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a € A(i). Then, we have that(i — 1}¢, 1) = 1 forall< > 1, and A General Invariance Principle for Nonlinear Time-Varying

p(1

0,

2) =1, p(i|0, 1) = p(z) for all : € S;and,c(i, 1) = 1 for all Systems and Its Applications

i >1,¢(0,2)=1,c(0, 1) = 0. Obviously, this discrete-time MDPs
model is the same as in [4, Prop. 3.3], therefore, (5.16) contradicts Ti-Chung Lee, Der-Cherng Liaw, and Bor-Sen Chen
with [4, Prop. 3.3]. O

Remark 5.2: This example shows that the conditions to guarantee

the existence of a solution to the optimality inequality don’t imply the

Abstract—A general invariance principle, from the output-to-state
point of view, is proposed for the dynamical analysis of nonlinear

existence of a solution to the optimality equation. time-varying systems. This is achieved by the construction of a simple
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and intuitive criterion using integral inequality of the output function
and modified detectability conditions. The proposed scheme can be
viewed as an extension of the integral invariance principle (Byrnes and
W. J. Anderson, Continuous-Time Markov ChainsNew York: Martin, 1995) for time-invariant systems to time-varying systems. Such
Springer-Verlag, 1991. extension is nontrivial and can be used in various research areas such as
A. Aropostathis, V. Borkar, E. Gaucherand, M. Ghosh, and S. Markugdaptive control, tracking control and the control of driftless systems. An
“Discrete-time controlled Markov processes with average cost criteriodpplication to global tracking control of four-wheeled mobile robots is
A survey,” SIAM J. Control Optim.vol. 31, pp. 282—-344, 1993. given to demonstrate the feasibility and validity of the proposed approach.
J. Bather, “Optimal stationary policies for denumerable Markov chains
in continuous time,’Adv. Appl. Proh.vol. 8, pp. 144-158, 1976.

R. Cavazos-Cadena, “A counterexample on the optimality equation in
Markov decision chains with average cost criterioBys. Control Lett.
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ditions and an integral inequality for the observer function, boundetherex € X, y € R™, f(a, ) € R™ andhi(b, x) € R™ with a(t)
solutions of system dynamics are shown to approach a pre-specifedib(¢) beingR”-valued function anék?-valued function defined on
equilibrium set. The relationships between the proposed scheme #heb), respectively. Here, assume battu, =) andi(b, =) are con-
LaSalle invariance principle as well as the integral invariance principlimuous witha(¢) andb(t) being uniformly continuous and bounded
are also studied. Finally, we revisit the tracking control problem foraector functions. Note that, many systems take the form of (2)—(3).
4-wheeled mobile robot studied in [9]. In that paper, it has been shoWwor instance, linear time-varying systems and tracking control of au-
that the error model of the tracking problem is feedback-equivalenttmomous systems all take the extended form of (2)—(3). Since invari-
a passive time-varying system. However, a complete stability analyaisce principles guarantee the limit behavior of a bounded solution, it
was not given. In this study, a novel stability analysis of 4-wheeled miz-intuitive to consider the dynamics of the “limit system” for a given
bile robot system will be presented from the concept of limit systeraystem. That is the behavior of systentat> co. The definition of
Through such an application, it can be seen that, just like the LaSallelimit system will be given below. First, we present the definition of
variance principle being feasible to the stability study of time-invariatimit function.

systems, the approach presented in this note is applicable to analyzZBefinition 1: Letc(¢): [0 o0) — R?, withp € R, be any continuous

the stability of time-varying systems.

Il. PRELIMINARIES

function. A sequence = {t,, } of real number withim,, o t,, = co
is said to be an admissible sequence associated-witlif there exists
a continuous function, (¢) defined or{0 co) such thaf c¢(¢+t, )} uni-
formly converges te., (¢) on every compact subset[6foc).The func-

In this section, we give an example to illustrate that the LaSalifon c. (1) is called a limit function of:() and is uniquely definedm
invariance principle and the integral invariance principle can not DenoteA (¢) the set of all admissible sequences associatedafiih
be applied directly to time-varying systems for determining systefis not difficult to check that every subsequence of an admissible se-
stability. Then the definition of limit systems and two modifiedquence is also an admissible sequence and all these subsequences pro-

detectability conditions are presented, which will be used in thgde the same limit function of(¢). Now, we are ready to give the
next section for the derivation of the main result. In this notejefinition of limit system.

|U|—\/L +oi4--+02, foralle = (v, ve, ..., vy) € R,
the distance functlon is defined pgo = inf{|w — v|jw € Q C R"}
and a functione(¢): [to c0) — X C R” is said to be bounded if(t)
lies within a compact subset of .

