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SUMMARY

This work presents a uni*ed procedure for determining the natural frequencies, modal damping ratios
and modal shapes of a structure from its ambient vibration, free vibration and earthquake response data.
To evaluate the coe9cient matrices of a state-space model, the proposed procedure applies a subspace
approach cooperating with an instrumental variable concept. The dynamic characteristics of a structure
are determined from the coe9cient matrices. The feasibility of the procedure is demonstrated through
processing an in situ ambient vibration measurement of a *ve-storey steel frame, an impulse response
measurement of a three-span continuous bridge, and simulated earthquake responses of *ve-storey steel
frames from shaking table tests. The excellent agreement of the results obtained herein with those
published previously con*rms the feasibility of the present procedure. Copyright ? 2001 John Wiley
& Sons, Ltd.

KEY WORDS: system identi*cation; subspace approach; ambient vibration; free vibration; earthquake
response

1. INTRODUCTION

Investigating the dynamic characteristics of an existing structure system based on *eld tests
is essential in con*rming the construction quality, validating or improving analytical *nite
element structural models, or conducting damage assessment. To accomplish this task, the
popular *eld tests are ambient vibration tests, forced vibration tests, free vibration tests, and
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earthquake response measurement. Notably, excluding forced vibration tests due to their pe-
riodic characteristics of input, identifying the dynamic characteristics of a structural system
from the other three tests can be accomplished in time domain.
Even in the time-domain analysis, various schemes are often applied to process the data

from various *eld tests. For example, to determine the dynamic characteristics of a structural
system from free vibration test, Ibrahim time-domain system identi*cation (ITD) technique is
often applied [1]. However, it cannot be directly applied to process either the ambient vibra-
tion test or the earthquake response measurement. That is, to process the ambient vibration
measurement, the ITD technique has to comply with random decrement technique [2]. There
is no rigorous procedure to extract free vibration responses from earthquake responses such
that ITD technique can be applied to determine the dynamic characteristics from the resultant
responses. Based on the assumption of stationary process for observed data, time series mod-
els, i.e. AR and ARMA models, are also often employed for ambient vibration measurements
[3–6]. Apparently, however, this assumption is not valid for free vibration measurement and
earthquake response measurement. Consequently, to analyze the observed data from diIerent
tests, various techniques as well as the corresponding theoretical backgrounds must be un-
derstood, which becomes burdensome for the users. Therefore, this study develops a system
identi*cation procedure capable of processing the measurement from various tests.
The proposed procedure is based on state-space model cooperating with a subspace ap-

proach. Rao and Arun [7] provided a comprehensive review on the data processing by using
state-space approaches, while Van DerVeen et al. [8] collected more than 100 articles on sig-
nal analysis by subspace-based approaches. Viberg [9] also reviewed and compared numerous
subspace-based schemes. He classi*ed these schemes into two categories: (1) realization-based
subspace methods [10–12], which estimate the coe9cient matrices of a state-space model via
measured impulse response functions; (2) direct subspace-based methods [13–16], which es-
timate the coe9cient matrices via observed input and output signals. Apparently, even in the
subspace-based approach, varying schemes were applied to the data from varying tests.
To identify the dynamic characteristics of structures from the ambient vibration, free vibra-

tion, and earthquake response data, this study develops a uni*ed procedure by extending, with
some modi*cation, the direct subspace-based method with the instrumental variables proposed
by Viberg et al. [17], who developed a procedure to estimate the observability matrix for
the state-space model with measured inputs. Furthermore, to demonstrate the feasibility of the
proposed procedure, the procedure is applied to process an ambient vibration measurement
of a *ve-storey steel frame, a free vibration measurement of a three-span continuous pre-
stressed concrete bridge, and simulated earthquake responses of two *ve-storey steel frames
from the shaking table test. The dynamic characteristics identi*ed herein are compared with
those obtained from other methods.

