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Finding Multiple Possible Critical Paths Using Fuzzy PERT

Shyi-Ming Chen and Tao-Hsing Chang

Abstract—Program evaluation and review techniques (PERT) is an effi-
cient tool for large project management. In actual project control decisions,
PERT has successfully been applied to business management, industry pro-
duction, project scheduling control, logistics support, etc. However, clas-
sical PERT requires a crisp duration time representation for each activity.
This requirement is often difficult for the decision-makers due to the fact
that they usually can not estimate these values precisely. In recent years,
some fuzzy PERT methods have been proposed based on fuzzy set theory
for project management. However, there is a drawback in the existing fuzzy
PERT methods, i.e., sometimes they maybe cannot find a critical path in a
fuzzy project network. In this paper, we propose a fuzzy PERT algorithm
to find multiple possible critical paths in a fuzzy project network, where
the duration time of each activity in a fuzzy project network is represented
by a fuzzy number. The proposed algorithm can overcome the drawback of
the existing fuzzy PERT methods.

Index Terms—Index of optimism, fuzzy numbers, Fuzzy PERT, fuzzy
project networks, possible critical paths, risk levels.

I. INTRODUCTION

It is difficult to manage a large project due to the fact that there are
thousands of activities and complex relationships among them. Pro-
gram evaluation and review techniques (PERT) is an efficient tool for
large project management. It can describe the relationships of activi-
ties based on a project network structure and calculate the time value
of every activity to find a critical path quickly. According to the crit-
ical path, the decision-maker can control the time and the cost of the
project and improve the efficiency of resource allocation to ensure the
project quality. PERT has successfully been used in business manage-
ment, factory production, logistic support, …, etc [1], [14], [17], [20].

However, the activity duration time often is an uncertain value so that
the result of classical PERT computation can not properly match the
real-world situation. In [8], Duboiset al.extended the fuzzy arithmetic
operations model to compute the latest starting time of each activity in
a project network. In [9], Gazdik used fuzzy arithmetic operations to
compute the earliest starting time of each activity in a project network.
In [15], Nasution proposed how to compute total floats and find crit-
ical paths in a project network. Many other researchers also presented
some calculation methods of fuzzy PERT under different conditions
[2]–[5], [14], [18], [20], [21]. In [2], Chanaset al.presented a method
to use fuzzy variables in PERT. In [3], we have presented a method
for finding critical paths using fuzzy PERT. In [4], we have presented
a method for finding multiple critical paths based on fuzzy PERT. In
[5], Chenet al.discussed some issues in fuzzy PERT. In [14], Monet
al. proposed fuzzy PERT/Cost with different fuzzy distributions on ac-
tivity duration under various risk levels and indices of optimism. The
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definitions of the risk level and the index of optimism are briefly re-
viewed from [14] as follows. Monet al.pointed out that the higher the
risk level, the more uncertainty in time/cost is involved in the project.
Thus, they considered the�-cut as a risk level, where� 2 [0; 1]. They
assumed that� < 0:3 is high risk,0:3 � � < 0:7 is medium risk, and
� � 0:7 is low risk. LetA be a fuzzy number with membership func-
tion�A, and let the�-cutA� of A be[a�L; a

�

R] (i.e.,A� = [a�L; a
�

R]),
wherea�� = �a�L + (1� �)a�R represents an element in the universe
of discourse determined by an index of optimism� and� 2 [0; 1].
In [14], Mon et al.pointed out that the index of optimism� indicates
the degree of optimism of a decision maker, where a larger value of�
indicates a higher degree of optimism. In [18], Prade applied fuzzy set
theory to deal with a scheduling problem. In [20], Wanget al.presented
fuzzy scheduling models under inflation conditions. In [21], Yaoet al.
presented a fuzzy critical path method based on signed distance ranking
of fuzzy numbers.

However, there is a drawback of the existing fuzzy PERT methods,
i.e., sometimes they maybe cannot find a critical path in a fuzzy project
network [3]. Furthermore, there is an increasing demand that the deci-
sion-maker needs more “possible critical paths” to decrease the deci-
sion risk for project management [5]. It is obvious that a critical path is
a path in which the sum of the total float of all the activities in the path
is zero. On the other hand, if the sum of the total float of the activities
in a path is smaller than the others, then the delay of any activity in
the path will be the highest risk that the project can not be finished on
time. In a fuzzy project network, the higher risk path is called a “pos-
sible critical path.”

