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a 2 A(i). Then, we have thatp(i � 1ji; 1) = 1 for all i � 1, and
p(1j0; 2) = 1; p(ij0; 1) = ~p(i) for all i 2 S; and,c(i; 1) = 1 for all
i � 1, c(0; 2) = 1, c(0; 1) = 0. Obviously, this discrete-time MDPs
model is the same as in [4, Prop. 3.3], therefore, (5.16) contradicts
with [4, Prop. 3.3].

Remark 5.2: This example shows that the conditions to guarantee
the existence of a solution to the optimality inequality don’t imply the
existence of a solution to the optimality equation.
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A General Invariance Principle for Nonlinear Time-Varying
Systems and Its Applications

Ti-Chung Lee, Der-Cherng Liaw, and Bor-Sen Chen

Abstract—A general invariance principle, from the output-to-state
point of view, is proposed for the dynamical analysis of nonlinear
time-varying systems. This is achieved by the construction of a simple
and intuitive criterion using integral inequality of the output function
and modified detectability conditions. The proposed scheme can be
viewed as an extension of the integral invariance principle (Byrnes and
Martin, 1995) for time-invariant systems to time-varying systems. Such
extension is nontrivial and can be used in various research areas such as
adaptive control, tracking control and the control of driftless systems. An
application to global tracking control of four-wheeled mobile robots is
given to demonstrate the feasibility and validity of the proposed approach.

Index Terms—Invariance principle, mobile robots, time-varying systems.

I. INTRODUCTION

Since the 1960s, Lyapunov function based approaches have been
well developed for the analysis of system stability (see [1]–[5], [7],
[8], and [11]–[15]). Among these, a very useful criterion, called the
“LaSalle invariance principle,” was proposed in [7] and has been ap-
plied and extended to the study of many diverse areas in the recent
literature. For instance, Byrnes and Martin [4] proposed an integral in-
variance principle to study the stability of nonlinear time-invariant sys-
tems. However, neither the LaSalle invariance principle nor the integral
invariance principle can be applied to time-varying systems directly.
This is due to the fact that the!-limit set is not an invariant set in gen-
eral time-varying systems (see, e.g., [5, p. 193]). Since the invariance
principles have been proved to be important and useful in the anal-
ysis of system dynamics, the extension of these principles to general
time-varying systems has attracted much attention (e.g., [1], [2], [7],
[12]). In [12], results for some classes of time-varying systems such as
almost periodic systems and asymptotically autonomous systems were
obtained using the concept of pseudo-invariant set. However, no simple
method was given for the determination of the pseudo-invariance set.
Instead of using the concept of the invariance principles, two interesting
results employing the concept of “limit equations” [2] and the direct
Lyapunov approach [1] were obtained for time-varying systems. Al-
though the stability criteria proposed in previous literature can be used
in some time-varying systems, their approaches are, in general, hard to
check. The development of simple stability criteria for easy checking
remains an important issue.

In this note, a simple stability criterion for time-varying systems is
proposed. Instead of using the existence of!-limit set, the concept of
limit systems is defined for time-varying systems. Two detectability
conditions will be given in terms of limit systems. Based on these con-
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ditions and an integral inequality for the observer function, bounded
solutions of system dynamics are shown to approach a pre-specified
equilibrium set. The relationships between the proposed scheme and
LaSalle invariance principle as well as the integral invariance principle
are also studied. Finally, we revisit the tracking control problem for a
4-wheeled mobile robot studied in [9]. In that paper, it has been shown
that the error model of the tracking problem is feedback-equivalent to
a passive time-varying system. However, a complete stability analysis
was not given. In this study, a novel stability analysis of 4-wheeled mo-
bile robot system will be presented from the concept of limit system.
Through such an application, it can be seen that, just like the LaSalle in-
variance principle being feasible to the stability study of time-invariant
systems, the approach presented in this note is applicable to analyze
the stability of time-varying systems.