2. METHODOLOGY

2.1. The relationship between equations of motion and state-space model

The equations of motion for a structural system with n degrees of freedom are

M Kx + Cẋ + Kx= f (1)
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where M; C, and K are the mass, damping and stiIness matrices of the structural system,
respectively. They are n× n matrices. The vector of input forces, f , is a column vector with
n components. By de*ning a state variable z=(xTẋT)T, the solution for Equation (1) can be
expressed as

z(t)= eAtz0 +
∫ t

0
eA(t−�)f̂(�) d� (2)

where

A=−G−1

[
K 0

0 −M

]
(3a)

f̂ =G−1

{
f

0

}
(3b)

G=

[
C M

M 0

]
(3c)

and z0 is the initial condition vector. From Equation (2), the solution can be rewritten in the
following form:

z(t +Pt)= eAPtz(t) +
∫ t+Pt

t
eA(t+Pt−�)f̂(�) d� (4)

where Pt is a time increment. When Pt is su9ciently small, it is reasonable to assume that
f̂(�) is a constant vector for � varying from t to t+Pt. Then, from Equation (4), the following
discrete-time domain model can be obtained:

z̃k+1 = Ãz̃k + B̃f̃k (5)

where

Ã= eAPt (6a)

B̂= [B̂1 B̂2]=
∫ (k+1)Pt

kPt
eA((k+1)Pt−�)G−1 d� (6b)

B̃= B̂1, which is a 2n× n matrix, z̃k = z(kPt), and f̃k = f(kPt).
When the observed degrees of freedom (l) are less than twice of the total degrees of

freedom (2n), and when the observed responses are displacement or velocity, at t= kPt the
observed responses (yk) can be expressed as

yk =Lz̃k + ak (7)

where L is a matrix of selecting observed degrees of freedom with components equal to 0
or 1; ak = a(kPt), a vector of measurement noise, and a(t) is assumed to be a white noise
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process with zero mean. However, if the observed responses are noisy acceleration, then,
through Equation (1), the following develops:

yk = Ẽz̃k + D̃f̃k + ak (8)

where

Ẽ= L̃[−M−1K − M−1C] (9a)

D̃= L̃M−1 (9b)

and L̃ is also a matrix of selecting observed degrees of freedom.
Equations (5) and (7) or (8) construct a state-space model. Generally, the state-space model

considered in the following will be presented as

z̃k+1 = Ãz̃k + B̃f̃k + wk (10)

yk = Ẽz̃k + D̃f̃k + ak (8)

where wk =w(kPt), and w(t) is also a white noise process with zero mean, but is not cor-
related with a(t). Notably, when the observed responses are displacement or velocity, Ẽ and
D̃ are equal to L and 0, respectively. In processing the ambient vibration measurement, f̃k is
set equal to zero and the input is assumed to the white-noise process w(t). In processing the
measurements from free vibration tests, f̃k and wk are equal to zero, simultaneously. When
earthquake responses are being considered, wk can be set equal to zero.

2.2. Estimation of coe,cient matrices

From Equations (10) and (8), one can construct

yk+s= ẼÃsz̃k + D̃f̃k+s +
s∑

i=1
ẼÃi−1B̃f̃k+s+i−1 +

s∑
i=1

ẼÃi−1wk+s+i−1 + ak+s (11)

Via Equation (11), one can further construct

Ryk =��z̃k + �� Rfk + RTk (12)

where

Ryk = (yT
k yT

k+1 · · · yT
k+s−1)

T (13a)

�� =




Ẽ

ẼÃ
...

ẼÃs−1


 (13b)
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�� =




D̃ 0 0 · · · 0

ẼB̃ D̃ 0 · · · 0

ẼÃB̃ ẼB̃ D̃ · · · 0

...
...

... · · · ...

ẼÃs−1B̃ ẼÃs−2B̃ ẼÃs−3B̃ · · · D̃




(13c)

Rfk = (f̃ Tk f̃ Tk+1 · · · f̃ Tk+s−1)
T (13d)

RTk =�� Rwk + Rak (13e)

�� =




I 0 0 · · · 0

Ẽ I 0 · · · 0

ẼÃ Ẽ I · · · 0

...
...

... · · · ...