In this paper, we propose a fuzzy PERT algorithm for project man-
agement, where the duration time of each activity in a fuzzy project
network is represented by a fuzzy number. It can overcome the draw-
back of the existing fuzzy PERT methods. The proposed algorithm can
find multiple possible critical paths in a fuzzy project network and can
increase the decision quality of project management.

The rest of this paper is organized as follows. In Section II, we briefly
review the basic definitions of fuzzy sets and the arithmetic operations
of fuzzy numbers from [6], [7], [11], [12], [15], and [22]. In Section III,
we present a method for calculating fuzzy time values in a fuzzy project
network. In Section IV, we use an example to illustrate the concept of
finding multiple possible critical paths in a defuzzfied fuzzy project
network. We also present a fuzzy PERT algorithm to find multiple pos-
sible critical paths in a fuzzy project network. In Section V, we illustrate
some examples to find multiple possible critical paths in fuzzy project
networks. The conclusions are discussed in Section VI.

II. A RITHMETIC OPERATIONS OFFUZZY NUMBERS

In 1965, Zadeh proposed the theory of fuzzy sets [22]. Roughly
speaking, a fuzzy set is a set with fuzzy boundaries. LetU be the uni-
verse of discourse,U = fu1; u2; . . . ; ung. A fuzzy setA of U can
be represented by

A = �A(u1)=u1 + �A(u2)=u2 + � � �+ �A(un)=un

where�A is the membership function of the fuzzy setA and�A(ui)
indicates the grade of membership ofui in the fuzzy setA, where
�A(ui) 2 [0; 1].

1083–4419/01$10.00 © 2001 IEEE
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Fig. 1. Membership function curve of fuzzy numberM .

A fuzzy number is a fuzzy set which is both convex and normal. A
fuzzy setA of the universe of discourseU is convex if and only if for
all u1, u2 in U ,

�A(�u1 + (1� �)u2) � Min(�A(u1); �A(u2)) (1)

where� 2 [0; 1]. A fuzzy set of the universe of discourseU is called
a normal fuzzy set if9ui 2 U , �A(ui) = 1.

In a fuzzy project network, the duration time of each activity is rep-
resented by a fuzzy number.

Definition 2.1: Assume thatM is a trapezoidal fuzzy number in the
universe of discourseU parameterized by

M = (l; m; m0; r)

where
8 i 2 [m; m0], we can see that�M(i) = 1;
l left spread ofM ;
r right spread ofM .

Fig. 1 shows the membership function curve of the trapezoidal fuzzy
numberM .

The definitions of fuzzy number arithmetic operations of trapezoidal
fuzzy numbers are shown as follows.

Definition 2.2: Let A andB be two trapezoidal fuzzy numbers
whereA = (l1; m1; m

0

1; r1) andB = (l2; m2; m
0

2; r2).

1) Fuzzy Numbers Addition�:

A �B � (l1 + l2; m1 +m2; m
0

1 +m0

2; r1 + r2) (2)

where the symbol “�” means “approximately equal.”
2) Fuzzy Numbers Subtraction	:

A 	B � (l1 � r2; m1 �m0

2; m
0

1 �m2; r1 � l2) (3)

where the symbol “�” means “approximately equal.”
3) Fuzzy Numbers Maximumf max:

f max(A; B) � (max(l1; l2); max(m1; m2)

max(m0

1; m
0

2); max(r1; r2)) (4)

where the symbol “�” means “approximately equal.”
4) Fuzzy Numbers Minimumf min:

f min(A; B) � (min(l1; l2) min(m1; m2)

min(m0

1; m
0

2); min(r1; r2)) (5)

where the symbol “�” means “approximately equal.”
Definition 2.3: Let M = (l; m; m0; r) be a trapezoidal fuzzy

number, then the defuzzified valueMe [6], [7], [12] of the trapezoidal
fuzzy numberM is

Me =
l+m+m0 + r

4
(6)

whereMe coincides with the center of gravity (COA) defuzzification
method ifM is symmetric.

