy) of the parent:

(16)

where is the step size vector of the parent. In other words, if there is no im-
provement after self-adaptive mutations, we may propose a more conservative
approach. That is, smaller step size tends to make better improvement in the next
iteration. This is inspired from the 1/5-success rule of (1+ )-ES (Bäck, 1996).

2. D-increase-rule It is dif�cult to decide the rate of decreasing-based mutations.
Unlike self-adaptive mutations that adjust step sizes automatically, its step size
goes to zero as the number of iterations increases. Therefore, it is essential to em-
ploy a rule that can enlarge the step size in some situations. The step size of the
decreasing-based mutation should not be too small, when compared to step sizes
of self-adaptive mutations. Here, we propose to increase if either of the two
self-adaptive mutations generates better offspring. That is, after a self-adaptive
mutation, if the best child with step size is better than its family father, the step
size of the decreasing-based mutation is updated as follows:

(17)

where is the mean value of the vector ; and is 0.2 in our experiments.
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Table 1: Parameters of the FCEA and notation used in this paper.

parameter name the value and notation of parameter
recombination =0.8 (decreasing-based Gaussian mutation ( ))
probability ( ) =0.2 (two self-adaptive mutations ( and ))
family competition = 6 (decreasing-based Gaussian mutation)
length = 6 (two self-adaptive mutations)
step sizes ,
population size ( ) 50
other notation : number of layers; : total family competition length ( );

MF: value of merit function; : total thickness of a solution

Table 2: Some solutions of the FCEA for infrared antire�ection coatings over the region
on a substrate based on the refractive index pair 2.2 and 4.2.

S-20 S-27 S-33 S-40 S-44 S-51 S-61 S-71
15 16 17 23 27 27 34 36

m) 20.34 27.04 33.96 40.17 44.98 51.19 61.7 71.15
MF(%) 0.855 0.697 0.614 0.577 0.553 0.522 0.509 0.494

4 Experimental Results

In this section, we present the numerical results for the synthesis of three different op-
tical coatings to illustrate the proposed method. We would like to mention again that
all the materials were assumed to be nonabsorbing and nondispersive with normal in-
cidence. Table 1 indicates the setting of the FCEA parameters, such as initial step sizes,
family competition lengths, and recombination probabilities. They are used for synthe-
sis problems de�ned in this work. , , and are the parameters for decreasing-
based mutation; , , , and are for self-adaptive mutations. The population size is
50. These parameters are decided after the experiments have been conducted on some
optical coating problems (Aguilera et al., 1988; Li and Dobrowolski, 1992; Sullivan and
Dobrowolski, 1996) with various values.

4.1 Infrared Antire�ection Coating

The �rst design problem is the synthesis of a wide-band antire�ection (AR) coating
for germanium in the infrared. At least 60 different solutions were published for this
AR coating, including non-evolutionary approaches (Aguilera et al., 1988; Dobrowolski
and Kemp, 1990; Dobrowolski, 1997; Druessel and Grantham, 1993) and evolutionary
approaches (Bäck and Schütz, 1995; Schutz and Sprave, 1996), which are mixed-integer
algorithms. In contrast, our proposed approach is a real-valued optimizer.

The target design was the re�ectance speci�ed to zero at 0.1 m wavelength
increments between 7.7 and 12.3 m; with being de�ned in Equation (2) as 47. The
incident medium is air ( ), and the substrate refractive index is . The
high- and low-index coating materials were Ge ( = 4.2) and ZnS ( = 2.2).

The initial number of layers was randomly chosen from 15 to 40. The initial thick-
ness of each layer was uniformly selected from the region from 0.2 to 1.0 m. The
FCEA executed a total of 100 times, and the maximum number of generations was
2000. Table 2 shows several best solutions obtained by our FCEA on different total
optical thickness. Figure 7(a) shows the spectral pro�les of the series of intermediate
solutions of the solution S-40 shown in Table 2. Initially, the value of merit function
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Figure 7: Series of intermediate solutions and refractive-index pro�les of a solution
generated by the FCEA for the wide-band AR coating on a substrate.

is 60.17%. The values are reduced to 1.31%, 0.72%, and 0.577% when the numbers of
generations are 100, 300, and 2000, respectively. The number of layers and the total
thickness of the �nal solution (0.577%) are 23 and 40.17 m, respectively. Figure 7(b)
shows the refractive-index pro�le of the �nal solution.