ẼÃs−2 ẼÃs−3 ẼÃs−4 · · · I




(13f)

Rwk = (wT
k wT

k+1 · · · wT
k+s−1)

T (13g)

Rak = (aT
k aT

k+1 · · · aT
k+s−1)

T (13h)

and S� is the so-called observability matrix. Viberg [9] suggested that in Equations (13a)–
(13h), s should be larger than 2n. From Equation (12), the following relation can be estab-
lished:

RYk =�� RZk + �� RFk + R�k (14)

where

RYk = [Ryk Ryk+1 · · · Ryk+N−1] (15a)

RZk = [z̃k z̃k+1 · · · z̃k+N−1] (15b)

RFk = [Rfk Rfk+1 · · · Rfk+N−1] (15c)

R�k = [RTk RTk+1 · · · RTk+N−1] (15d)

From linear algebra, one can de*ne an orthogonal projection matrix, �⊥
f , onto the null-space

of RFk as

�⊥
f = I − RFT

k ( RFk RF
T
k )

−1 RFk (16)
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Multiplying with �⊥
f on both sides of Equation (14) yields

RYk�
⊥
f =�� RZk�

⊥
f + R�k�

⊥
f (17)

Notably, from Equation (13e), RTk consists of white noises wm and am with m¿k. Conse-
quently, it is reasonable to assume that Rfk and RTt are uncorrelated for all k and t, and that Rym
and RTk are uncorrelated for k¿m. That is

E[ RTk Rf Tt ] = 0 for all k and t (18a)

E[ RTk RyT
m] = 0 for k¿m (18b)

where E[ ] is a mean value operation.
Introduce instrumental variables, P, de*ned as

P=

[ RFp
RYp

]
(19)

where p¡k. Multiplying with (1=N )PT on both sides of Equation (17) and employing Equa-
tions (18a) and (18b) produce the following relationship, when N is su9ciently large [17]:

1
N

RYk�
⊥
f PT =

1
N

�� RZk�
⊥
f PT (20)

One may multiply with weighting matrices, Wr and Wc, on both sides of Equation (20),
which produces

1
N

Wr RYk�
⊥
f PTWc=

1
N

Wr�� RZk�
⊥
f PTWc (21)

where Wr must be a positive matrix and the rank of Wc must be not smaller than 2n [18].
The weighting matrices may inUuence the variance of the estimated coe9cient matrices of
Equations (8) and (10) due to noise and the bias of the estimation due to under-modelling
[18; 19]. In the following, the weighting matrices suggested by Verhaegen [15] are chosen:

Wr = I; (22a)

Wc =
(
1
N

P�⊥
f PT

)−1=2

(22b)

De*ne a matrix RH equal to the left-hand side of Equation (21). That is

RH=
1
N

Wr RYk�
⊥
f PTWc (23)

Via singular value decomposition, the following relation holds:

RH ≈ Q Rn
∑

Rn VT
Rn (24)
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where
∑

Rn is a diagonal matrix containing the Rn largest singular values, the columns of Q Rn and
VRn are the corresponding left and right singular vectors, respectively. Notably, in the perfect
data case Rn is equal to 2n. However, if the data contain noises, Rn is typically larger than 2n.
Thus, Equations (21), (23), and (24) produce

��= �̂�TRn (25)

where

�̂� =W−1
r Q Rn; (26a)

TRn =
∑

Rn
RVRn

(
1
N

RZk�
⊥
f PTWc

)−1

(26b)

Up to this point in the process, �̂� could be evaluated from Equation (26a) by using the ob-
served responses. However, as RZk in Equation (26b) is still unknown, �� cannot be evaluated.
Substituting Equation (25) into Equation (12) yields

Ryk = �̂�ẑk + �� Rfk + R�k (27)

where ẑk =TRnz̃k , which indicates that TRn can be treated as a transformation matrix for state-
space variables within diIerent bases. As Equation (12) is resulted from Equations (8) and
(10), Equation (27), thus, corresponds with the following state-space model:

ẑk+1 = Âẑk + B̂f̃ k + TRnwk (28a)

yk = Êẑk + D̃f̃ k + ak (28b)

where

Â=TRnÃT−1
Rn (29a)

B̂=TRnB̃ (29b)

Ê= ẼT−1
Rn (29c)

As the expression of �� was found in Equation (13b), a similar expression for �̂� can be
established further:

�̂�=




Ê

ÊÂ

...