Fig. 2. p equal dividing�-cuts formM ofM (whenp = 4).

Definition 2.4: Let M be a fuzzy number in the universe of dis-
courseU characterized by the membership function�M , �M : U !
[0; 1]. The�-cutM� [11], [12] of the fuzzy numberM is defined by

M� = fuj�M (u) � � andu 2 Ug

where� 2 [0; 1].
Definition 2.5: LetM be an arbitrary fuzzy number in the universe

of discourseU andp be a positive integer. Then, the fuzzy subsetMp
�

of U is called thep equal dividing�-cuts form ofM , where� 2 [0; 1]
andMp

� can be parameterized by

Mp
� = (l; m1; m2; . . . ; mp; m

0

p; . . . ; m
0

2; m
0

1; r) (7)

where
8 k � p;
mk left bound of thek=p-cutMk=p of the fuzzy numberM ;
m0

k right bound value ofk=p-cutMk=p of the fuzzy numberM ;
l left spread ofM ;
r right spread ofM .
For example, Fig. 2 shows thep equal dividing�-cuts formMp

� of
M , wherep = 4.

Proposition 2.1: Let A andB be two fuzzy numbers and let thep
equal dividing�-cuts form ofA andB beAp

� andBp
� where

Ap
� =(la; ma1; . . . ; map; m

0

ap; . . . ; m
0

a1; ra)

Bp
� =(lb; mb1; . . . ; mbp; m

0

bp; . . . ; m
0

b1; rb)

and� 2 [0; 1], then

(A�B)p�

= Ap
� �Bp

�

� (la + lb; ma1 +mb1; . . . ; m
0

a1 +m0

b1; ra + rb): (8)

(A	B)p�

= Ap
� 	Bp

�

� (la � rb; ma1 �m0

b1; . . . ; m
0

a1 �mb1; ra � lb): (9)

[f max(A; B)]p�

= f max(Ap
�; B

p
�)

� (max(la; lb); max(ma1; mb1); . . . ;

max(m0

a1; m
0

b1); max(ra; rb)): (10)

[f min(A; B)]p�

= f min(Ap
�; B

p
�)

� (min(la; lb); min(ma1; mb1); . . . ;

min (m0

a1; m
0

b1); min(ra; rb)): (11)

Proposition 2.2: Let M be a fuzzy number, where thep equal di-
viding �-cuts form ofM is Mp

� = (l; m1; m2, . . . ; mp; m
0

p; . . .,
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m0

2; m
0

1; r). Then, the defuzzified valueMp
e of thep equal dividing

�-cuts formMp
� of M is

M
p
e =

l+m1+m2+� � �+mp+m
0

p+� � �+m
0

2+m
0

1+r

2(p+ 1)
(12)

whereMp
e also coincides with the center of gravity of the fuzzy subset

Mp
� if it is symmetric.
For example, from Fig. 2, we can see thatp = 4, and based on (12),

we can see that the defuzzified valueM4

e of M is as follows:

M
4

e =
l+m1+m2+m3+m4+m

0

4+m
0

3+m
0

2+m
0

1+r

2(4 + 1)

=
l+m1+m2+m3+m4+m

0

4+m
0

3+m
0

2+m
0

1+r

10
:

Furthermore, let’s consider the trapezoidal fuzzy number shown in
Fig. 1. In this case, we can see thatp = 1. Based on (12), we can see
that the defuzzified valueM1

e of M is as follows:

M
1

e =
l+m+m0 + r

2(1 + 1)

=
l+m+m0 + r

4
:

It is obvious that this result coincides with the defuzzified value of the
trapezoidal fuzzy number shown in (6).

III. CALCULATING FUZZY TIME VALUES IN A FUZZY

PROJECTNETWORK

In fuzzy PERT, we must calculate the earliest starting time, latest
starting time, earliest finishing time, latest finishing time, and total float
to find a critical path in a fuzzy project network. The critical path can
provide the decision-maker to control the progress of a project. In this
paper, we use thep equal dividing�-cuts form of fuzzy numbers and
their fuzzy arithmetic operations to find the critical paths of a fuzzy
project network.

