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TWO-STAGE WELSH’S TRIMMED MEAN FOR THE
SIMULTANEOUS EQUATIONS MODEL
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Summary

This paper discusses the large sample theory of the two-stage Welsh’s trimmed mean for the
limited information simultaneous equations model. Besides having asymptotic normality,
this trimmed mean, as the two-stage least squares estimator, is a generalized least squares
estimator. It also acts as a robust Aitken estimator for the simultaneous equations model.
Examples illustrate real data analysis and large sample inferences based on this trimmed
mean.

Key words: Aitken estimator; generalized least squares estimator; simultaneous equations model;
trimmed mean.

1. Introduction

The conventional method of two-stage least squares is commonly used in econometrics,
with simultaneous equations models. Two justifications are frequently associated with its pop-
ularity. First, from a computational perspective, it requires only the least squares technique.
Second, it is well known that a two-stage least squares estimator (2SLSE) can be interpreted
as an Aitken estimator (see e.g. Fomby, Hill & Johnson, 1984 p .478; Amemiya, 1985 p .239).
More specifically, it implies that after linear transformations of the model, the 2SLSE is a
generalized least squares estimator.

It is also well known that the 2SLSE is highly sensitive to even a very small departure
from normality and to the presence of outliers. Therefore, many robust estimators have been
proposed as alternatives to the 2SLSE for simultaneous equations systems (see e.g. Amemiya,
1982; Powell, 1983; Krasker, 1985; Chen & Portnoy, 1996).

In this article, we extend the Welsh’s trimmed mean (Welsh, 1987) for linear regres-
sion to the simultaneous equations model. Large sample statistical inferences based on this
trimmed mean and real data analysis are also provided. We are interested in two aspects of
this estimator. First, because its asymptotic distribution is independent of the choice of initial
estimator, this trimmed mean can be obtained simply on the basis that an initial estimate can be
easily computed. In contrast, the robust estimators above rely on the estimation of regression
quantiles and so are computationally much more difficult. Second, we show that this trimmed
mean can be interpreted as a robust Aitken estimator in the simultaneous equations model.

We introduce the two-stage Welsh’s trimmed mean in Section 2 and develop its large
sample distribution in Section 3. Its ability to serve as a generalized least squares estimator is
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proved in Section 4. Examples and large sample inferences are presented in Sections 5 and 6,
respectively. Finally, the proof of Theorem 4.1 is given in the appendix.

2. Two-stage Welsh’s trimmed mean

Consider the simultaneous equations model

y = Y1β1 + Z1β2 + τ , (1)

where Y = [y Y1] denotes an n × p0 observation matrix of p0 endogenous variables (i.e.
dependent variables), Z1 denotes an n × p1 observation matrix of p1 exogenous variables
(i.e. independent variables) including an intercept term, and τ denotes a vector of independent
and identically distributed (iid) disturbance variables. Let β = (β1,β2) denote the parameter
vector which is to be estimated.

Let the reduced form of the simultaneous equations model be

Y = Z�+ V ,

where Z = [Z1 Z2] denotes the set of all exogenous variables, Z2 denotes an n×p2 matrix,
and rows of V are vectors of iid random variables (v1, . . . , vp0

) with zero mean vector and
positive definite covariance matrix. Let � = [�1 �2] and V = [V1 V2] be partitioned to
correspond with the dimensions of [y Y1], so that the reduced form can be represented as
[y Y1] = Z[�1 �2] + [V1 V2].

For the simultaneous equations model, the regression quantile of Koenker & Bassett
(1978) can be applied, to construct the two-stage trimmed least squares estimator established
by Chen & Portnoy (1996).