ÊÂs−1




(30)
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Notably, the above derivation, that is, from Equations (11)–(30), is also valid for f̃ k = 0,
implying that the previous equations are also suitable for processing both the ambient vibration
measurement and free vibration measurement. In these instances, �⊥

f = I.
After �̂� has been determined from the observed data, Â and Ê can be estimated directly

as follows:

(a) Establish the following two matrices from the relationship given in Equation (30):

�̂�1 =




Ê

ÊÂ

...

ÊÂs−2




(31a)

�̂�2 =




ÊÂ

ÊÂ2

...

ÊÂs−1




(31b)

(b) From Equations (31a) and (31b), one has

�̂�2 = �̂�1Â (32)

Consequently,

Â= �̂
+
�1�̂�2 (33)

where the subscript ‘+’ denotes the generalized inverse operation for a matrix. The solution
given by Equation (33) is the least-squares error solution for Equation (32).
(c) From the relationship provided by Equation (30), one can also establish the following

equation:

Ê"̂= �̂�p (34)

where

"̂= [I Â Â2 · · · Â5] (35a)

�̂�p = [Ê ÊÂ ÊÂ2 · · · ÊÂ5]; (35b)

The matrix �̂�p is equal to the *rst six block rows of �̂�, and "̂ is established by employing the
estimated Â from the previous step. It should be noted that the order of 5 for Â employed in
Equation (35a) was chosen arbitrarily. Since the modulus of the eigenvalues of Â is less than
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one for a stable dynamic system given by Equation (1), higher order of Â can be negligible
in estimating Ê. From Equation (34), Ê can be determined by

Ê= �̂�p"̂
+

(36)

Again, the solution of Ê provided by Equation (36) is the least-squares error solution for the
relationship given by Equation (34).
The estimation for the other coe9cient matrices, B̂ and D̃, is not included herein since they

are not related to the determination of the dynamic characteristics of a structural system.

2.3. Determination of dynamic characteristics of a structural system

When the equations of motion, i.e. Equation (1), are expressed in terms of the space-state
variable, z, it is well known that the dynamic characteristics of the structural system are
determined by the eigenvalues and eigenvectors of A in Equation (3a). However, A cannot
be determined from the preceding derivation. Thus, to *nd the dynamic characteristics, Â is
employed. Equations (6a) and (29) reveal that

�̂j = e�jPt (37a)

’̂j =TRn’j (37b)

where �j and �̂j are the jth eigenvalue of A and Â, respectively, while ’j and ’̂j are the
corresponding eigenvectors. Apparently, since TRn remains unknown, the eigenvectors of A
from Equation (37b) cannot be evaluated. Nevertheless, usually, one only needs to determine
the eigenvector (or modal shape) corresponding to the observed degrees of freedom, ’j; y.
From Equation (28b), the following relation can be discovered:

’j; y = Ê’̂j (38)

The eigenvalues are complex numbers. Let

�j = �j + i�j (39a)

�̂j = aj + ibj (39b)

From Equation (37a), one has

�j =
1

2Pt
ln(a2j + b2j ) (40a)

�j =
1
Pt

tan−1
(
bj
aj

)
(40b)

Then, the pseudo-undamped circular natural frequency for the system becomes

!j =
√
�2j + �2

j (41a)
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and the modal damping ratio is

�j =−�j=!j: (41b)

In a proportionally damped system, !j is equivalent to its undamped circular natural frequency.

3. APPLICATIONS

To demonstrate the feasibility of the proposed procedure on processing the data in real
applications, the proposed procedures were applied to identify the dynamic characteristics
of structures from their ambient vibration measurement, simulated response data from shaking
table tests, and free vibration measurement.