II. PRELIMINARIES

In this section, we give an example to illustrate that the LaSalle
invariance principle and the integral invariance principle can not
be applied directly to time-varying systems for determining system
stability. Then the definition of limit systems and two modified
detectability conditions are presented, which will be used in the
next section for the derivation of the main result. In this note,
jvj = v2

1
+ v2

2
+ � � �+ v2n , for all v = (v1; v2; . . . ; vn) 2 <n,

the distance function is defined asjvj
 = inffjw� vjjw 2 
 � <ng
and a functionx(t): [t01) ! X � <n is said to be bounded ifx(t)
lies within a compact subset ofX.

Example 1: Consider the following system:

_x1 = e�2tx2

_x2 =�e�2tx1 � x2

y =x2 (1)

wherex1; x2; y 2 <. ChooseV (x1; x2) = (1=2)(x21+x22) as a Lya-
punov function candidate. Taking the time derivative ofV along the
state trajectory of system (1), we have_V (x1; x2) = �x22 = �y2 � 0.
It is clear that 1

0
jy(t)j2 dt = �

1

0

_V (x1; x2) dt < 1. From (1),
the setS = f(x1; x2)j _V (x1; x2) = 0g contains only the trivial equi-
librium solution. If LaSalle invariant principle or integral invariant prin-
ciple is attempted to study the stability of system (1), one will have
limt!1 x1(t) = 0 andlimt!1 x2(t) = 0. However, we will check
that limt!1 x1(t) 6= 0 for any solution(x1(t); x2(t)) starting from
x1(0) 6= 0 andx2(0) = 0. Since _V � 0 andx2(0) = 0, we then
haveV (x1; x2) = (1=2)[x21(t) + x22(t)] � V (x1(0); x2(0)) =
(1=2)x21(0). This implies thatjx1(t)j � jx1(0)j for all t � 0. More-
over, the second differential equation of system (1) givesjx2(t)j =
je�t

t

0
e��x1(� )d� j � jx1(0)j for all t � 0. By solving the first dif-

ferential equation of system (1), we then have

jx1(t)j = jx1(0)+
t

0

e�2�x2(�)d� j �
1

2
jx1(0)j; for all t � 0:

This implies thatlimt!1 x1(t) 6= 0. Thus, both the LaSalle invari-
ance principle and the integral invariance principle need a modification
for determining the stability of time-varying systems. Now, we present
the definition of limit systems, which will be applied in Section III to
the construction of invariant principle for time-varying systems. In this
note, denoteX an open subset of<n. Consider a class of systems as
given by

_x = f(a(t); x) (2)

y =h(b(t); x) (3)

wherex 2 X; y 2 <m; f(a; x) 2 <n andh(b; x) 2 <m with a(t)
andb(t) being<p-valued function and<q-valued function defined on
[01), respectively. Here, assume bothf(a; x) andh(b; x) are con-
tinuous witha(t) andb(t) being uniformly continuous and bounded
vector functions. Note that, many systems take the form of (2)–(3).
For instance, linear time-varying systems and tracking control of au-
tonomous systems all take the extended form of (2)–(3). Since invari-
ance principles guarantee the limit behavior of a bounded solution, it
is intuitive to consider the dynamics of the “limit system” for a given
system. That is the behavior of system att ! 1. The definition of
limit system will be given below. First, we present the definition of
limit function.

Definition 1: Let c(t): [01)! <p, with p 2 @, be any continuous
function. A sequence = ftng of real number withlimn!1 tn =1
is said to be an admissible sequence associated withc(t) if there exists
a continuous functionc(t) defined on[01) such thatfc(t+tn)guni-
formly converges toc(t) on every compact subset of[01).The func-
tion c(t) is called a limit function ofc(t) and is uniquely defined.