Let �̂2 be an estimator of �2 . Replacing Y1 by Z�̂2 and using the parameter restriction
τ = V γ , where γ = (1,−β1), the simultaneous equations model can be rewritten as

y = Dnβ + V1 − Z(�̂2 −�2)β1 , (2)

where Dn = [Z�̂2 Z1]. Let y = (y1, . . . , yn) and dT
i denote the ith row of Dn, i =

1, . . . , n. The two-stage estimation techniques treat V1 −Z(�̂2 −�2)β1 as regression errors.
The Welsh’s trimmed mean is defined on a Winsorized observation with its construction

based on an initial estimator of β. It can also be seen that the trimmed mean developed in
this section has asymptotic distribution independent of the initial estimator (see Welsh, 1987
for this property in the trimmed mean for the linear regression model). Compared with the
trimmed least squares estimator of Koenker & Bassett (1978), which requires computing of
the regression quantiles, this estimator has the advantage of computational ease if the initial
estimator can be calculated by using the least squares estimator.

Let β̂0 be an initial estimator of β, treating V1 − Z(�̂2 −�2)β1 in (2) as regression
errors. The regression residuals are

ei = yi − dT
i β̂0 (i = 1, . . . , n).

For large sample analysis in this paper, the initial estimator β̂0 needs to satisfy the assumption
n1/2(β̂0 − β) = Op(1) (assumption (A5) in the next section). Choices of β̂0 include consis-
tent root n estimators such as the 2SLSE, the two-stage �1-norm estimator, minimizing a sum
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of absolute values of residual terms that depend upon an initial estimator, and the Koenker–
Bassett two-stage trimmed least squares estimator β̂KB . Amemiya (1982) demonstrated the
asymptotic properties of the two-stage �1-norm estimator under the particular normal distri-
bution of the error terms and Powell (1983) provided a general asymptotic theory for it. Chen
& Portnoy (1996) gave a general asymptotic theory for the estimator β̂KB .

For 0 < α < 0.5, let η̂(α) and η̂(1 − α) represent the αth and (1 − α)th empirical
quantiles of the regression residuals, respectively. A Winsorized observation defined by Welsh
(1987) is

y∗
i = yiI

(
η̂(α) ≤ ei ≤ η̂(1 − α)

) + η̂(α)
(
I
(
ei < η̂(α)

) − α
)

+ η̂(1 − α)
(
I
(
ei > η̂(1 − α)

) − α
)

(i = 1, . . . , n). (3)

Let y∗ = (y∗
1 , . . . , y

∗
n)

T, and denote the initial-estimator-based trimming matrix by A =
diag(a1, . . . , an), where ai = I (η̂(α) ≤ ei ≤ η̂(1 − α)).

The Welsh’s trimmed mean (Welsh, 1987) from the linear regression model to the simul-
taneous equations model is defined as

β̂W = (DT
nADn)

−1DT
ny

∗ .

3. Asymptotic normality of two-stage Welsh’s trimmed mean

Let fj , Fj and F−1
j represent the probability density function (pdf), cumulative distri-

bution function (cdf) and inverse cdf, respectively, of vj , for j = 1, . . . , p0 . The following
are some assumptions concerning the design matrix Z, the error variables v1, . . . , vp0

and
the first-stage estimator.

(A1) n−1ZTZ = Q+o(1), where Q is positive definite; and the matrix J =
[
�2

Ip1
0p2×p1

]
,

is full rank.

(A2) n−1 ∑n
i=1 z

4
ij = O(1) for all j.

(A3) n−1/4 maxij |zij | = O(1).

(A4) For j = 1, . . . , p0 , fj is symmetric at zero; and fj and f ′
j are both bounded away from

0 in a neighbourhood of F−1
j (λ) for λ ∈ (0, 1).

(A5) Denote the partition �̂2 = [π̂2, . . . , π̂p0
]. For j = 2, . . . , p0,

n1/2(π̂j − πj ) = Q−1n−1/2
n∑
i=1

ziψj (vji)+ op(1) ,

where function ψj satisfies E(ψj (vj )) = 0.

(A6) n1/2(β̂0 − β) = Op(1).