3.1. Application to ambient vibration measurement

To show the validity of applying the identi*cation procedure to ambient vibration measure-
ment, the measured data from a *ve-storey steel structure were processed. The *ve-storey steel
structure employed herein is a moment-resisting frame, and was built for structural control
technique research through full-scale *eld tests organized by the National Center for Research
on Earthquake Engineering (NCREE) in Taiwan. Hence, the structure was designed to be
more Uexible than a common building is, and contains no walls or bracing. Figure 1 schemat-
ically depicts the structure, which consists primarily of four corner columns and four girders
that are made of ASTM A36 material.
To measure the ambient vibration of the structure, six velocity-type sensors with very

high sensitivity were attached to the appropriate locations. The analogue sensor signals were
converted to digital data and recorded in a PC-based portable data acquisition system. The
resolution for the entire measuring system can attain a maximum of 10−4 cm=sec. In the
acquisition system, high- and low-pass *lters are included. Notably, their cut-oI frequencies
were *xed to 0:1 Hz and one-third of sampling rate, respectively.

Owing to the symmetry of the structure and high stiIness of the Uoor diaphragms, it is rea-
sonable to describe the motion of each Uoor via three uncoupled degrees of freedom, namely,
two translation motions and a torsion motion. Therefore, the responses of the three degrees of
freedom for each Uoor could be independently measured. To measure the translation motion
in the y-direction, six sensors were placed at the geometrical centre of each Uoor, including
the footing. The ambient vibration responses were recorded for 10 min with a sampling rate
of 100 Hz.

In this application, the input was not measured. Rather, only 5-min recorded responses for
the six Uoors, including the footing, were processed simultaneously. Table I presents the
identi*ed results, which corresponded to Rn, the number of singular values in Equation (24),
which was equal to 18. The results were obtained by increasing Rn until they stably appeared.
Figure 2 illustrates the ratios of the singular values over the largest one, which indicates that
the ratio corresponding to Rn=18 is close to 0.01, and there is also a sharp decrease in ratios
around Rn=18. Hence, the ratio plots for the singular values for RH can be helpful to determine
what Rn value should be used.
Table I also lists the identi*ed results obtained by employing the multivariate ARMA model

in combination with a two-stage least-squares approach [20]. Comparing the present results
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Figure 1. Sketch of a *ve-storey steel structure.

with those published reveals an excellent agreement between them. Strictly speaking, the
agreement for the frequencies and modal shapes is superior to that for the damping ratios.

3.2. Application to simulated earthquake responses from shaking table tests

Shaking table tests are often employed in a laboratory to investigate the behaviours of struc-
tures under earthquake. To generate a set of earthquake response data for a benchmark model
of a *ve-storey steel structure, NCREE performed a series of shaking table tests on two
steel frames [21] (Figure 3). One steel frame is represented as ‘std’, which is 3 m long, 2 m
wide, and 6:5 m high. Lead blocks were piled on each Uoor such that the mass for each
Uoor was roughly 3664 kg. A subsequent frame is denoted as ‘add k’, which is identical
to ‘std’ except that stiIening braces were installed in the fourth storey. The frames were
subjected to base excitation of various earthquake records, such as El Centro and Kobe earth-
quakes with varying reduction levels. Notably, white-noise input was also considered. The
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Table I. Identi*ed results from ambient vibration measurement.

Mode Frequencies (Hz) Mode shapes Modal damping (%)

Present ARMAV Present ARMAV Present ARMAV

1 0.88 0.88




1:0
0:85
0:68
0:42
0:15
0:002







1:0
0:85
0:68
0:42
0:16
=




0.22 0.27

2 2.93 2.93




−0:88
−0:059
0:78
1:0
0:53
0:009







−0:88
−0:059
0:78
1:0
0:53
=




0.20 0.22

3 5.54 5.55




0:71
−0:85
−0:81
0:74
1:0
0:019







0:71
−0:86
−0:80
0:75
1:0
=




0.51 0.46

4 8.37 8.37




−0:36
0:98

−0:61
−0:41
1:0
0:012







−0:35
0:96

−0:58
−0:41
1:0
=




0.49 0.52

5 10.4 10.4




−0:15
0:62

−0:96
1:0

−0:77
−0:018







−0:16
0:62

−0:98
1:0

−0:83
=




0.46 0.51

Note: = means no data are available.

displacement, velocity, and acceleration responses of each Uoor were measured during the
tests.
Figure 4(a) depicts time histories for the acceleration responses of the *rst, third, and

*fth Uoors in long-span direction for frame ‘add k’, which was subjected to 8 per cent
of Kobe earthquake. Table II summarizes the identi*ed results obtained from the responses for
all Uoors at t=7–20 s and the corresponding input. Due to the insu9cient high-
frequency components of the input, the *fth mode was not excited signi*cantly and, thus,
not identi*able (Figure 4(b)). Thus, to identify all *ve modes, the responses subjected to
white noise excitation and the corresponding input were used for identi*cation. Notably,
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Figure 2. The variation of  i= 1.