First, we must choose a suitable value ofp. Each activity time in
a fuzzy project network is represented by thep equal dividing�-cuts
formMp

� of the fuzzy numberM as shown in (7). LetDj be the set of
immediately preceding nodes of nodej in a fuzzy project network. The
method for calculating fuzzy time values in a fuzzy project network
is reviewed from [3] as follows. For any nodej in the fuzzy project
network, its earliest starting timeTEj is as follows:

TEj =
f maxfTEi � Pij ji 2 Djg; if Dj 6=

0; if Dj =
(13)

wherePij is the activity duration time of activityi � j.
For every nodei and activityi�j in the fuzzy project network, when

the earliest starting time of nodei was obtained, we can calculate the
earliest starting timeESij and earliest finishing timeEFijof activity
i � j as follows:

ESij =TEi (14)

EFij =ESij � Pij : (15)

Let Z be the set of activities in a fuzzy project network. When the
earliest starting time and the earliest finishing time of every activity in
a fuzzy project network have been calculated, we can obtain the project
finishing timeTW as follows:

TW = f maxfEFij jActivity i� j 2 Zg: (16)

The earliest starting time of the ending node is equal to its earliest
finishing time and also equal to its latest starting time. Clearly, the ear-

liest starting time of the ending node is equal to the project finishing
time, too. Now, the latest starting time can be calculated in the fol-
lowing way. LetSj be a set of immediately succeeding nodes of node
j. The latest starting timeTLj of nodej can be calculated as follows:

TLj =
f minfTLk 	 Pjk j k 2 Sjg; if Sj 6=

Tw; if Sj =
(17)

wherePjk is the activity duration time of activityj � k.
For every nodej and every activityi� j in a fuzzy project network,

when the latest finishing time of nodej has been calculated, we can
obtain the latest starting timeLSij and the latest finishing timeLFij
of activity i � j as follows:

LFij =TLj (18)

LSij =LFij 	 Pij : (19)

When the earliest starting time and the latest starting time of activity
i�j have been obtained, we can calculate the total float of each activity.
For activityi� j in a fuzzy project network, the total floatTFij of the
activity i � j can be computed as follows:

TFij = LSij 	 ESij: (20)

Hence we can obtain the earliest starting time, the latest starting time,
the earliest finishing time, the latest finishing time, and the total float of
every activity by using (13)–(20). Calculating these fuzzy time values
can let the decision-maker understand what time the activity can begin,
how much time it can be delayed, and what the deadline for the ac-
tivity is, etc. These fuzzy time values also let the decision-maker get
the possible critical paths based on the total float of every activity, con-
trol the project progress, and know which activity will cause delay if
the project cannot be finished on time. In the next section, we will pro-
pose a method to find multiple possible critical paths in a fuzzy project
network.

IV. FINDING POSSIBLE CRITICAL PATHS IN A FUZZY

PROJECTNETWORK

In a traditional PERT network, there exists at least one critical path
between the starting node and the ending node where the total float of
each activity in the path is zero. Therefore, the project’s finishing time
will be delayed if any activity was delayed in the critical path. Thus,
how to find the critical path is a very important task of PERT.

However, according to the fuzzy number arithmetic operations pre-
sented in Section III, sometimes we cannot obtain a critical path where
the sum of the total float of all the activities in the path is zero. From a
different point of view, if the sum of the total float of the activities in
a path is smaller than the others, then the delay of any activities in the
path will be the highest risk that the project cannot be finished on time.
In a fuzzy project network, the higher risk path is called a “possible crit-
ical path.” Sometimes we may need to provide several possible critical
paths to the decision-maker for project management. According to this
viewpoint, we defuzzify the total float of each activity by (6) or (12)
and find the possible critical path such that the sum of the total floats
of the activities in the path is smaller than the others.

The depth-first search method can find several possible critical paths
in a fuzzy project network. We can obtain all paths by using the depth-
first search method, compute the sum of the total floats of the activities,
and sort them to find several paths which have smaller values of the
sum of total floats than the other paths. Thus, we can find multiple
possible critical paths in a fuzzy project network. Assume that we want
to findn possible critical paths in a fuzzy project network, and assume
that for any activityk in a fuzzy project network, there are at most
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Fig. 3. Finding possible critical paths.

