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S

A method is proposed for improving sample size calculations for logistic and Poisson regression
models by incorporating the limiting value of the maximum likelihood estimates of nuisance param-
eters under the composite null hypothesis. The method modifies existing approaches of Whittemore
(1981) and Signorini (1991) and provides explicit formulae for determining the sample size needed
to test hypotheses about a single parameter at a specified significance level and power. Simulation
studies assess its accuracy for various model configurations and covariate distributions. The results
show that the proposed method is more accurate than the previous approaches over the range of
conditions considered here.
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1. I

The class of generalised linear models, first introduced by Nelder & Wedderburn (1972) and
later expanded by McCullagh & Nelder (1989, Ch. 2), is specified by assuming independent scalar
response variables Y

i
(i=1, . . . , N) to have an exponential-family probability density of the form

exp[{Y h−b(h )}/a(w)+c(Y, w)]. (1)

The expected value E(Y )=m is related to the canonical parameter h by the function m=b∞(h ),
where b∞ denotes the first derivative of b. The link function g relates the linear predictors g to the
mean response g=g(m). The linear predictors can be written as

g=b
0
+XTb,

where X is a K×1 vector of covariates, and b0 and b= (b1 , . . . , bK )T represent the corresponding
K+1 unknown regression coefficients. The scale parameter w is assumed to be known. Assume
(y
i
, x
i
), for i=1, . . . , N, is a random sample from the joint distribution of (Y , X) with probability

density function f (Y , X)= f (Y |X)f (X), where f (Y |X) has the form defined in (1) and f (X) is the
probability density function for X. The form of f (X) is assumed to depend on none of the unknown
parameters b0 and b. The likelihood function associated with the data is

L (b
0
, b)=a

N

i=1
f (y
i
, x
i
)=a
N

i=1
f (y
i
|x
i
) f (x
i
).

It follows from the standard asymptotic theory that the maximum likelihood estimator (b@0 , b
@T )T

is asymptotically normally distributed with mean (b0 , bT )T and with variance–covariance matrix
given by the inverse of the (K+1)× (K+1) Fisher information matrix I(b0 , b), where the (i, j )th
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element of I is

I
ij
=−E A∂2 log L∂b

i
∂b
j
B (i, j=0, . . . , K ).

We wish to test the composite null hypothesis H0 :b1=0 against the alternative hypothesis
H1 :b1N0, while treating (b0 , b2 , . . . , bK ) as a nuisance parameter. The Wald-type test of this
hypothesis is based on b@1/{var (b

@
1 )}1/2, where b

@
1 is the first entry of b

@= (b@1 , b
@
2 , . . . , b

@
K
)T and

var (b@1 ) is the second diagonal term of I−1(b@0 , b
@ ). The actual test is performed by referring the

statistic to its asymptotic distribution under the null hypothesis, which is the standard normal
distribution. In general, there is no simple closed-form expression for Fisher’s information matrix
except in some special cases. In view of their practical importance and the existence of explicit
formulae, we restrict attention to the cases of logistic and Poisson regression models. For the
logistic regression model, an approximate expression for Fisher’s information matrix was provided
in Whittemore (1981). The approximation is based on the moment generating function of the
distribution of the covariates and is valid when the overall response probability is small. A formula
for determining the sample size is based on the resulting asymptotic variance of the maximum
likelihood estimator of the parameters. Later, the technique was extended to the Poisson regression
model in Signorini (1991). However, in this case, the expression of Fisher’s information matrix is
exact and there is no restriction of use in terms of the overall response level. This paper presents
a direct modification of the approaches of Whittemore (1981) and Signorini (1991) to the question
of sample size calculations. The major difference between our approach and theirs is that the value
of the nuisance parameter under the null model is different from that under the alternative model.
We use the limiting value of the maximum likelihood estimator of (b0 , b2 , . . . , bK ) under the
constraint b1=0 as specified in the null hypothesis. Self & Mauritsen (1988) and Self et al. (1992)
took a similar approach to the determination of sample sizes for the score statistic and likelihood
ratio test, respectively, within the framework of generalised linear models. Although their methods
are applicable to logistic and Poisson regression models, they assumed all the covariates in the
model to be categorical with a finite number of covariate configurations. However, here we allow
the covariate to be continuous or discrete with an infinite number of configurations, as in the cases
of normal and Poisson covariates.
In § 2, the methodology is described and the procedures are illustrated with examples. In § 3,
simulation studies are performed and comparison made with the methods of Whittemore (1981),
Signorini (1991) and Self et al. (1992).