Example 1: Consider the following system:

—2t
z9

—2

:i‘q =€
. t

ro = —e xr1 — Tao
wherezx;, z2, y € R. Choosd/ (x1, z2) = (1/2)(2}+23) asaLya-
punov function candidate. Taking the time derivativelofalong the
state trajectory of system (1), we hew'ér], x2) = —x3 = —y? <0.
Itis clear thatf;™ [y(t)]” dt = — [V x2) dt < oo. From (1),
the setS = {(x1, x2)|V(z1, x2) = 0} contalns only the trivial equi-

Definition 2: Let~ be an admissible sequence associated with both
a(t) andb(t) [i.e.,v € A(a) N A(b)]. Then the following associated
system

(4)
(%)

is called a “limit system” of system (2)—(3) whete(t) andb., (¢) de-
note the limit functions ofi(¢) andb(¢) determined by the sequenge
respectively. [ |

As an example, by virtue dim, .. e=%' = 0, a limit system of
that in Example 1 can be described by the following:

0

—T9

-

1

=B

2

librium solution. If LaSalle invariant principle or integral invariant prin-g 54

ciple is attempted to study the stability of system (1), one will have

lim; oo 21(t) = 0 andlim,_. x2(t) = 0. However, we will check
thatlim;_.. 21 (t) # 0 for any solution(x; (), x2(t)) starting from
21(0) # 0 andx2(0) = 0. SinceV < 0 andx2(0) = 0, we then
haveV(zi, x2) = (1/2)[27(t) + 23(t)] < V{(21(0), 22(0)) =
(1/2)21(0). This implies thata, (#)] < |1(0)| for all ¢ > 0. More-
over, the second differential equation of system (1) giuest)| =

le™" [ e a1 () dr| < |21(0)] for all ¢ > 0. By solving the first dif-
ferential equatlon of system (1), we then have
ot .
|z (8)| = |;r1(0)+/ e 2Taa(r)dr| > $]z1(0)], forallt > 0.
0

This implies thaflim,— ., x1(¢t) # 0. Thus, both the LaSalle invari-
ance principle and the integral invariance principle need a modificatiof
for determining the stability of time-varying systems. Now, we prese

the definition of limit systems, which will be applied in Section Il to.
the construction of invariant principle for time-varying systems. In thi
note, denoteX an open subset at”. Consider a class of systems as,

given by

& = f(a(t), x) )]
y =h(b(t). x) ®3)

Y =T (6)

A condition to guarantee the existence of limit functions is given as
follows.

Lemma 1: Letc(¢): [0 o0) — R?, with p € R, be a uniformly con-
tinuous and bounded function afd, } be a sequence approaching in-
finity. Then, there exists a subsequeti¢g, } of {#, } such thaf{ (¢ +
tn, )} converges uniformly to a limit functior(¢) on every compact
subset of0 o).

Proof: Denotec, (t) = ¢(t + ). Then, by the assumption, the
sequencgc,, (t)} is totally bounded and equi-continuous. Thus, ac-
cording to Arzela—Ascoli lemma (see [6]), there exists a subsequence
{nt} of {n} such that{c,, (#)} converges uniformly to a continuous
functionc(t) on every compact subset fif o). This completes the