Some solutions from the previous research and one predicted curve by Willy (1993)
are shown in Figure 8. One curve obtained by Dobrowolski et al. (1996) and believed
to correspond to optimum solutions was also plotted. Figure 8 shows that several, but
by no means all, of these published solutions lie close to the believable optimum curve.
Nevertheless, a number of these solutions are relatively far from this curve. This im-
plies the importance of using good starting designs or using good design techniques.
Figure 8 shows that the solutions of the FCEA are very close to the believable opti-
mum curve. They are better than the solutions obtained by parallel evolution strategy
(Schutz and Sprave, 1996) when the total thickness is larger than 35 m. The FCEA is
also competitive with well-known approaches, such as damped least squares, modi-
�ed gradient, Hook and Jeeves search (Aguilera et al., 1988), genetic algorithm (Martin
et al., 1995), and evolution strategy (Bäck and Schütz, 1995).

There are some observations according to Figure 8.

1. Willy’s (1993) predicated optimal values were overestimated when the total thick-
ness was lower than 30 m. The observation was consistent with the previous
�ndings (Schutz and Sprave, 1996; Dobrowolski et al., 1996).

2. In Schutz and Sprave (1996), the authors described Willy’s predicated curve as the
best estimate when the total thickness is beyond 30 m. The solutions obtained
by the FCEA are better than Willy’s predicated values. Therefore, we claim that
the solutions obtained in Dobrowolski et al. (1996) correspond to the optimum
solutions for this AR coating.

3. Figure 9 shows that the clusters of layers are evident in our solutions. That is, the
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Figure 9: Several refractive-index pro�les of solutions obtained by the FCEA with dif-
ferent optical overall thickness for the wide-band AR coating.

434 Evolutionary Computation Volume 9, Number 4



Optical Coating Designs Using the FCEA

Table 3: Construction parameters of several solutions obtained by the FCEA for the
antire�ection coating problem, the �lter with 0.0, 0.5, and 1.0 transmission regions, and
the CIE �lter for colorimetry.

Antire�ection 0.0-0.5-1.0�lter CIE
Layer ( m) ( m) ( m) ( m) ( m) ( m)

Subs( ) 4.0 1.52 1.52
1 2.2 0.5024 0.5506 0.4156 2.35 0.0912 0.0678 1.468 0.0750
2 4.2 1.0047 0.9791 1.4223 1.35 0.0633 0.0276 2.323 0.3289
3 2.2 2.6823 2.5962 1.1770 2.35 0.0168 0.4476 1.468 0.1159
4 4.2 0.3341 0.4992 1.4257 1.35 0.0050 0.0316 2.323 0.1029
5 2.2 1.5401 1.3068 0.6412 2.35 0.0411 0.1366 1.468 0.3522
6 4.2 2.9295 2.8681 3.2112 1.35 0.0031 0.0238 2.323 0.1259
7 2.2 0.5613 0.7713 1.1923 2.35 0.0066 0.1849 1.468 0.1196
8 4.2 1.0228 0.6784 0.5698 1.35 0.1315 0.0980 2.323 0.2100
9 2.2 2.6903 0.2762 2.6681 2.35 0.0048 0.0288 1.468 0.2643
10 4.2 1.2822 0.2100 1.9116 1.35 0.0546 0.1391 2.323 0.1580
11 2.2 0.3334 2.1329 0.6723 2.35 0.0898 0.0179 1.468 0.1662
12 4.2 2.9046 4.9398 1.7747 1.35 0.0466 0.0013 2.323 0.1373
13 2.2 2.6785 1.5095 1.4158 2.35 0.0260 0.3210 1.468 0.0972
14 4.2 0.4880 0.2100 5.2383 1.35 0.0256 0.1084 2.323 0.2529
15 2.2 1.1391 0.8416 2.4343 2.35 0.0610 0.3487 1.468 0.2610
16 2.2 2.5555 1.0764 0.7082 1.35 0.1523 0.0577 2.323 0.1142
17 4.2 2.3929 0.4154 0.6236 2.35 0.0876 0.0844 1.468 0.1311
18 2.2 2.8695 3.4998 1.35 0.0783 0.0049 2.323 0.2189
19 4.2 2.6401 2.5964 2.35 0.1230 0.0358 1.468 0.1291
20 2.2 0.4476 0.4224 1.35 0.1045 0.0911 2.323 0.2850
21 4.2 1.2131 1.2308 2.35 0.3301 0.0952 1.468 0.0980
22 2.2 2.5381 2.5281 1.35 0.0939 0.2132 2.323 0.3049
23 4.2 2.3905 2.3872 2.35 0.1212 0.0190 1.468 0.0789
24 1.35 0.1382 0.1143 2.323 0.1092
25 2.35 0.0397 0.0694 1.468 0.0385
26 1.35 0.1223 0.1065 2.323 0.1311
27 2.35 0.0051 0.0023 1.468 0.0739
28 1.35 0.0019 0.0111 2.323 0.1331
29 2.35 0.0862 0.1196 1.468 0.0628
30 1.35 0.0013 0.0477 2.323 0.0763
31 2.35 0.2120 0.1602 1.468 0.0731
32 1.35 0.0169 0.0646 2.323 0.3066
33 2.35 0.0503