Assumptions (A1)–(A4) are standard as given in Ruppert & Carroll (1980), Koenker &
Portnoy (1987) and Welsh (1987). We let � = J TQJ . Assumption (A1) shows that � is also
positive definite. Examples of �̂2 include the non-robust least squares estimator producing
ψj (vj ) = vj ; the robust �1-norm estimator producing ψj (vj ) = f−1

j (0)(0.5 − I (vj < 0));
and the trimmed mean studied by Ruppert & Carroll (1980) producing ψj (vj ) = φ(vj ) with
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φ(vj ) =




F−1
j (α) if vj < F−1

j (α),

vj if F−1
j (α) ≤ vj ≤ F−1

j (1 − α),

F−1
j (1 − α) if vj > F−1

j (1 − α).

Theorem 3.1.

n1/2(β̂W − β) = 1

1 − 2α
n−1/2�−1

n∑
i=1

d̃iφ(v1i )−�−1H ∗n1/2(�̂2 −�2)β1 + op(1),

where d̃T
i is the ith row of matrix [Z�2 Z1] and H ∗ = J TQ.

Corollary 3.2. The Welsh’s trimmed mean asymptotically has a normal distribution with
mean 0 and covariance matrix given by σ 2

W�
−1, where σ 2

W = γ TD(φ∗)γ�−1 and φ∗ =
((1 − 2α)−1φ(v1), ψ2(v2), . . . , ψp0

(vp0
)). For the case in which �̂2 is the �1-norm

estimator, D(φ∗) = �D(φ1)�, where � = diag((1 − 2α)−1, f−1
2 (0), . . . , f−1

p1
(0)) and

φ1 = (φ(v11),
1
2 − I (v21 < 0), . . . , 1

2 − I (vp11 < 0)). And D(φ1) = [cij ], where

c11 = 2α
(
F−1

1 (α)
)2 + E

(
v2

11I
(
F−1

1 (α) < v11 < F−1
1 (1 − α)

))
,

c1j = cj1 = −[
F−1

1 (α)E
(
I
(
v11 < F−1

1 (α), vji < 0
))

+ F−1
1 (1 − α)E

(
I
(
v11 > F−1

1 (1 − α), vj1 < 0
))

+ E
(
v11I

(
F−1

1 (α) < v11 < F−1
1 (1 − α), vj1 < 0

))]
,

cjj = 1
4 , cjk = E

(
I (vj1 < 0, vk1 < 0)

) − 1
4 (j, k = 2, . . . , p1).

Let �̂2 denote the matrix for the α-trimming estimator of �2j , based on either the
Welsh’s trimmed mean or the regression quantiles. Then we have matrix D(φ∗) = (1 −
2α)−2D(φ), where φ = (φ(v11), . . . , φ(vp1

)). When we further assume that fjk(x, y) =
fjk(−x,−y) for (x, y) ∈ R

2, j, k = 1, . . . , p1 , then D(φ∗) = (1 − 2α)−2H , where H =
[hij ], with

hjj = 2α
(
F−1
j (α)

)2 + E
(
v2
j1I

(
F−1
j (α) < vj1 < F−1

j (1 − α)
))
,

and for j �= k with j, k = 1, . . . , p1 ,

hjk = E
(
vj1vk1I

(
F−1
j (α) < vj1 < F−1

j (1 − α), F−1
k (α) < vk1 < F−1

k (1 − α)
))

+ 2F−1
j (α)F−1

k (α)E
(
I
(
vj1 < F−1

j (α), vk1 < F−1
k (α)

))
+ 2F−1

j (α)F−1
k (1 − α)E

(
I
(
vj1 < F−1

j (α), vk1 > F−1
k (1 − α)

))
.