2. T  

It was shown in Whittemore (1981) that

I
ij
jN exp (b

0
)E{X

i
X
j
exp (XTb)} (i, j=0, . . . , K ),

with X0=1, for logistic regression with small response probabilities, while the equation is exact
for the case of Poisson regression as described by Signorini (1991). Based on this question and
the moment generating function of the distribution of covariates, m(t)=E{exp (XTt)}, the asymp-
totic variance of the maximum likelihood estimator b@1 of b1 can be expressed as V (b0 , b)/N,
where V (b0 , b)=n(b)/exp (b0 ); n(b) is the second diagonal element of M−1(b) with M= (m

ij
),

m
00
=m0=m, m

i0
=m
0i
=m
i
, m
i
=∂m/∂t

i
, and m

ij
=∂2m/∂t

i
∂t
j
, for i, j=0, . . . , K.

In order to approximate the required sample size, we need to examine the asymptotic mean and
variance of b@1 under the null model, as in Self & Mauritsen (1988). Let (b*

0
, b*
2
, . . . , b*

K
) denote

the solution of the equation lim
N�2

N−1E{S
N
(b
0
, 0, b
2
, . . . , b

K
)}=0, where S

N
represents deriva-

tives of the loglikelihood function with respect to (b0 , b2 , . . . , bK ) and E{.} denotes expectation
taken with respect to the true value of (b0 , b1 , b2 , . . . , bK ). We synthesise the ideas of Whittemore
(1981) and Self & Mauritsen (1988) by incorporating the value (b*

0
, b*) with b*= (0, b*

2
, . . . , b*

K
)

as the asymptotic mean under the null model. Thus, the sample size needed to test the hypothesis
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H0 :b1=0 with specified significance level a and power 1−c against the alternative H1 :b1N0 is

NPM�qV 1/2(b*0 , b*)Z
a/2
+V 1/2(b

0
, b)Z

c
b
1

r2, (2)

where Z
p
is the 100(1−p)th percentile of the standard normal distribution. In contrast, Whittemore

(1981) and Signorini (1991) set the values of the nuisance parameter equal to (b0 , b(0) ) with b(0)=
(0, b2 , . . . , bK ), under both the null and alternative models. In our notation this gives

NWS�exp (−b0 ) qn1/2(b(0) )Za/2+n1/2(b)Zcb
1
r2. (3)

In order to improve the accuracy, some modification was provided in Whittemore (1981). For the
univariate case, K=1, the sample size is more accurately calculated as

NW1=NWS{1+2 exp (b
0
)d(b
1
)}, (4)

where

d(b
1
)=
n1/2(0)+n1/2(b

1
)R(b

1
)

n1/2(0)+n1/2(b
1
)

,

R(b
1
)=n(b

1
){m
11

(2b
1
)−2m−1(b

1
)m
1
(b
1
)m
1
(2b
1
)+m−2(b

1
)m(2b

1
)m2
1
(b
1
)}.

For the multivariate case, K�2, the correction is too complicated, and a simple version was
proposed for routine use:

NW2=NWS{1+2 exp (b0 )}. (5)

In summary, the actual implementation of the proposed approach is as follows. For a chosen
logistic or Poisson regression model with specified parameter value (b0 , b), distribution of covariates
f (X) and required significance a and power 1−c, the minimum sample size N needed is determined
from equation (2). The test statistic is

b@
1
{N exp (b@

0
)/n(b@ )}1/2, (6)

which is referred to the standard normal distribution. The null hypothesis is rejected if the absolute
value of the statistic exceeds Z

a/2
.