Figure 3. Simple sketch of two *ve-storey frames.
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Figure 4. Response of frame “add k” and the corresponding Fourier spectrum.

the maximum response produced by the white-noise input is approximately 50 per cent less
than that produced by 8 per cent of Kobe earthquake input [21]. The identi*ed results are
also given in Table II and Figure 5.
For comparison, the identi*ed results of frame ‘std’ and the analytical results [21] of these

two frames are also summarized in Table II and Figure 5. These experimental results were
obtained from the input and output responses of frame ‘std’ subjected to 8 per cent of Kobe
earthquake in long-span direction. Via the design data, the analytical results were obtained
from commercial *nite element package, DRAIN 2D [21].
To evaluate the correlation of mode shapes obtained from diIerent methods and frames,

the index of modal assurance criterion (MAC) [22] was computed to indicate the correlation
between any two mode shapes of interest, which is de*ned as

MAC(’iI ;’iA)=
|’T

iI’iA|2
’T
iI’iI’

T
iA’iA

(42)

To compare the identi*ed mode shapes with analytical ones for frames ‘std’ and ‘add k’, ’iI
and ’iA represent the ith identi*ed and analytical mode shape, respectively. Table II also lists
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Table II. Identi*ed results from shaking table tests.

Frame std. add k

Method Present DRAIN 2D [21] Present DRAIN 2D [21]

Input 8% Kobe None 8% Kobe White noise None

Frequency Mode
(Hz) 1 1.40 1.40 1.52 1.53 1.57

2 4.53 4.54 5.94 5.94 6.14
3 8.23 8.50 8.22 8.23 8.50
4 12.39 13.11 14.00 14.01 14.97
5 15.99 17.14 = 18.46 24.02

Damping 1 1.30 1.90 1.30
ratio 2 0.16 0.17 0.18
(%) 3 0.19 = 0.18 0.14 =

4 0.13 0.18 0.12
5 0.10 = 0.30

MAC 1 1.00 1.00 1.00
2 1.00 0.99 0.99 =
3 1.00 = 0.99 0.09
4 1.00 1.00 1.00
5 1.00 = 0.97

Note: = no data are available.

the corresponding MAC value. Apparently, two corresponding modes are well correlated if
the MAC value is close to one, and uncorrelated if close to zero.
From the identi*ed results for frame ‘add k’ (Table II), it is observed that the identi*ed

frequencies and modal shapes from the responses caused by 8 per cent Kobe earthquake input
are almost identical with those from the responses caused by white-noise input. It should be
noted that the former input produced a maximum response, which was twice as large as that
caused by the latter. However, the identi*ed modal damping ratios from the former responses
are consistently larger than the latter ones. Comparing the identi*ed results with the analytical
ones reveals that the identi*ed frequencies are smaller than the analytical ones, particularly
for higher modes. However, the experimental and analytical modal shapes display excellent
agreement. Notably, although the *rst experimental modal damping ratio is close to the typical
designed value, 2 per cent, the experimental modal damping ratios for the remainder of the
modes are much less than the designed ones.
The identi*ed and analytical results for frame ‘std’ reveal similar trends to those for frame

‘add k’. Moreover, the experimental frequencies and modal shapes show better agreement
with the analytical ones for frame ‘std’ than for frame ‘add k’.
When comparing the identi*ed results of the two frames listed in Table II, as expected,

the frequencies for frame ‘std’ are smaller than those for frame ‘add k’, except for the third
mode. The exception can be explained from the corresponding mode shapes (Figure 5). In the
third mode shapes for both frames, the modal components for the third and fourth Uoors are
almost identical such that the stiIening braces between the two Uoors displayed no eIect for
this particular mode. Interestingly, for the same excitation input, the identi*ed modal damping
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Figure 5. Mode shapes for two steel frames.