medium ( ) 1.0 1.0 1.52
( m) 27.04 33.96 40.17 1.96 3.33 5.13

MF(%) 0.697 0.614 0.577 1.724 0.387 0.427

refractive-index pro�les of these three solutions have similar structures from the
�rst layer to the �fth. This observation was also discussed for normal-incidence
antire�ection coatings (Dobrowolski et al., 1996).

4. The solution quality will be improved when the number of layers becomes larger
and the total thickness greater. We would like to stress that the cost of coatings
increases with the number of layers.

5. We observed the ”Bermuda Triangle,” i.e., the great difference between the empir-
ical and analytical estimate (Schutz and Sprave, 1996), in the region from 11 m to
17 m. The evidence of clusters of layers may be used to explain this observation.

The construction parameters of the three best solutions obtained by our FCEA are
given in Table 3 for this AR coating.
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Figure 10: Series of intermediate performance and the refractive-index pro�les of our
FCEA for the �lter with 0.0, 0.5, and 1.0 transmission region m on a

substrate based on the refractive index pair 1.35 and 2.35.

4.2 Filter with 0.0, 0.5, and 1.0 Transmission Regions

The second example concerns the synthesis of a �lter in the region 0.4-0.75 m. The
desired performance is

(re�ector),
(antire�ector),
(beam splitter),

(antire�ector).

It was believed that it would be dif�cult to design such a coating system for this prob-
lem without using synthesis approaches because the starting design is not easily ob-
tainable. Such multiwavelength speci�cations might be required for laser and electro-
optical systems. This problem was used for comparison of synthesis methods (Do-
browolski, 1986; Li and Dobrowolski, 1992). Following these works, we only used two
coating materials whose refractive indices are and , and the sub-
strate and medium indices are and , respectively. The merit function
was de�ned at 36 points. That is, each region has 9 points.

The initial number of layers was randomly chosen from 25 to 35. The initial thick-
ness of each layer was uniformly selected from the region from 0.01 to 0.1 m. The
maximum number of generations was 1000.

Figure 10(a) shows a series of intermediate solutions of a solution obtained by the
FCEA. The value of merit function is 36.25% when the number of generations is 1. The
objective values become 2.009% and 0.504% when the number of generations is 100
and 300, respectively. The objective value of the �nal solution is 0.387% after the FCEA
exhausted 1000 generations. The number of layers is 33 and the thickness is 3.33 m of
the �nal solution. Figure 10(b) shows the refractive-index pro�le of the �nal solution.

Table 4 shows the comparison of the FCEA with well-known synthesis methods
(Li and Dobrowolski, 1992), such as gradual-evolution and inverse-Fourier transform
methods; and re�nement methods (Li and Dobrowolski, 1992), such as dumped-least-
square and Hooke and Jeeves methods, on the �lter with 0.0, 0.5, and 1.0 transmission
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Table 4: Comparison of the FCEA with synthesis methods (Li and Dobrowolski, 1992)
and re�nement methods (Li and Dobrowolski, 1992) on �lter with 0.0, 0.5, and 1.0 trans-
mission regions.