Denote�(c) the set of all admissible sequences associated withc(t).
It is not difficult to check that every subsequence of an admissible se-
quence is also an admissible sequence and all these subsequences pro-
vide the same limit function ofc(t). Now, we are ready to give the
definition of limit system.

Definition 2: Let  be an admissible sequence associated with both
a(t) andb(t) [i.e.,  2 �(a) \ �(b)]. Then the following associated
system

_x = f (a(t); x) (4)

y =h (b(t); x) (5)

is called a “limit system” of system (2)–(3) wherea(t) andb(t) de-
note the limit functions ofa(t) andb(t) determined by the sequence,
respectively.

As an example, by virtue oflimt!1 e�2t = 0, a limit system of
that in Example 1 can be described by the following:

_x1 =0

_x2 =�x2

and

y =x2: (6)

A condition to guarantee the existence of limit functions is given as
follows.

Lemma 1: Let c(t): [01)! <p, with p 2 @, be a uniformly con-
tinuous and bounded function andftng be a sequence approaching in-
finity. Then, there exists a subsequenceftn g of ftng such thatfc(t+
tn )g converges uniformly to a limit functionc(t) on every compact
subset of[01).

Proof: Denotecn(t) = c(t+ tn). Then, by the assumption, the
sequencefcn(t)g is totally bounded and equi-continuous. Thus, ac-
cording to Arzela–Ascoli lemma (see [6]), there exists a subsequence
fnkg of fng such thatfcn (t)g converges uniformly to a continuous
function c(t) on every compact subset of[01). This completes the
proof.

As motivated by Lemma 1, we can show that the set�(a) \ �(b)
is nonempty. Letftng be any sequence approaching infinity. Then,
from Lemma 1 and the assumptions of system (2)–(3) there exists a
subsequence = ftn g of ftng such that 2 �(a). Similarly, we
have a subsequence of  such that 2 �(b). It is clear that 2
�(a) \ �(b). Thus, by Definition 2, Lemma 1 provides the existence
of limit systems. Throughout this note, for simplicity, any sequence
 2 �(a)\�(b) is said to be an admissible sequence of system (2)–(3).
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It is known that (e.g., [3]) the zero-state detectability is used in time-
invariant systems to determine system stability. In the following, two
zero-state detectability conditions for limit systems will be given. In
the remainder of this note, denote
 a subset ofX and�(t0; t; x0) a
bounded solution of (2) starting from�(t0; t0; x0) = x0 at t = t0 for
all t � t0 � 0. We then have the following two detectability conditions
with respect to the trajectory�:

(C1): System (2)–(3) is weakly detectable w. r. t.�. That is, there
exists an admissible sequence of system (2)–(3) such that every so-
lution x(t) of limit system (4), starting att = 0, approaches the given
se
, i.e., limt!1 jx(t)j
 = 0, whenx(t) lies within the!-limit set
of � and satisfiesh(br(t); x(t)) � 0.

(C2): System (2)–(3) is uniformly detectable w. r. t.�. That is,
for every positive constant", there exists a positive constant T such
that for every admissible sequence of system (2)–(3), every solution
x(t) of limit system (4), starting att = 0, will satisfy the inequality
jx(t)j
 < " for all t � T whenx(t) lies within the!-limit set of �
with h(br(t); x(t)) � 0.

Remark 1: For time-invariant systems, the zero-state detectability
only concerns the set
 = f0g. Moreover, every limit system of a
time-invariant system is the same as the original system. Thus, it is clear
that conditions (C1) and (C2) for such case are, respectively, implied
by the zero-state detectability condition and zero-state observability
condition introduced in [3].

III. M AIN RESULTS

In this section, a general invariant principle will be proposed and
used to guarantee the attractivity of an equilibrium set using the modi-
fied detectability conditions (C1)–(C2) given in Section II. An applica-
tion to the tracking control problem for mobile robots is also presented
to demonstrate the use of the main results. Details are given as follows.