4. Two-stage Welsh’s trimmed mean as a robust Aitken estimator

Let (1) be premultiplied by matrix ZT to yield

ZTy = ZT[Y1 Z1]β + ZTτ . (4)
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Denote the variance of variables τ by σ 2
τ . As interpreted by Fomby et al. (1984), the new

explanatory variables in (4) consist essentially of sample cross moments between the endoge-
nous variables and the exogenous variables — the former as they appear in (1), the latter as
they appear in the entire system. The new explanatory variables divided by sample size n
converge in probability to a non-stochastic limit and thus are uncorrelated with the error term
appearing in (4). On the other hand, the covariance matrix of ZTτ is σ 2

τ Z
TZ which makes

the generalized least squares estimation appropriate.
Define the transformation ZTy∗ where y∗ is given by (3). We see from (4) that

ZTy∗ = ZTADnβ + ZTAV1 − ZTAZ(�̂2 −�2)β1 + ZT
(
η̂(α)δα − η̂(1 − α)δ1−α

)
, (5)

where vector δλ = (I (e1 < η̂(λ))− λ, . . . , I (en < η̂(λ))− λ).

The induced model for ZTy∗ is obtained through the large sample representations of
ZTAZ(�̂2 −�2)β1 and (ZTAV1,Z

T(η̂(α)δα − η̂(1 −α)δ1−α)), where the former produces
errors in terms of v2i , . . . , vp0i

and the latter produces errors in terms of v1i .

Theorem 4.1. For �̂2 satisfying assumption (A5), the following is an induced Aitken simul-
taneous equations model

ZTy∗ = ZTADnβ + (1 − 2α)
n∑
i=1

ziγ
Tψ∗ + op(n

1/2) .

The least squares estimator for the above induced model is

β̂WLS = (DT
nAZZ

TADn)
−1DT

nAZZ
TAy.

Then n1/2(β̂WLS − β) has normal asymptotic distribution with zero mean and covariance
matrix

W = σ 2
W(J

TQ2J )−1J TQ3J (J TQ2J )−1,

which implies that the following estimator is a robust Aitken estimator, called Welsh’s gener-
alized trimmed mean,

β̂GW = (DT
nAZQ̂λZ

TADn)
−1DT

nAZQ̂λZ
Ty∗ ,

where Q̂λ satisfies n−1Q̂λ = λQ+ op(1) for some positive constant λ.

Corollary 4.2. The least squares estimator for the induced model is

β̂KBLS = (DT
nAZZ

TADn)
−1DT

nAZZ
TAy ,

and then n1/2(β̂KBLS −β) has normal asymptotic distribution with zero mean and covariance
matrix W larger than that of β̂GW .

Accordingly:

(1) The Welsh’s generalized trimmed mean provides another robust Aitken estimator for the
limited information simultaneous equations model.
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(2) β̂GW has asymptotic distribution exactly the same as that of the Koenker–Bassett (KB)
trimmed least squares estimator (see Chen & Portnoy, 1996), which is then independent
of the choice of initial estimator β̂0 .

(3) The least squares estimator for the induced model for ZTy∗ is

(DT
nAZZ

TADn)
−1DT

nAZZ
Ty∗

which has asymptotic distribution exactly the same as that of β̂KBLS . This then implies
that, in this induced transformed model, the least squares estimation is less efficient than
the generalized least squares estimation.

The choice Q̂λ = ZTAZ for β̂GW satisfying n−1Q̂λ = (1 − 2α)Q+ op(1) generates
the two-stage Welsh’s trimmed mean which implies Theorem 4.3.

Theorem 4.3. The two-stage Welsh’s trimmed mean β̂W is a robust Aitken estimator.

The choice Q̂λ = ZTZ makes the following estimator

(
DT
nAZ(Z

TZ)−1ZTADn
)−1

DT
nAZ(Z

TZ)−1ZTy∗

also a robust Aitken estimator.

5. Example and simulation

In this section we contrast the results for different estimates when applied to two datasets.
First, consider the model for estimating supply of the commercial banks’ loans to business
firms in the United States for 1979–1984 (monthly data). The supply model is

y1 = β0 + β1y2 + β2z1 + β3z2 + τ .