FCEA synthesis methods re�nement methods
Gradual- Minus- Flip- Inverse-Fourier Dumped-Least Golden- Hooke
Evolution Filter Flop Transformation Square Selection Jeeves

32 33 32 9 37 34 43 35 35 35
m) 1.96 3.33 2.805 2.350 4.550 1.99 2.37 1.975 2.671 3.434

MF(%) 1.72 0.387 0.587 5.10 2.13 2.56 2.20 1.86 3.81 4.970

Table 5: Comparison of the FCEA with the needle method on CIE �lter for the tris-
timulus colorimeters.

FCEA Needle Method
number of layers 32 34 31

total thickness ( )( m) 5.13 4.8 3.982
MF(%) 0.427 0.588 0.62

regions. The FCEA obtains the best solutions among these comparative approaches.
The solution quality also depended on the total thickness. For example, the values of
merit function are 1.72% and 0.316% for the FCEA when the total thickness are 1.96 m
and 3.51 m, respectively. The construction parameters of these two solutions of our
FCEA are given in Table 3 for this �lter.

4.3 Tristimulus Filter

The objective of the third example is to produce a �lter that matches the CIE curve
for the standard observer in the 380-780 m spectral region (Sullivan and Dobrowolski,
1996). This �lter is used in tristimulus colorimeters. The target curve is the solid line
shown in Figure 11(b). The �nal designs should consist of only two coating materials

and whose refractive indices are and , respectively.
Both substrate and medium are assumed to be glass whose index is .
The merit function was de�ned at 41 equispaced points on the interesting wavelength
scale.

The initial number of layers was randomly chosen from 25 to 35. The initial thick-
ness of each layer was uniformly selected from the region from 0.01 to 0.1 m, and the
maximum number of generations was 2000.

Figure 11(a) shows the convergence curve of value of the merit function of the
FCEA on the CIE �lter. A series of intermediate solutions of a solution obtained by
the FCEA are illustrated in Figure 11(b)–(e). The dash curves are the designed results
and the solid curve is the target design. The value of the initial merit function is 20.83%.
The values of solutions are reduced to 4.17% and 1.44% when the numbers of gener-
ations are at 100 and 300, respectively. The �nal solution quality is 0.427% after the
FCEA exhausted 2000 generations. The number of layers is 32, and the total thickness
is 5.13 m of the �nal solution. Figure 11(f) shows the refractive-index pro�le of the
�nal solution.

Table 5 shows that the FCEA is very comparative with the needle method (Sullivan
and Dobrowolski, 1996), which is a very powerful synthesis method. The last column
in Table 3 shows the construction parameters of the best solution obtained by the FCEA
for the CIE �lter.
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Figure 11: Series of intermediate performance and the refractive-index pro�les of our
FCEA for the CIE �lter for the tristimulus colorimeters in the region 380-780 m.
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l

(a) length versus merit function
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(b) length versus total thickness

Figure 12: The relationship between the merit function and the total thickness of solu-
tions obtained by the FCEA on different total family competition lengths ( ) for the
design of thin-�lm optical coatings. Each problem is tested on 30 independent runs for
each length, and the maximum number of generations is 500.

5 Investigation of the FCEA

In this section, we discuss several characteristics of the FCEA using numerical experi-
ments. The main idea of the FCEA is that the mutation operators are able to cooperate
with each other by applying the adaptive rules and family competition. We will �rst
describe the parameters of the FCEA and then discuss the effectiveness of using multi-
ple mutations.

5.1 Parameters of the FCEA

We have chosen the parameters listed in Table 1, based on the following observations:

1. Since the family length is a critical factor of the FCEA, in Figure 12, we have tested
the performance of different total family competition lengths ( ). Figure 12(a)
shows the relationship between and the value of merit function, while Fig-
ure 12(b) re�ects that between and the total thickness of solutions. It can be
seen that the solution quality improved when the family competition length in-
creased. The total thickness of solutions is almost independent of . Note that
the convergent speed of the FCEA will slow when the family competition length
is larger. Therefore, we set both and to 6.

2. We have implemented our FCEA on the design of optical coatings with recombi-
nation probability between 0.0 to 1.0. We noticed that the performance of the
FCEA was insensitive to these recombination probabilities when . Based
on experimental results, we set and to 0.8 and 0.2, respectively.