A. A Modified Invariant Principle

Before deriving the modified invariant principle, for simplicity, we
have the following hypothesis for a bounded solution�(t0; t; x0) of
(2).

Hypothesis 1: Suppose�(t0; t; x0) satisfies the following in-
equality

1

t

w(h(b(t); �(t0; t; x0)))dt <1 (7)

for the output map (3), wherew is a positive definite continuous func-
tion with limjyj!1w(y) = 1.

Since _� = f(a(t); �(t0; t; x0)) is bounded,�(t0; t; x0) is uni-
formly continuous. Let~h(t) = h(b(t); �(t0; t; x0)) for all t � t0.
Then,w(~h(t)) is also uniformly continuous. From Hypothesis 1 and
Barbalat’s Lemma [5], we havelimt!1 w(~h(t)) = 0. This implies
that limt!1 h(t) = 0. We then have the next result.

Theorem 1: Suppose Hypothesis 1 holds. Then the following two
results hold for system (2)–(3):

i) The set
 contains a!-limit point of �(t0; t; x0) if condition
(C1) holds.

ii) Condition (C2) implies that the equalitylimt!1 j�(t0;
t; x0)j
 = 0 holds.

Proof: First, we prove i) by contradiction. Suppose statement i)
is false. Then, by the definition of!-limit point (see [5]), there exist a
T > 0 and a" > 0 such thatj�(t0; t+t0; x0)j
 � " for all t � T. Let
 be an admissible sequence of system (2)–(3) such that the conclusion
of (C1) holds. Denotear(t) andbr(t) the corresponding limit func-
tions ofa(t) andb(t), respectively. Using a similar proof of Lemma
1 and the boundedness and uniform continuity of�, there exists a

subsequenceftn g of  such thatf�(t0; t + tn ; x0)g converges
uniformly to a continuous functionx(t) on every compact subset
of [01). Note that,fa(t + tn )g andfb(t + tn )g also converge
uniformly to the limit functionsar(t) and br(t) on every compact
subset of[01) since every subsequence of an admissible sequence
is also an admissible sequence and yields the same limit function.
Observe that_�(t0; t+ tn ; x0) = f(a(t+ tn ); �(t0; t+ tn ; x0))
and the sequences of functions relating to� and f appearing
in the differential equations are uniformly convergent on every
compact subset of[01). We can then take the limit of dif-
ferential equations, see [6]. By taking the limit of differential
equations, we hence have_x(t) = f(a(t); x(t)). More-
over, by the fact oft + tn ! 1 and limt!1 h(t) = 0,
h(b(t); x(t)) = limk!1 h(b(t + tn ); �(t0; t + tn ; x0)) = 0
for each t � 0. Note thatx(t) lies within the!-limit set of �
sincex(t) = limk!1 �(t0; t + tn ; x0). Thus,x(t) is a solution
of the limit system (4)–(5) starting att = 0 and lies within the
!-limit set of � with h(b(t); x(t)) � 0. From condition (C1), we
have limt!1 jx(t)j
 = 0, which contradicts the presumption that
jx(t)j
 = limk!1 j�(t0; t+ tn ; x0)j
 � " sincet+ tk � T + t0
for eacht and large enoughk. The result of i) is hence proved.

Similarly, we next prove ii) by contradiction . Suppose statement ii)
is false. Then, there exist an" > 0 and a sequenceftng approaching
infinity such thatj�(t0; tn; x0)j
 � ". Let T be the positive constant
given in condition (C2), which depends only on". Using the similar
argument in the proof of Lemma 1, it is concluded that there exists a
subsequence = ftn �Tg of ftn�Tg such that all three sequences
fa(t+ tn � T )g; fb(t+ tn � T )g andf�(t0; t+ tn � T; x0)g,
respectively, converge uniformly to their limit functionsa(t), b(t)
andx(t). We then have_x(t) = f(a(t); x(t)) andh(b(t); x(t)) � 0
using the fact oflimt!1 h(t) = 0, along with a similar proof of i).
Thus,x(t) is a solution of the limit system, starting att = 0, and lies
within the!-limit set of�with h(b(t); x(t)) � 0. By condition (C2),
we havejx(T )j
 < ". This contradicts the assumption ofjx(T )j
 =
limk!1 j�(t0; tn ; x0)j
 � ". The proof of ii) is then completed.