ratios for frame ‘std’ are generally smaller than those for frame ‘add k’, although the former
frame had responses larger than those of the latter by nearly 20 per cent [21].
To investigate the eIect of stiIening braces on the modal shapes, Table III lists MAC

values for the identi*ed modal shapes of frame ‘add k’ with respect to those of frame ‘std’.
These values were computed via Equation (42), in which ’iI and ’iA represent the ith mode
shape for frames ‘std’ and ‘add k’, respectively. Since the *fth mode of frame ‘add k’ was not
identi*ed from the responses for 8 per cent of Kobe earthquake input, Table III presents no
corresponding data. The MAC values in Table III indicate that the stiIening braces alter the
fourth and *fth modes signi*cantly. Interestingly, the existence of the stiIening braces results
in the largest relative frequency variation for the second mode, which would not produce the
smallest MAC value.
To further examine the correlation of all mode shapes for the two frames at a common co-

ordinate, the index of co-ordinate modal assurance criterion (COMAC) [23] was also adopted
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Table III. Comparison of experimental modal shapes for frame ‘add k’ with those for frame ‘std’.

Mode or Uoor MAC COMAC

8% Kobe White noise 8% Kobe White noise

1 0.99 0.99 1.00 0.92
2 0.91 0.91 0.90 0.82
3 1.00 1.00 0.74 0.83
4 0.65 0.66 0.83 0.82
5 = 0.76 0.95 0.96

Note: = no data are available.

here. The COMAC for co-ordinate i is de*ned as

COMAC(i)=
(
∑J

j=1 ’s; j(i)’k; j(i))2∑J
j=1 (’s; j(i))2

∑J
j=1 (’k; j(i))2

(43)

where J is the total number of correlated mode pairs, ’s; j (i) and ’k; j(i) are, respectively,
values of experimental mode shape vectors for frames ‘std’ and ‘add k’ in correlated mode j
at location i. A value of COMAC close to one suggests a close correlation between the mode
shapes for frames ‘std’ and ‘add k’ at location i.

Table III also displays the computed COMAC values. Notably, the COMAC values for the
case with 8 per cent of Kobe earthquake input diIer signi*cantly from those for the case of
white-noise input, as J (in Equation (43)) is equal to 4 for the former case and equal to 5
for the latter case. From the *fth mode shapes shown in Figure 5, the modal components
corresponding to the *rst and second Uoors vary substantially for the two frames, while
the correlating components of the third and *fth Uoors are very similar. Consequently, the
COMAC values for the *rst and second Uoors in the case with 8 per cent of Kobe earthquake
input are larger than those of white-noise input. However, for the third and *fth Uoors, the
opposite trend is revealed. Apparently, the smallest COMAC value may occur on various
Uoors when diIerent numbers of modes are employed. Nevertheless, the Uoors corresponding
to stiIness change have smaller COMAC values.

3.3. Application to free vibration test

As a third example, to identify the dynamic characteristics of a highway bridge in vertical
direction from its impulse test, the proposed procedure was applied. This test was conducted
on an elevated highway bridge before it was opened to the public. The bridge consists of three-
span continuous pre-stressed concrete box-girders with varying cross-sections and, in total, is
360 m long (Figure 6). Furthermore, the bridge is supported by rollers in the longitudinal
direction but is constrained in the transverse and vertical directions at the two far ends.
Expansion joints separate both of the two end spans from the adjacent spans.
The impulsive force was imposed near the middle point of the bridge. It was generated by

simply allowing the rear wheels of a loaded truck weighing nearly 14 tons to fall down from
the top of a concrete block of 20-cm height.
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Figure 6. A three-span continuous bridge and sensor layout.