]
As motivated by Lemma 1, we can show that the/set) N A(b)
is nonempty. Let{t,,} be any sequence approaching infinity. Then,
rom Lemma 1 and the assumptions of system (2)—(3) there exists a
subsequence = {t,,} of {#,} such thaty € A(a). Similarly, we
have a subsequengeof v such thaty € A(b). It is clear thaty €
A(a) N A(b). Thus, by Definition 2, Lemma 1 provides the existence
of limit systems. Throughout this note, for simplicity, any sequence
~v € A(a)NA(b)is said to be an admissible sequence of system (2)—(3).
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Itis known that (e.g., [3]) the zero-state detectability is used in timeubsequencét,., } of v such that{é (o, t + t,,. wo)} converges
invariant systems to determine system stability. In the following, tweniformly to a continuous functiorr(t) on every compact subset
zero-state detectability conditions for limit systems will be given. Inf [0 c0). Note that,{a(¢ + ¢,., )} and {b(¢t + ¢., )} also converge
the remainder of this note, dendiea subset of{ and¢(to, t, 0) @ uniformly to the limit functionsa.(¢) and b,-(¢) on every compact
bounded solution of (2) starting from(to, to, w0) = @0 att = to for  subset of{0 o) since every subsequence of an admissible sequence
allt > to > 0. We then have the following two detectability conditionds also an admissible sequence and yields the same limit function.
with respect to the trajectory: Observe tha:f;(to. t+tn,, o) = fla(t+tn,), O(to, t+tn,, xo))

(C1): System (2)—(3) is weakly detectable w. rét. That is, there and the sequences of functions relating ¢doand f appearing
exists an admissible sequengef system (2)—(3) such that every so-in the differential equations are uniformly convergent on every
lution z(¢) of limit system (4), starting at = 0, approaches the given compact subset of0oc). We can then take the limit of dif-
se(l, i.e.,lim;— |T(t)|o = 0, whenz(¢) lies within thew-limit set ferential equations, see [6]. By taking the limit of differential
of ¢ and satisfieg (b, (¢), T(t)) = 0. equations, we hence haveé(t) =  f(a,(t), Z(t)). More-

(C2): System (2)—(3) is uniformly detectable w. r.¢t. That is, over, by the fact oft + ¢,, — oo andlimi_.. h(t) = 0,
for every positive constant, there exists a positive constant T sucth(b-(t), T(t)) = limp—o h(b(t + tn, ), ¢(to, t + tn,, x0)) = 0
that for every admissible sequengef system (2)—(3), every solution for eacht > 0. Note thatz(¢) lies within the w-limit set of ¢

z(t) of limit system (4), starting at = 0, will satisfy the inequality sinceZ(t) = limi— ¢(to, t + tn,, wo). Thus,z(¢) is a solution
|Z(t)]o < = forallt > T whenz(t) lies within thew-limit set of ¢  of the limit system (4)—(5) starting @ = 0 and lies within the
with i (b, (t), Z(t)) = 0. w-limit set of ¢ with k(b,(¢), Z(t)) = 0. From condition (C1), we

Remark 1: For time-invariant systems, the zero-state detectabilityavelim,_ .. |7(#)|o = 0, which contradicts the presumption that
only concerns the sét = {0}. Moreover, every limit system of a |Z(t)|o = limp— |¢(t0, t + tn,, ®o)|a > = sincet +t, > T + to
time-invariant system is the same as the original system. Thus, itis cléareacht and large enough. The result of i) is hence proved.
that conditions (C1) and (C2) for such case are, respectively, impliedSimilarly, we next prove ii) by contradiction . Suppose statement ii)
by the zero-state detectability condition and zero-state observabiligyfalse. Then, there exist an> 0 and a sequencf,, } approaching
condition introduced in [3]. infinity such that|é(¢e, t.., zo)|o > =. Let T be the positive constant

given in condition (C2), which depends only enUsing the similar
IIl. M AIN RESULTS argument in the proof of Lemma 1, it is concluded that there exists a
) ) ) ] o ) subsequence = {t,,, — T} of {¢t, — T'} such that all three sequences