Fig. 4. Finding possible critical paths (continued from Fig. 3).

n possible critical paths in a fuzzy project network. Furthermore, we
assume that there arem paths from the starting node to activityk. Then
at mostn paths are possible critical paths in thesem paths. The paths
after activityk can be any combinations, but onlyn paths become the
possible critical paths at most. Thus, we rank these paths based on the
sum of the total floats of activities in these paths, where the path with
the smallest value of the sum of the total floats has the best ranking, and
the paths whose ranking aboven are impossible to be possible critical
paths.

In the following, we use Fig. 3 to illustrate the process of finding
multiple possible critical paths in a fuzzy project network. For sim-
plicity, we assume that the total float of each activity in Fig. 3 has been
defuzzified into a crisp value by using (6) or (12), where the number in
each edge of Fig. 3 shows the defuzzified total float of each activity. For
example, from Fig. 3, we can see that the defuzzified total float of ac-
tivity A is four. Assume that we need to find two possible critical paths
in Fig. 3. First, we can find that the activities A, B, and C do not have
any immediately preceding activities. They use a path–message format
including the path field and the sum field of the total float to write their
activity ID to the path field and write their total float to the sum field
of total float and transfer the path message to their immediately suc-
ceeding activities. For example, from Fig. 3, we can see that activity A
transfers the path message “Path A, sum of total float= 4,” denoted
by jA; 4j, to activities F and G; activity B transfers the path message
“Path B, sum of total float= 2,” denoted byjB; 2j, to activities D and
E; activity C transfers the path message “Path C, sum of total float=

8,” denoted byjC; 8j, to activity H.
Then, the activities D and E add their activity ID and total float values

to the path field and the sum field of the total float in the path messages,
respectively, and transfer the path messages to their immediately suc-
ceeding activities, respectively. For example, from Fig. 4, we can see
that activity D transfers the path message “Path B–D, the sum of total
float is 3,” denoted byjB–D; 3j, to its immediately succeeding activities
F and G, respectively; activity E transfers the path message “Path B–E,
the sum of total float is 6,” denoted byjB–E; 6j, to its immediately suc-
ceeding activity H.

Fig. 5. Finding possible critical paths (continued from Fig. 4).

Fig. 6. Finding possible critical paths (continued from Fig. 5).

Then, the activities F and G add their activity ID and total float values
to the path field and the sum field of total float in the path messages,
respectively, and transfer the path messages to their immediately suc-
ceeding activities. For example, the activity F transfers the path mes-
sage “Path B–D–F, the sum of total float is 4,” denoted byjB–D–F; 4j, to
its immediately succeeding activity H as shown in Fig. 5. From Fig. 5,
we also can see that the activity F also transfers the path message “Path
A–F, the sum of total float is 5,” denoted byjA–F; 5j, to its immedi-
ately succeeding activity H; the activity G transfers the path messages
“Path A–G, the sum of total float is 6,” denoted byjA–G; 6j, and “Path
B–D–G, the sum of total float is 5,” denoted byjB–D–G; 5j, to its im-
mediately succeeding activity J, respectively.

From Fig. 5, we can see that there are four path messages in the
activity H, i.e., “Path C, the sum of total float is 8,” “Path B–E, the
sum of total float is 6,” “Path A–F, the sum of total float is 5,” and
“Path B–D–F, the sum of total float is 4.” In this example, we only
need two possible critical paths, so we rank the path messages based
on the sum of total float in the path messages, where the path with the
smallest value of the sum value of total float has the best ranking. Then,
from the path messages in the activity H of Fig. 5, we can obtain two
path messages whose rank is smaller than the others (i.e.,jA–F; 5j and
jB–D–F; 4j), and add their activity ID and total float value to the path
field and the sum field of total float in the path messages, and transfer
the path messages to its immediately succeeding activity J as shown in
Fig. 6. For example, in Fig. 6, the activity H transfers the path messages
“Path A–F–H, the sum of total float is 8,” denoted byjA–F–H; 8j, and
“Path B–D–F–H, the sum of total float is 7,” denoted byjB–D–F–H; 7j,
to its immediately succeeding activity J, respectively.