When the force was applied, several highly sensitive sensors of servo velocity type were
applied to measure the free vibration response of the bridge. The measuring system was
identical to that used for ambient vibration measurement described in Section 3.1. However,
at the time of testing, only seven sensors were available, therefore they were deployed in a
20-m interval along the centreline of the bridge (Figure 6). Also, under testing, the bridge was
divided into three segments of 120 m. The vertical free vibration responses in each segment
caused by an impulsive force were measured in turn with the sensor deployment shown in
Figure 6. The responses were recorded for 1 min with a sampling rate of 50 Hz. Notably, the
overlapped point for any two adjacent segments was employed to correlate the modal shapes
obtained from the three segments.
Figure 7 depicts the free vibration responses in the vertical direction recorded at x=40; 180;

340 m. The responses that correspond to a long elapsed time (i.e. the response for t¿40 s)
are primarily the ambient vibration responses. The magnitude of free vibration responses at
x=340 m, far from the loading point, is still much larger than that for the ambient vibration
responses. Herein, ambient responses are treated as noise. The recorded responses within 5 s
after the maximum response occurred were employed for identi*cation analysis.
Table IV summarizes the identi*ed results; it also lists the results of Huang et al. [2] via the

Ibrahim time-domain system identi*cation (ITD) technique. In total, *ve modes are identi*ed.
Figure 8 shows the identi*ed modal shapes obtained from both methods. Also, Table IV
lists the MAC values of the identi*ed modal shapes from these two methods. Evidently,
the identi*ed results from the present procedure correspond excellently with those from the
ITD technique, especially for the frequencies. However, the identi*ed modal damping ratios
herein are somewhat smaller than those from the ITD technique. Figure 8 evidences that
the identi*ed modal shapes from the present approach closely correspond to those from the
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Figure 7. Impact responses at x=40; 180 and 340 m.

Table IV. Identi*ed results of a bridge from impulse tests.

Mode Frequencies (Hz) Modal damping (%) MAC

Present ITD [2] Present ITD [2]

1 0.95 0.96 2.4 3.0 1.0
2 1.53 1.52 4.0 5.1 0.96
3 2.17 2.15 5.2 6.6 0.98
4 3.56 3.56 1.5 1.5 1.0
5 4.37 4.36 1.7 1.8 0.93

ITD technique, excluding few modal components of the second and *fth modes. However,
judged from the identi*ed modal shapes, our components are more reasonable than those from
the ITD technique. In sum, this excellent agreement con*rms the applicability of the present
approach on processing the free vibration data.
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Figure 8. Comparison of identi*ed mode shapes (−�−− ITD), (−×−) present.

4. CONCLUDING REMARKS

A uni*ed procedure to identify the dynamic characteristics of the structural system from
ambient vibration, free vibration, and earthquake response data has been presented herein. This
procedure was established through a state-space model to describe the measured responses. The
coe9cient matrices related to the dynamic characteristics were evaluated by a subspace method
co-operating with the concept of instrumental variable. Then, the dynamic characteristics were
evaluated from the eigenvalues and eigenvectors of a coe9cient matrix. One of the primary
advantages of the procedure is that it proposes a suitable order for the state-space model from
the singular values of RH in Equation (23).

To demonstrate its feasibility for actual applications, the proposed procedure has been
applied to process in situ ambient vibration measurement of a *ve-storey steel frame and
free vibration measurement of a three-span continuous highway bridge. The identi*ed dy-
namic characteristics from the ambient vibration data closely corresponded to those obtained
from the multivariate ARMA model with a two-stage least-squares approach. The identi*ed
results from the free vibration data also display an excellent agreement with those from the
ITD technique, thus validating the applicability of the proposed approach.
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The proposed procedure was also applied to process the simulated earthquake responses
of acceleration from shaking table tests of two *ve-storey steel frames. Comparison of the
experimental results with the *nite element solution reveals a superior match for all of the
modal shapes and frequencies of lower modes. Comparison of the identi*ed dynamic charac-
teristics for these two frames also reveals that the frame with stiIening braces at the fourth
storey has signi*cantly diIerent shapes of the fourth and *fth modes from those for the frame
without braces.
Finally, it is believed that the proposed procedure can be successfully applied to process

real earthquake responses of a structure despite the fact that the real earthquake response
measurement is more complicated than that from shaking table test.
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