Remark 2: The functionw given in Hypothesis 1 is usually taken
asw(y) = jyjp for 0 < p <1 (see [4]). For such case,w is positive
definite andlimjyj!1w(y) = 1.

Now, we re-examine the analysis of the system given in Example 1
to demonstrate the possible application of Theorem 1. For such system,
every solution is bounded since the Lyapunov functionV is proper and
satisfying _V � 0. Moreover, Hypothesis 1 holds for any solution by
choosingw(y) = jyj2. The corresponding limit system is given in (6).
If we take
 = f(x1; 0)jx1 2 <g, condition (C2) also holds. Then by
Theorem 1,x2(t)! 0. However, if we take
 = f(0; 0)g, condition
(C1) does not hold for any solution starting from the initial conditions:
x1(0) 6= 0 andx2(0) = 0. The reason is that it was shown in Sec-
tion II that jx1(t)j � (1=2)jx1(0)j for all t � 0. Thus, every solution
(x1(t); x2(t)) of (6), lying within the!-limit set of the original solu-
tion and satisfyingx2(t) � 0, will havejx1(t)j � (1=2)jx1(0)j for all
t � 0. It is observed from this example that conditions (C1) and (C2)
can be used to predict the dynamical behavior of a time-varying system
better than that obtained from time-invariant systems.

Remark 3: The concept of limit equations similar to that in (4) was
first introduced by Artstein [2]. The goal of [2] is to give a sufficient
and necessary condition in terms of limit equations to guarantee the uni-
formly asymptotic stability of the origin. The result is very interesting,
however, the stability checking of limit equations yields the same diffi-
culty as that of the original systems in many time-varying systems. On
the contrast, in a spirit like LaSalle invariance principle, the order of
systems constrained on the zero-locus of the limit functions for output
map can be effectively reduced by introducing the concept of limit sys-
tems and limit functions of output map as presented above. An inter-
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esting example for robot systems will be given in the next subsection
to illustrate such point of view.

For general applications, we have
 = f0g and the uniform Lya-
punov stability is usually attainablea priori. Under this condition, it
is easy to check that the attractivity of the origin is implied by the fact
of the origin being a!-limit point. Next corollary follows readily from
Theorem 1.

Corollary 1: Let 
 = f0g and suppose Hypothesis 1 holds. Then,
�(t0; t; x0)! 0 ast!1 if the origin is uniformly Lyapunov stable
and condition (C1) holds.

Note that, several well-known invariance principles for time-in-
variant systems can be deduced from Theorem 1. For instance, let
w(y) = jyjp and
 be the largest invariant subset of the zero-locus
of the output function for time-invariant systems. It is not difficult to
check that both Hypothesis 1 and Condition (C2) hold. Next corollary
follows readily from Theorem 1.

Corollary 2 (Integral Invariance Principle [4]): Consider a time-in-
variant system in the form of (2)–(3), i.e.,a(t) andb(t) are both con-
stant functions. Suppose1

t
jh(b(t); �(t0; t; x0))j

p dt <1 for 0 <
p < 1. Then�(t0; t; x0) approaches the largest invariant subset of
the zero-locus of the output function.

It was shown in [4] that the integral invariance principle is reduced
to the LaSalle invariance principle by choosing the time derivative of
Lyapunov function as a virtual output. The LaSalle invariance principle
can hence be implied by Theorem 1.