From Fig. 6, we can see that there are four path messages in the
activity J, i.e., “Path A–G, the sum of total float is 6,” “Path B–D–G,
the sum of total float is 5,” “Path A–F–H, the sum of total float is 8,”
and “Path B–D–F–G, the sum of total float is 7.” We can obtain two
path messages where the sum field of total float is smaller than the
others (i.e.,jA–G; 6j andjB–D–G; 5j). Finally, because activity J does not
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Fig. 7. Adding a virtual ending activity V into a fuzzy project network.

have any immediately succeeding activities, we can obtain two possible
critical paths: “path B–D–G–J” and “path A–G–J.”

Assume that the decision-maker needs to findn possible critical
paths in a fuzzy project network. For any activity that gotm path mes-
sages from its immediately preceding activities, wheren � m, it only
needs to transfern path messages to its immediately succeeding activi-
ties. According to the proposed method, we can discard the impossible
paths in every activity computation and transfer less path messages to
its succeeding activities. Thus, the computation time for searching pos-
sible critical paths can be improved efficiently and we can find n pos-
sible critical paths in a fuzzy project network more quickly.

When we search possible critical paths using the proposed method,
there may exist some activities which do not have immediately suc-
ceeding activities. In order to get possible critical paths, we must rank
the path messages of these activities again. To avoid the situation, we
can add an extra “virtual ending activity” V at the tail of the fuzzy
project network, and let the activity duration time of the virtual ending
activity V be zero. For example, in the fuzzy project network shown in
Fig. 7, activities L, P, and N, transfer their path messages to the virtual
ending activity V, and the virtual ending activity V can get the possible
critical paths.

In the following, we present a fuzzy PERT algorithm to compute the
earliest starting time, the latest starting time, the earliest finishing time,
the latest finishing time, the total float of each activity, and the possible
critical paths in a fuzzy project network. Assume that the activity dura-
tion time of each activity in a fuzzy project network is represented by
fuzzy numbers usingp equal dividing�-cuts form, wherep � 2 and
� 2 [0; 1]. Furthermore, assume that the decision-maker wants to find
n possible critical paths in a fuzzy project network, wheren � 1. The
fuzzy PERT algorithm is now presented as follows.

Fuzzy PERT Algorithm:

INPUT: A fuzzy project network.

OUTPUT: Multiple possible critical paths in the

fuzzy project network.

Step 1: /* Calculate the earliest starting time and

the earliest finishing time of each activity. */

Add a virtual ending activity V into a fuzzy

project network;

repeat

choose an activity which does not have immedi-

ately preceding activities or where all of its

immediately preceding activities have been marked;

calculate the earliest starting time and the ear-

liest finishing time of the activity by formulas

(13)–(15), and mark the activity

until all activities have been marked;

Let all activities be unmarked.

Step 2: /* Calculate the latest starting time, the

latest finishing time, and the total float of each

activity. */

Fig. 8. Crisp project network [13].

Let the earliest starting time of the virtual

ending activity V be the latest starting time, and

let virtual ending activity V be marked;

repeat

choose an activity in which all of its immedi-

ately succeeding activities have been marked;

calculate the latest starting time and the

latest finishing time of the activity by formulas

(16)–(19);

calculate the total float of the activity by for-

mula (20) and mark the activity

until all activities have been marked;

Let all activities be unmarked.

Step 3: /* Find n possible critical paths. */

repeat

choose an activity that does not have any imme-

diately preceding activities or where all of its

immediately preceding activities have been marked;

rank the path messages based on the defuzzified

sum values of the total floats in the path mes-

sages, where the path with the smallest value of

the sum value of the total floats has the best

ranking;

discard the path messages whose ranking is larger

than n;

add the activity to the path field of path mes-

sages;

add the activity time to the defuzzified sum

value of the total floats of the path messages;

send all path messages to all of its immediately

succeeding activities and mark the activity

until all activities have been marked;

The path fields of n path messages of the virtual

ending activity V form the n possible critical

paths.