In this section, a general |.n\./ar|ant prlncllple. will be pr.oposed an%(t_i_ to, = T)} {b(t+ 40, — T)} and{o(to, t +tn, — T, x0)},
used to guarantee the attractivity of an equilibrium set using the moglis e tively, converge uniformly to their limit functions (), b- ()
fl_ed detectablllty conditions (C1)—(C2) givenin Secﬂo_n 1. An appllcaandf(t)_ We then havé(t) = f(a- (1), Z(t)) andh(b- (), T(t)) = 0
tion to the tracking control problem for mobile ropots is allso present ing the fact ofim,_.. h(#) = 0, along with a similar proof of i).
to demonstrate the use of the main results. Details are given as followﬁusim is a solution of the limit system, startingat= 0, and lies

within thew-limit set of ¢ with h (b, (¢), z(t)) = 0. By condition (C2),
A. A Modified Invariant Principle - - 1By (1), (1)) Y (C2)

we have|Z(T)|q < =. This contradicts the assumption|@#{(1')|q =
Before deriving the modified invariant principle, for simplicity, welimg— o ¢ (%0, tn,, ®0)|e > €. The proof of ii) is then completedn
have the following hypothesis for a bounded solutig,, ¢, xo) of Remark 2: The functionw given in Hypothesis 1 is usually taken
2). asw(y) = |y|? for 0 < p < oo (see [4]). For such case, is positive
Hypothesis 1:Supposes(to, t, xo) satisfies the following in- definite andlim | w(y) = oc.
equality Now, we re-examine the analysis of the system given in Example 1
. to demonstrate the possible application of Theorem 1. For such system,
/Ow w(h(b(t), &(to. . x0))) dt < o0 (7) everysolution is bounded since the Lyapunov functiois proper and
to satisfyingl” < 0. Moreover, Hypothesis 1 holds for any solution by

. " - . choosingw(y) = |y|*. The corresponding limit system is given in (6).
f_or the_ output map (3), where is a positive definite continuous func- If we takeQ2 = {(z1, 0)|z1 € R}, condition (C2) also holds. Then by
tion with limny) —oc w(y) = co. . Theorem 1u(t) — 0. However, if we také2 = {(0, 0)}, condition

Sinced = f(a(t), ¢(to, t, x0)) is boundedg(to, ¢, xo) IS UNi- (1) does not hold for any solution starting from the initial conditions:
formly continuous. Leti(t) = A(b(t), &(to, t, wo)) forallt > to. . (9) £ 0 andz»(0) = 0. The reason is that it was shown in Sec-
Then,w(h(t)) is also unlformly.contlnuou~s. From Hypo_th(_?Sls '1 angion 1 that|z1 (¢)] > (1/2)]«1(0)] for all ¢ > 0. Thus, every solution
Barbalat's Lemma [S], we havém;—.c w(h(f)) = 0. This implies = (1) 7,(#)) of (6), lying within thew-limit set of the original solu-
thatlim, . h(f) = 0. We then have the next resuit.  tionand satisfying(f) = 0, will have|z: ()| > (1/2)]x(0)| for all

Theorem 1: Suppose Hypothesis 1 holds. Then the following two - ) |t is observed from this example that conditions (C1) and (C2)
results hold for system (2)~(3): can be used to predict the dynamical behavior of a time-varying system

i) The set( contains av-limit point of ¢(to, ¢, xo) if condition  petter than that obtained from time-invariant systems.

_(C1) holds. o _ / Remark 3: The concept of limit equations similar to that in (4) was
ii) Condition (C2) implies that the equalitim, ... [¢(to, first introduced by Artstein [2]. The goal of [2] is to give a sufficient
t, xo)le = 0 holds. and necessary condition in terms of limit equations to guarantee the uni-

Proof: First, we prove i) by contradiction. Suppose statement fprmly asymptotic stability of the origin. The result is very interesting,
is false. Then, by the definition af-limit point (see [5]), there exist a however, the stability checking of limit equations yields the same diffi-
T > 0and & > 0suchthato(to, t+to, zo)|lo > =forallt > T.Let culty as that of the original systems in many time-varying systems. On
~ be an admissible sequence of system (2)—(3) such that the conclusi@ncontrast, in a spirit like LaSalle invariance principle, the order of
of (C1) holds. Denote.-(¢) andb,-(¢) the corresponding limit func- systems constrained on the zero-locus of the limit functions for output
tions of a(t) andb(t), respectively. Using a similar proof of Lemmamap can be effectively reduced by introducing the concept of limit sys-
1 and the boundedness and uniform continuitysofthere exists a tems and limit functions of output map as presented above. An inter-
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esting example for robot systems will be given in the next subsectionChooseV = (1/2)|z.|* as a Lyapunov function candidate for
to illustrate such point of view. system (8). It is not difficult to check that
For general applications, we hate = {0} and the uniform Lya-
punov stability is usually attainabke priori. Under this condition, it ov Fltn, 2.) =0
is easy to check that the attractivity of the origin is implied by the fact Qu, T T
of the origin being a -limit point. Next corollary follows readily from
Theorem 1. Let
Corollary 1: Let = {0} and suppose Hypothesis 1 holds. Then, ov T
o(to, t, x0) — 0 ast — oo if the origin is uniformly Lyapunov stable Ye = <8r, G)
and condition (C1) holds. [ o