Although in the previous discussions above, we have restricted our
attention to systems having the form (2)–(3), similar results can be
obtained for more general time-varying systems. For instance, con-
sider a system consisting of asymptotically almost periodic or periodic
functions, see [12] for the definitions. Limit systems and conditions
(C1)–(C2) for these systems can be defined similarly and Theorem 1
is also true under new conditions.

B. Application to Globally Tracking Control of 4-Wheeled Mobile
Robots

In our previous paper [9], a globally tracking control problem of
4-wheeled mobile robots was studied by constructing a simple tracking
controller. However, a complete stability analysis was not given. In the
following, Corollary 1 will be applied to the stability study of the mo-
bile robots. Before the further discussion, let

�(s) =
1� cos s

s
and

�(s) =
sin s

s

for s 6= 0. Also, let�(0) = 0 and�(0) = 1. It is obvious that both
�(s) and�(s) are smooth functions. An error model of the tracking
system can then be recalled from [9] as given by

_xe = vr(t)f( r(t); xe) +G( r(t); xe)ue (8)

wherexe = (x1; x2; x3; x4)
T 2 <4; ue 2 <

2; vr: [01) ! < and
 r: [01)! < are two uniformly continuous and bounded functions.
Let � = x4 � �(x3)x1 � �(x3)x2 +  r(t). Then functionsf andG
in (8) can be described as follows:

f =

x2�+ x3�(x3)

�x1�+ x3�(x3)

�x1�(x3)� x2�(x3) + x4
�x3

G =

1 + x2� 0

�x1� 0

� 0

0 1

: (9)

ChooseV = (1=2)jxej
2 as a Lyapunov function candidate for

system (8). It is not difficult to check that

@V

@xe
f( r; xe) � 0:

Let

ye =
@V

@xe
G

T

be a virtual output map. Then we have_V = yTe ue. This implies that
system (8) is passive. A simple (output feedback) controller can be
chosen as

ue = �kye (10)

for any k > 0. We hence have_V = �kjyej
2 � 0, which implies

that Hypothesis 1 holds by choosingw = kjyej
2. It is clear thatV is

a positive definite and proper function. Thus, solutions of system (8)
are concluded to be globally uniformly bounded and the origin is uni-
formly Lyapunov stable. Under Lyapunov stability condition, we need
to verify that the origin is a common!-limit point of every solution for
providing the attractivity of the origin. Before checking the attractivity
of the origin, we impose the following hypothesis.

Hypothesis 2: Supposevr(t) in system (8) satisfies the inequality:

lim sup
t!1

jvr(t)j > 0: (11)

Note that, the Hypothesis 2 can be referred as “persistent excitation”
condition. From Hypothesis 2, there exists a sequenceftng with tn !
1 such thatlimn!1 jvr(tn)j 6= 0. By Lemma 1, there exists a sub-
sequenceftn g of ftng such that the two sequencefvr(t+ tn )g and
f r(t+ tn )g, respectively, converge uniformly to the limit functions
vr(t) and r(t) on every compact subset of[01). Then,ftn g is an
admissible sequence of the closed-loop system (8) with control

ue = �k
@V

@xe
G

T

:

The associated limit system for system (8) can then be obtained as

_xe = vr(t)f  r(t); xe � kG  r(t); xe ye (12)

ye = x1 + x3� xe;  r(t) ; x4 : (13)

Let xe(t) = (x1(t); x2(t); x3(t); x4(t)) be any solution of (12),
starting att = 0 with ye � 0. Then we havex4(t) � 0 and system
(12) can be rewritten as

_xe(t) = vr(t)f  r(t); xe(t) : (14)

Note that,jvr(0)j = limk!1 jvr(tn )j 6= 0. Thus, by the conti-
nuity of vr(t), there exists a positive constant� such thatvr(t) 6= 0
for all t 2 [0 �). From the fourth state equation of (14), we have_x4 =
�vr(t)x3(t). Sincex4(t) = 0, this leads tox3(t) = 0 for all t 2 [0 �).
It is not difficult to check from (13) thatx1(t) = 0 for all t 2 [0 �)
whenye � 0. Similarly, by virtual of _x3 = vr(�x1�(x3)�x2�(x3)+
x4) from the third equation of (14) and�(0) = 1; x2(t) = 0 for all
t 2 [0 �). To conclude the discussions above, we then havexe(t) = 0
for all t 2 [0 �). Note that,