To illustrate the general formula we continue the sample size calculations in Whittemore (1981)
and Signorini (1991) for logistic and Poisson regression models, respectively.
Whittemore (1981) presented the problem of testing whether or not the incidence of coronary
heart disease among white males aged 39–59 is related to their serum cholesterol level. During an
18-month follow-up period, the probability of a coronary heart disease event for a subject with
the population mean serum cholesterol level is judged to be 0·07, and the cholesterol levels in this
population are well represented by a standard normal distribution. Hence, we consider a simple
logistic regression with g=b0+Xb1 , b0= log (0·07), and X~N(0, 1). To detect the odds ratio of
e0·1, corresponding to b1=0·1, and e0·5, corresponding to b1=0·5, for a subject with a cholesterol
level of one standard deviation above the mean at a significance level 0·05 and with power 0·95,
equation (4) yields NW1=21 147 and NW1=839, respectively. Here

d(b
1
)=

1+ (1+b2
1
) exp (5b2

1
/4)

1+exp (−b2
1
/4)

, n(b
1
)=exp (−b2

1
/2).

To detect the same effects with the proposed method (2), the required sample sizes are NPM=
18 478 and NPM=662, respectively. The respective values of b*0 are −2·6549 and −2·5541.
Signorini (1991) discussed a study of water pollution in terms of the number of illnesses and
infections contracted per swimming season for ocean swimmers versus non-ocean or infrequent
swimmers. We continue to consider a simple Poisson regression for the number of infections, with
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Table 1. Calculated sample sizes and estimates of actual power at specified sample size for logistic
regression

Proposed method Whittemore (1981) Self et al. (1992)

Power Power Power
0·90 0·95 0·90 0·95 0·90 0·95

Bernoulli (0·5)
Sample sizea (NPM , NW1 , NS ) 1739 2165 2405 2923 1938 2396

Nominal powerb at NPM 0·9000 0·9500 0·7737 0·8644 0·8667 0·9288
Estimated power 0·8802 0·9392 0·8802 0·9392 0·8658 0·9304
Error −0·0198 −0·0108 0·1065 0·0748 −0·0009 0·0016

Normalised Poisson (5)c
Sample sizea (NPM , NW1 , NS ) 364 441 530 634 484 599

Nominal powerb at NPM 0·8997 0·9499 0·7302 0·8260 0·8020 0·8711
Estimated power 0·8792 0·9290 0·8792 0·9290 0·8404 0·9022
Error −0·0205 −0·0209 0·1490 0·1030 0·0384 0·0311

Standard normald
Sample sizea (NPM , NW1 , NS ) 411 507 547 666 545 675

Nominal powerb at NPM 0·9002 0·9500 0·7933 0·8755 0·8030 0·8777
Estimated power 0·8612 0·9222 0·8612 0·9222 0·8346 0·9014
Error −0·0390 −0·0278 0·0679 0·0467 0·0316 0·0237

Multinomial (0·76, 0·19, 0·01, 0·04)
Sample sizea (NPM , NW2 , NS ) 5785 6929 6305 7545 5783 7152

Nominal powerb at NPM 0·9000 0·9500 0·8684 0·9290 0·9001 0·9439
Estimated power 0·9216 0·9542 0·9216 0·9542 0·8834 0·9262
Error 0·0216 0·0042 0·0532 0·0252 −0·0167 −0·0177

Multinomial (0·40, 0·10, 0·10, 0·40)
Sample sizea (NPM , NW2 , NS ) 3311 4075 3869 4711 3245 4014

Nominal powerb at NPM 0·9000 0·9500 0·8457 0·9152 0·9056 0·9528
Estimated power 0·9274 0·9602 0·9274 0·9602 0·9170 0·9546
Error 0·0274 0·0102 0·0817 0·0450 0·0114 0·0018

Multinomial (0·25, 0·25, 0·25, 0·25)
Sample sizea (NPM , NW2 , NS ) 1726 2150 2315 2813 1947 2408