V. EXAMPLES

Example 5.1: Consider the crisp project network shown in Fig. 8
[13], where the crisp number labeled in each edge of Fig. 8 is the ac-
tivity duration time. In order to simplify calculations, we can represent
the crisp values of the activity duration time shown in Fig. 8 using trape-
zoidal fuzzy numbers. Table I shows a comparison of the results of ap-
plying the traditional PERT method [13] and the proposed fuzzy PERT
algorithm. From Table I, we can see that the traditional PERT method
finds the critical path 1–5–6. We also can see that the proposed fuzzy
PERT algorithm finds that the most possible critical path is path 1–5–6,
and finds that the other possible critical paths are the path 1–2–4–6 and
the path 1–2–4–5–6. According to Table I, we can see that the proposed
fuzzy PERT algorithm operating in the crisp project network shown in
Fig. 8 can obtain the same result (i.e., the critical path 1–5–6) as that
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TABLE I
CALCULATION RESULTS OFTRADITIONAL PERT METHOD AND THE PROPOSEDFUZZY PERT ALGORITHM

Fig. 9. Fuzzy project network of Example 5.2 [15].

TABLE II
COMPARISON OF THEACTIVITY DURATION TIME OF DIFFERENTMETHODS

of the traditional PERT method [13]. Furthermore, the proposed algo-
rithm is better than the traditional PERT method due to the fact that it
can provide multiple possible critical paths to the decision-maker for
project management.

Example 5.2: Consider the fuzzy project network shown in Fig. 9
[15], where the activity duration time of each activity is represented
by a trapezoidal fuzzy number. Table II shows a comparison of the
activity duration time of each activity shown in Fig. 9 using different
methods [10], [15]. It should be pointed out that the trapezoidal fuzzy
numberM shown in Fig. 1 represented by Nasution’s method [15] is
(m; m0; m�l; r�m0), but the fuzzy numberM of Fig. 1 represented
by the Hapke-and-Slowinski’s method [10] is (l; m; m0; r). The cal-
culating results of Hapke-and-Slowinski’s method [10] are shown in
Table III and the calculating results of Nasution’s method [15] are
shown in Table IV, where the valuehi shown in Table IV is the in-
dicator of criticality indicating the degree of involvement of an Event
i in the critical path. Ifhi = 1, then�i = �� (0), where�i is a
fuzzy number calculated as shown in [15, p. 54]. The calculating re-
sults of the proposed fuzzy PERT algorithm are shown in Table V,

TABLE III
COMPUTATION RESULTS OFHAPKE-AND-SLOWINSKI’S METHOD [10]

where the trapezoidal fuzzy number shown in Fig. 1 is represented by
(l; m; m0; r). Because different methods use different modes, we can
see that Table III and Table IV represent the node’s time value using
the activity-on-node (AON) mode, and Table V represents the edge’s
time value using the activity-on-edge (AOE) mode.

From Table III, we can see that by using Hapke-and-Slowinski’s
method [10], we get the nodes 1, 3, and 6 whose total float is zero,
so the critical path is “Path 1–3–6.” The method cannot provide more
possible critical paths to the decision-maker.

From Table IV, we can see that Nasution’s method [15] sometimes
needs several�-cuts operations to find critical paths. For example, in
Table IV, we can see that the method only decides that node 1 and node
6 lie in a critical path and it cannot find a complete critical path, so
it must perform several�-cuts operations to find the complete critical
path.

From Table V, we can see that the sum of the total float of activity 1–3
and activity 3–6 is the smallest. Therefore, the proposed fuzzy PERT
algorithm obtains the most possible critical path “Path 1–3–6,” where
this result is the same as that in [10] and [15]. Moreover, the proposed
fuzzy PERT algorithm can also obtain the second possible critical path
“Path 1–3–4–6.”