3. The step sizes and of self-adaptive mutations are set to 0.01. Decreasing-based
with a large initial step size ( ) is a global search strategy in the FCEA. The
FCEA is less sensitive with the initial step sizes than evolution strategies on the de-
sign of optical coatings, because the FCEA applies both self-adaptive (Equation 12
and Equation 10) and A-decrease-rule (Equation 16) mechanisms to adjust and

according to experimental results.
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Table 6: Comparison of various approaches of the FCEA.

Problems Methods Average Average number Average of Total Best Worst
MF (%) of layers thickness MF (%) MF (%)

Antire�ection FCEA 0.824 23.30 35.911 0.658 1.079
FCEA 0.990 23.13 35.145 0.685 1.531

0.851 23.44 36.442 0.617 1.160
0.840 23.50 35.097 0.743 1.129
0.824 23.73 35.809 0.643 1.269
0.845 23.16 34.355 0.686 1.140
0.813 22.83 33.444 0.675 1.129

0-0.5-1.0 Filter FCEA 0.613 30.77 3.406 0.316 1.478
FCEA 1.645 30.33 3.168 0.649 2.665

0.674 30.71 3.739 0.271 1.585
0.625 30.83 3.242 0.368 1.535
0.769 30.00 3.634 0.403 1.490
0.608 31.70 3.040 0.335 1.167
0.973 30.83 3.239 0.557 1.615

CIE FCEA 1.892 30.80 4.569 1.182 3.459
FCEA 2.741 31.13 4.129 1.451 5.310

2.144 30.80 4.598 0.810 3.101
1.676 30.20 3.971 0.642 3.018
2.741 31.67 5.107 1.121 4.399
2.128 31.50 3.725 1.362 3.768
2.070 31.89 4.195 1.157 2.779

5.2 The Effectiveness of Multiple Operators and Family Competition

Using multiple mutations in each generation is one of the main features of the FCEA.
Using numerical experiments, we will demonstrate that these three FC adaptive proce-
dures with different mutations cooperate with one another and possess good local and
global properties.

We have compared seven different uses of mutation operators in Table 6. Each use
combines some of the three operators applied in the FCEA: decreasing-based Gaussian
mutation , self-adaptive Cauchy mutation , and self-adaptive Gaussian muta-
tion . For example, the approach uses only the FC adaptive procedure with self-
adaptive Cauchy mutation; the approach integrates two FC adaptive proce-
dures with decreasing Gaussian mutation and self-adaptive Cauchy mutation; and the
FCEA is an approach integrating , , and . The FCEA approach is a special
case of FCEA without adaptive rules, that is, without A-decrease-rule (Equation (16))
and D-increase-rule (Equation (17)). Except for FCEA , the others use adaptive rules.
To enable a fair comparison, we have set the total length of family competition of all
seven approaches at the same value. For example, if in the FCEA,
for one-operator approaches ( , , and ) and for two-operator
approaches ( and ). The maximum number of generations is set to
500.

The following observations are obtained from this experiment:

1. Table 6 shows that one-operator approaches ( , , and ) have different per-
formance.

2. Generally, these six approaches employing adaptive rules have little difference in
performance on these test systems. However, the FCEA performs more robustly
than the others in terms of the solution quality.

3. Family competition is a useful strategy. is better than evolution strategies on
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the AR coating. We have also obtained the same results on function optimization
(Yang and Kao, 2000b). We think the reason is that applies adaptive rules and
family competition.

4. The control of step sizes is important and the adaptive rules (A-decrease-rule and
D-increase-rule) are useful for the FCEA according to the comparisons of FCEA
and FCEA.

6 Conclusions

This study presents the FCEA as a stable synthesis approach for optical thin-�lm de-
signs. From our experience, it is suggested that a global optimization method should
consist of both global and local search strategies. For our FCEA, the decreasing-based
mutation with large initial step sizes is the global search strategy; the self-adaptive mu-
tations with family competition procedure and replacement selection are local search
strategies. Based on the family competition and adaptive rules, these mutation opera-
tors can closely cooperate with one another. Experiments of three well-known optical
coating problems verify that the proposed approach is very comparative with evolu-
tionary algorithms and traditional approaches. We believe that the �exibility and ro-
bustness of the FCEA make it an effective synthesis method of optical thin-�lm designs.
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Bäck, T. and Schwefel, H.-P. (1993).An overview of evolution algorithms for parameter optimiza-
tion. Evolutionary Computation, 1(1):1–23.
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