@V

@xe
f( r; xe) � 0:
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From (14), this implies_V (xe(t)) � 0. Thus,V (xe(t)) = V (xe(0)) =
0 for all t � 0. By the positive definiteness ofV , we havexe(t) � 0.
Thus, condition (C1) holds. According to Corollary 1, we then have the
next theorem.

Theorem 2: Under Hypothesis 2, the origin of system (8) is globally
asymptotically stabilizable by the control

ue = �k
@V

@xe
G

T

:

IV. CONCLUSION

A general invariance principle was proposed in this note for the
stability analysis of nonlinear time-varying systems, which cannot be
derived from conventional invariance principles. This is achieved by
point-set topology approach rather than Lyapunov functions scheme.
Thus, it is possible to extend the results in this note to the study of more
general dynamical systems. The existing results such as the LaSalle
invariance principle [7] and the integral invariance principle [4] was
shown to be deduced from the proposed results. Application to the
tracking control of 4-wheeled mobile robots was also given to demon-
strate the feasibility of the proposed approach.
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Robust Stabilization of Large Space Structures Via
Displacement Feedback

Yasumasa Fujisaki, Masao Ikeda, and Kazuhiro Miki

Abstract—It has been known that static velocity and displacement
feedback with collocated sensors and actuators can stabilize large space
structures robustly against “any” uncertainty in mass, damping, and
stiffness independently of the number of flexible modes. This note presents
dynamic displacement feedback which can achieve such robust stabiliza-
tion. The proposed control law can be implemented in a decentralized
scheme straightforwardly.

Index Terms—Collocated sensors and actuators, displacement feedback,
large space structure, robust stabilization.

I. INTRODUCTION

Large space structures with collocated sensors and actuators can be
stabilized robustly against any uncertainty in mass, damping, and stiff-
ness independently of the number of flexible modes using static feed-
back of the measured velocity and displacement [1], [2]. Such a robust
control law has been obtained by utilizing the fact that the space struc-
tures possess certain qualitative properties in their parameters indepen-
dently of the numerical values, and stability can be ensured by a qual-
itative condition. This result is very important as low authority control
[3] which ensures robust stability of the closed-loop systems because
the identification errors in large space structures might be quite large.

While velocity sensors are commonly used as well as displacement
sensors, if the structure can be controlled without velocity measure-
ments, it is desirable against the failure of velocity sensors and for the
cost reduction of the sensing system. Even in the case of the displace-
ment measurements only, it would be expected that using a pseudo dif-
ferentiator with a sufficiently wide band, the static feedback of velocity
and displacement can be realized approximately by dynamic feedback
of displacement. However, since the wide-band pseudo differentiator
is sensitive to noise and its gain is very large at high frequencies, it
may cause unacceptable behaviors of the structure. Therefore, it is not
recommended to use such a wide-band pseudo differentiator for ap-
proximation of the velocity feedback.

In this note, we present a dynamic displacement feedback control
law which stabilizes large space structures under the sensor/actuator
collocation. The underlying idea comes from the fact that the unstable
modes of structures are the rigid modes only. Then, we can stabilize
the whole system by stabilizing the rigid modes using a narrow-band
pseudo differentiator around zero frequency without violating stability
of the vibration modes.

The proposed control law has the following advantages. It can stabi-
lize structures robustly against any uncertainty in mass, damping, and
stiffness independently of the number of flexible modes as the static
feedback of velocity and displacement does. The control law can be
implemented in a decentralized scheme which generates the control
inputs from the measured outputs at each collocated pair of the sensors
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