Example 5.3: Consider the fuzzy project network shown in Fig. 10
[14], where the activity duration time of each activity shown in Fig. 10
is represented by a fuzzy number. Table VI shows the membership
function of the activity duration time of each activity shown in Fig. 10.
Table VII shows the computation results of Mon–Cheng–Lu’s method
[14], where in order to properly represent the membership functions
of the activity time shown in Table VI, we useMp

� fuzzy numbers to
represent these membership functions, wherep = 4 and� 2 [0; 1].
Tables VIII–XI show the computation results of the proposed fuzzy
PERT algorithm. Table VII shows the most possible critical path of
Fig. 10 is path A–B–D–F–G under the risk level� = 0:5 and the
index of optimism� = 0 due to the fact that it has the largest value
of project time. The second possible critical path is A–C–F–G and the
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TABLE IV
COMPUTATION RESULTS OFNASUTION’S METHOD [15]

TABLE V
COMPUTATION RESULTS OF THEPROPOSEDFUZZY PERT ALGORITHM

Fig. 10. Fuzzy project network [14].

third possible critical path is A–B–E–G. As shown in Table VII, Mon
et al. [14] used different risk levels� and indices of optimism� to
provide the decision-maker with possible critical paths. However, de-
termining the risk level� and the index of optimism� is difficult when
the decision-maker faces an unfamiliar project, where� 2 [0; 1] and
� 2 [0; 1]. Using the defuzzified values of the total floats shown in
Table XI, the proposed fuzzy PERT algorithm finds that the possible
critical paths of Fig. 10 are the path A–B–D–F–G (i.e., the most pos-
sible critical path), the path A–C–F–G (i.e., the second possible crit-
ical path), and the path A–B–E–G (i.e., the third possible critical path),
where the most possible critical path A–B–D–F–G is also the same as
the one presented in [14] under the risk level� = 0:5 and the index of
optimism� = 0:5; the second possible critical path A–C–F–G and the
third possible critical path A–B–E–G obtained by the proposed algo-
rithm are the same as those critical paths obtained in [14]. Furthermore,
the project finishing time obtained by the proposed fuzzy PERT algo-
rithm is 14.5259. This result is close to the result shown in Table VII
[14]. According to these results, for a decision-maker who can’t deter-
mine the risk level� and the index of optimism�, the proposed fuzzy
PERT algorithm can provide him (her) a useful way to find multiple

TABLE VI
FUZZY MEMBERSHIPFUNCTION OF ACTIVITY TIME [14]

TABLE VII
THE COMPUTATION RESULT FORDIFFERENT RISK LEVELS � AND

INDICES OFOPTIMISM � [14]

possible critical paths in a fuzzy project network. Thus, the decision
risk of the project can be reduced.

VI. CONCLUSION

Although there are many fuzzy PERT methods that have been pro-
posed for project management, there is a drawback in the existing fuzzy
PERT methods, i.e., sometimes they maybe cannot find a critical path
in a fuzzy project network. In this paper, we have presented a fuzzy



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 6, DECEMBER 2001 937

TABLE VIII
THE p EQUAL DIVIDING �-CUTS FORMS OFREPRESENTATION OFACTIVITY

DURATION TIME (WHEN p = 4)

TABLE IX
CALCULATION RESULTS OF THEACTIVITY ’S EARLIEST STARTING TIME USING

THE PROPOSEDFUZZY PERT ALGORITHM

TABLE X
CALCULATION RESULTS OF THEACTIVITY ’S LATEST STARTING TIME USING

THE PROPOSEDFUZZY PERT ALGORITHM

TABLE XI
THE TOTAL FLOATS AND DEFUZZIFIED VALUES OF THEACTIVITY ’S TOTAL

FLOATS USING THE PROPOSEDFUZZY PERT ALGORITHM

PERT algorithm to find multiple critical paths in a fuzzy project net-
work to overcome the drawback of the existing fuzzy PERT methods,
where the duration time of each activity in a fuzzy project network is

represented by a fuzzy number. Because the proposed fuzzy PERT al-
gorithm is based on the depth-first search method according to [10, p.
269] we can see that the time complexity of the proposed algorithm
isO(n + e) if adjacency lists are used to represent fuzzy project net-
works, wheren is the number of nodes ande is the number of edges in
a fuzzy project network. The proposed fuzzy PERT algorithm can find
multiple possible critical paths in a fuzzy project network in a very ef-
ficient manner. It can provide more information to the decision-maker
for project management and can reduce the decision risk of the project.
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