Nominal powerb at NPM 0·8999 0·9500 0·7875 0·8756 0·8627 0·9260
Estimated power 0·8790 0·9376 0·8790 0·9376 0·8612 0·9256
Error −0·0209 −0·0124 0·0915 0·0620 −0·0015 −0·0004

a Sample sizes needed to achieve power 0·9 and 0·95, respectively.
b Nominal powers at calculated sample sizes of the proposed method in a.
c The categorical approximation of Po(5) is (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) with probabilities (0·0404, 0·0842, 0·1404,
0·1755, 0·1755, 0·1462, 0·1044, 0·0653, 0·0363, 0·0318).
d The categorical approximation is (−2·2, −1·7, −1·2, −0·7, −0·2, 0·2, 0·7, 1·2, 1·7, 2·2) with probabilities
(0·0228, 0·0441, 0·0918, 0·1499, 0·1915, 0·1915, 0·1499, 0·0918, 0·0441, 0·0228).

a single Bernoulli covariate indicating ocean swimming if X=1 and with p=pr (X=1)=0·5. In
this case, the estimated infection rate of non-ocean or infrequent swimmers is 0·85, corresponding
to b0= log (0·85), and the ratio of mean response for X=1 to mean response for X=0 is 1·3,
corresponding to b1= log (1·3). It follows from equation (3) with n(b1 )={p exp (b1 )}−1+ (1−p)−1
that the sample sizes NWS needed for a significance level 0·05 with power 0·80, 0·90 and 0·95 are
518, 685 and 841, respectively. Our equation (2) gives 469, 629 and 779 at the three corresponding
power levels and b*

0
=−0·0228.
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Table 2. Calculated sample sizes and estimates of actual power at specified sample size for Poisson
regression

Proposed method Signorini (1991) Self et al. (1992)

Power Power Power
0·90 0·95 0·90 0·95 0·90 0·95

Bernoulli (0·5)
Sample sizea (NPM , NWS , NS ) 1835 2285 2354 2861 1856 2295

Nominal powerb at NPM 0·9001 0·9500 0·8069 0·8905 0·8968 0·9492
Estimated power 0·8880 0·9494 0·8880 0·9494 0·8918 0·9514
Error −0·0121 −0·0006 0·0811 0·0589 −0·0050 0·0022

Normalised Poisson (5)c
Sample sizea (NPM , NWS , NS ) 389 472 464 554 455 563

Nominal powerb at NPM 0·8999 0·9498 0·8299 0·9060 0·8505 0·9104
Estimated power 0·8966 0·9283 0·8966 0·9382 0·8802 0·9278
Error −0·0033 −0·0116 0·0667 0·0322 0·0297 0·0174

Standard normald
Sample sizea (NPM , NWS , NS ) 437 541 508 619 512 633

Nominal powerb at NPM 0·8997 0·9500 0·8485 0·9185 0·8502 0·9154
Estimated power 0·8762 0·9404 0·8762 0·9404 0·8748 0·9390
Error −0·0235 −0·0096 0·0277 0·0219 0·0282 0·0203

Multinomial (0·76, 0·19, 0·01, 0·04)
Sample sizea (NPM , NWS , NS ) 6165 7383 6218 7442 4933 6101

Nominal powerb at NPM 0·9000 0·9500 0·8971 0·9483 0·9519 0·9776
Estimated power 0·9462 0·9706 0·9462 0·9706 0·9364 0·9656
Error 0·0462 0·0206 0·0491 0·0223 −0·0155 −0·0120

Multinomial (0·40, 0·10, 0·10, 0·40)
Sample sizea (NPM , NWS , NS ) 3537 4353 3963 4825 3143 3886

Nominal powerb at NPM 0·9000 0·9500 0·8615 0·9265 0·9305 0·9682
Estimated power 0·9342 0·9692 0·9342 0·9692 0·9400 0·9710
Error 0·0342 0·0192 0·0727 0·0427 0·0095 0·0028

Multinomial (0·25, 0·25, 0·25, 0·25)
Sample sizea (NPM , NWS , NS ) 1835 2285 2354 2861 1856 2295