Note that, several well-known invariance principles for time-ingg 3 virtual output map. Then we haVe= y” «.. This implies that

variant systems can be deduced _from_ Theorem 1. For instance,svgtem (8) is passive. A simple (output feedback) controller can be
w(y) = |y’ andQ be the largest invariant subset of the zero-locushgsen as

of the output function for time-invariant systems. It is not difficult to

check that both Hypothesis 1 and Condition (C2) hold. Next corollary e = —kye (10)
follows readily from Theorem 1. ]
Corollary 2 (Integral Invariance Principle [4]): Consider atime-in- for anyk > 0. We hence havd” = —k|y.|> < 0, which implies

variant system in the form of (2)—(3), i.e(t) andb(t) are both con- that Hypothesis 1 holds by choosing= k|y.|*. Itis clear thatV is

stant functions. Suppog@fj [h(b(t), ¢(ta, t, m0))|P dt < oo for0 <  a positive definite and proper function. Thus, solutions of system (8)

p < oo. Theno(to, t, z0) approaches the largest invariant subset gfre concluded to be globally uniformly bounded and the origin is uni-

the zero-locus of the output function. m formly Lyapunov stable. Under Lyapunov stability condition, we need
It was shown in [4] that the integral invariance principle is reducel verify that the origin is a comman-limit point of every solution for

to the LaSalle invariance principle by choosing the time derivative pfoviding the attractivity of the origin. Before checking the attractivity

Lyapunov function as a virtual output. The LaSalle invariance principfef the origin, we impose the following hypothesis.

can hence be implied by Theorem 1. Hypothesis 2: Suppose’, (t) in system (8) satisfies the inequality:
Although in the previous discussions above, we have restricted our

attention to systems having the form (2)—(3), similar results can be lim sup |v,(¢)] > 0. (11)

obtained for more general time-varying systems. For instance, con- t—oo

S|der_a system consisting of as_yr_n_ptotlca_l Iy_almost periodic or pe.r.loql\fote that, the Hypothesis 2 can be referred as “persistent excitation
functions, see [12] for the definitions. Limit systems and conditions_ . . ; . -
) - C(lndmon. From Hypothesis 2, there exists a sequégncg with ¢, —
(C1)—(C2) for these systems can be defined similarly and Theorem . .
is also true under new conditions oo such thalhm,Hm |v,-(¢.)| # 0. By Lemma 1, there exnsts a sub-
' sequencét,, } of {t, } such that the two sequene, (¢t +¢,, )} and
o ] ) {¢r(t +1n, )}, respectively, converge uniformly to the limit functions
B. Application to Globally Tracking Control of 4-Wheeled Mobile 7,(t) andy, (t) on every compact subset [f~c). Then,{t,,, } is an
Robots admissible sequence of the closed-loop system (8) with control

In our previous paper [9], a globally tracking control problem of
4-wheeled mobile robots was studied by constructing a simple tracking ov s
controller. However, a complete stability analysis was not given. In the e == <a$c G)
following, Corollary 1 will be applied to the stability study of the mo-