Nominal powerb at NPM 0·9001 0·9500 0·8069 0·8905 0·8968 0·9492
Estimated power 0·8904 0·9484 0·8904 0·9484 0·8954 0·9506
Error −0·0097 −0·0016 0·0835 0·0579 −0·0014 0·0014

a Sample sizes needed to achieve power 0·9 and 0·95, respectively.
b Nominal powers at calculated sample sizes of the proposed method in a.
c The categorical approximation of Po(5) is (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) with probabilities (0·0404, 0·0842, 0·1404,
0·1755, 0·1755, 0·1462, 0·1044, 0·0653, 0·0363, 0·0318).
d The categorical approximation is (−2·2, −1·7, −1·2, −0·7, −0·2, 0·2, 0·7, 1·2, 1·7, 2·2) with probabilities
(0·0228, 0·0441, 0·0918, 0·1499, 0·1915, 0·1915, 0·1499, 0·0918, 0·0441, 0·0228).

3. S 

The finite-sample adequacy of our formula was assessed through simulations, in which we also
compared the proposed method to those of Whittemore (1981), Signorini (1991) and Self et al.
(1992). The results are presented in Tables 1 and 2 for logistic and Poisson regression models,
respectively.
For both regression models, two linear predictors are examined, namely g=b0+X1b1 and g=
b0+X1b1+X2b2 . In the case of the simple linear predictor g=b0+X1b1 , we consider Ber(0·5),
normalised Po(5) and standard normal distributions for the covariate X1 . For the second predictor
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g=b0+X1b1+X2b2 , the joint distribution of (X1 , X2 ) is assumed to be multinomial with prob-
abilities p1 , p2 , p3 and p4 , corresponding to (x1 , x2 ) values of (0, 0), (0, 1), (1, 0) and (1, 1), respect-
ively. Three sets of (p1 , p2 , p3 , p4 ) are studied to represent different distributional shapes, namely
(0·76, 0·19, 0·01, 0·04), (0·4, 0·1, 0·1, 0·4) and (0·25, 0·25, 0·25, 0·25). Both the parameter of interest
b1 and the confounding parameter b2 are taken to be log 2. The intercept parameter b0 is chosen
to satisfy the overall response m:=0·05, where m:=E[exp (g)/{1+exp (g)}] and m:=E{exp (g)} for
the logistic and Poisson regression models, respectively.
First, we calculated from equations (2)–(5) the sample sizes (NPM , NWS , NW1 , NW2 ) required to

achieve the selected significance 0·05 and power (0·90, 0·95) within the model specifications. Let NS
denote the sample size for the approach of Self et al. (1992). Since they assumed all of the covariates
to be categorical with a finite number of configurations, discretisation schemes are needed for the
cases of Poisson and standard normal covariates; the chosen schemes are listed in the footnotes
of Tables 1 and 2. These estimates of sample size allow comparison of relative efficiencies of the
approaches. Since the magnitude of the sample size affects the accuracy of the asymptotic distri-
bution and the resulting formulae, we unify the sample sizes in the simulations; the sample size
NPM is chosen as the benchmark and is used to recalculate the nominal powers for all competing
approaches.
Estimates of the true power associated with given sample size and model configuration are then
computed through Monte Carlo simulation based on 5000 independent datasets. For each replicate,
NPM covariate values are generated from the selected distribution. These covariate values determine
the incidence rates for generating NPM Bernoulli or Poisson outcomes. Then the test statistic is
computed and the estimated power is the proportion of the 500 replicates whose test statistic values
exceed the critical value. The adequacy of the sample size formula is determined by the difference
between the estimated power and nominal power specified above. All calculations are performed
using programs written with SAS/IML (SAS Institute, 1989).
The results in Tables 1 and 2 suggest that there is a close agreement between the estimated
power and the nominal power for the proposed method regardless of the model configuration and
covariate distribution. The only exceptions are with the extremely skewed multinomial covariate
distribution (0·76, 0·19, 0·01, 0·04). The approach of Self et al. (1992) is also very good at achieving
the nominal levels, but the approaches of Whittemore (1981) and Signorini (1991) incur much
larger errors. We conclude that the proposed method maintains the accuracy within a reasonable
range of nominal power and is much more accurate than the previous approaches proposed by
Whittemore (1981) and Signorini (1991). Nevertheless, unbalanced allocations appear to degrade
the accuracy of sample size calculations.
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