”

bile robots. Before the further discussion, let The associated limit system for system (8) can then be obtained as
afs) = 1—coss T =7 (t)f (V,(b). fc_) — kG (¢,(1), T.) 7. (12)
and 5 ye = (Tl + _'3)\ (Ig, L/',(f)) » T4) . (13)
) sin § ) )
Als) = — LetT.(t) = (Z1(t), T2(t), T3(t), F4(t)) be any solution of (12),
starting att = 0 with g, = 0. Then we have.(¢) = 0 and system

for s # 0. Also, leta(0) = 0 and3(0) = 1. It is obvious that both (12) can be rewritten as
«(s) and3(s) are smooth functions. An error model of the tracking
system can then be recalled from [9] as given by Te(t) =0 (t)f (0, (1), Te(t)). (14)

e = vr () f(Pr(t), we) + G0 (b), we)ue g  Note that|z,(0)] = limy—o |vr(tn,)] # 0. Thus, by the conti-
nuity of 7 (t), there exists a positive constahsuch that, () .7é 0
forall t € [06). From the fourth state equation of (14), we haye=

wherez. = (1, 2, 23, 24)7 € R*, ue € R%; 0,:[000) — Rand M &N - 1O i
¥,:[0 50) — R are two uniformly continuous and bounded functions_ 7+ (f)¥3(%). Sincew: (1) = 0, this leads tas (t) = O forallt € [0).

LetA = w4 — a(ws)a1 — Bws)rz + ¢r (). Then functionst andG It is ni)t difficullt to check fr.om (13ltha17_1(t) = 0 f_or all_t /E_[()é)
in (8) can be described as follows: Whenye =0. Slmllarly, bvatual Ofl’g = l’,«(—J}1C)1(.7,’3)—:E2/3(J}3)-|—
74) from the third equation of (14) and(0) = 1, z=(¢) = 0 for all
t € [06). To conclude the discussions above, we then have) = 0

2 j\' ““(;3) 1+ If\A 8 for all t € [06). Note that,
=" f”_(ff"’/) o e=| T . (9) ;
via(as) — x23(w3) + w4 A 0 ov . i —0
—3 0 1 o f(r, 2.) = 0.
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From (14), thisimplied’ (Z.(t)) = 0. ThusV (Z.(t)) = V(Z.(0)) = Robust Stabilization of Large Space Structures Via
0 for all t > 0. By the positive definiteness 8f, we haver.(t) = 0. Displacement Feedback

Thus, condition (C1) holds. According to Corollary 1, we then have the

next theorem. Yasumasa Fujisaki, Masao Ikeda, and Kazuhiro Miki

Theorem 2: Under Hypothesis 2, the origin of system (8) is globally
asymptotically stabilizable by the control ] ] )
Abstract—t has been known that static velocity and displacement
feedback with collocated sensors and actuators can stabilize large space
oV T structures robustly against “any” uncertainty in mass, damping, and
Ue = —k < G’) stiffness independently of the number of flexible modes. This note presents
due dynamic displacement feedback which can achieve such robust stabiliza-
tion. The proposed control law can be implemented in a decentralized
scheme straightforwardly.

IV. CONCLUSION Index Terms—Collocated sensors an_d actuators, displacement feedback,
large space structure, robust stabilization.

A general invariance principle was proposed in this note for the
stability analysis of nonlinear time-varying systems, which cannot be
derived from conventional invariance principles. This is achieved by
point-set topology approach rather than Lyapunov functions schemelLarge space structures with collocated sensors and actuators can be
Thus, itis possible to extend the results in this note to the study of mambilized robustly against any uncertainty in mass, damping, and stiff-
general dynamical systems. The existing results such as the LaSallgs independently of the number of flexible modes using static feed-
invariance principle [7] and the integral invariance principle [4] wabBack of the measured velocity and displacement [1], [2]. Such a robust
shown to be deduced from the proposed results. Application to tbentrol law has been obtained by utilizing the fact that the space struc-
tracking control of 4-wheeled mobile robots was also given to demotures possess certain qualitative properties in their parameters indepen-

|. INTRODUCTION

strate the feasibility of the proposed approach. dently of the numerical values, and stability can be ensured by a qual-
itative condition. This result is very important as low authority control
ACKNOWLEDGMENT [3] which ensures robust stability of the closed-loop systems because

the identification errors in large space structures might be quite large.

The authors are very grateful to the anonymous referees for theifyhje velocity sensors are commonly used as well as displacement
valuable comments and suggestions. sensors, if the structure can be controlled without velocity measure-
ments, it is desirable against the failure of velocity sensors and for the
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