This is a simultaneous equations model with endogenous variables y1 and y2 and exogenous
variables z1 and z2, where y1 = total commercial loans (billions of US dollars), y2 = aver-
age prime rate charged by banks, z1 = 3-months treasury bill rate, z2 = total bank deposits.
Economic theory expects β2 to be negative, and β1 and β3 positive.

In this simultaneous equations model, there are also two available instrumental variables,
z3 and z4 . These variables represent an AAA corporate bond rate and an industrial production
index, respectively. The reduced form model then takes a bivariate regression of (y1, y2)

on exogenous variables z1, . . . , z4 associated with the intercept term. For details about the
specifications of this model and the data, see Maddala (1988 p .314).

Maddala analysed this dataset through the least squares estimate (LSE) and two-stage
least squares estimate (2SLSE). He concluded that quantity supplied is more responsive to
changes in interest rates (see these two estimates in Table 1) than is suggested by the LSE. In
Table 1, we also display the two-stage �1 estimate (2�1), two-stage trimmed least squares
estimator based on regression quantile (β̂KB(α)), for α = 0.05(0.05)0.25, and the two-stage
Welsh’s trimmed mean for number of the observations trimmed, nt = 1, 2, . . . , 6.

Comparing these estimates in Table 1, we conclude the following:

(a) For β1, β2 and β3 , all robust estimates carry the expected sign. This is consistent with
the LSE estimates made by Maddala. However, magnitudes of all robust estimates, in
absolute terms, are smaller than those obtained using the 2SLSE method.
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Table 1

Estimates for commercial loan data

Estimates β0 β1 β2 β3

LSE −77.414 2.415 −1.888 0.331
2SLSE −87.988 6.905 −7.081 0.334
2�1 −88.071 5.102 −4.706 0.335

β̂KB(α)

α = 0.05 −90.723 6.504 −6.407 0.336
= 0.10 −84.083 5.766 −5.730 0.333
= 0.15 −92.925 5.888 −5.533 0.338
= 0.20 −86.117 5.727 −5.660 0.335
= 0.25 −91.375 6.165 −5.773 0.334

β̂W
nt = 1 −87.529 6.056 −5.928 0.334

= 2 −86.496 6.329 −6.299 0.334
= 3 −86.806 6.204 −5.923 0.332
= 4 −84.808 6.378 −6.180 0.331
= 5 −86.277 5.839 −5.508 0.332
= 6 −84.518 6.095 −5.865 0.331

(b) From the residuals computed from the two-stage �1-norm estimates, we see a few suspect
outliers. The 2SLSEs of β1 and β2 are slightly larger than the robust estimates, while
the two-stage �1-norm estimates are slightly smaller. From the theory of estimation, we
can expect the 2SLSE to produce the worst estimates and the two-stage �1-norm to be
inefficient.

(c) An important advantage of the two-stage Welsh’s trimmed mean is that we can have the
actual percentage of trimming close to any specified α. After performing a sequential
trimming of β̂KB(α) and β̂W , the two-stage Welsh’s trimmed means remain quite stable
in the first six trimming estimates. We then expect that the two-stage Welsh’s trimmed
mean with a small number of trimmed observations is appropriate for estimating the
parameters.

Next, we consider macroeconomic data for 1970–1984 in the United States (see Gujarati,
1988 p .568) where the income model is

y1 = β0 + β1y2 + β2z1 + β3z2 + τ,

where y1 = income, y2 = stock of money, z1 = investment expenditure, z2 = government
expenditure on goods and services. This model states that income is determined by the en-
dogenous variable y2 and two exogenous variables z1 and z2 . Table 2 displays the various
estimates for parameters of this model.

Based on Table 2, we can conclude the following:

(a) Estimates of 2SLSE with negative signs are larger and those with positive signs are smaller
than most of the corresponding robust estimates. This reveals the non-robustness of this
least-squares-type estimation method.

(b) The two-stage �1-norm is quite satisfactory for these data.
(c) Again, the stability of the two-stage Welsh’s trimmed mean reveals that smaller number

trimming is appropriate for these data; however, this property is not shown by trimmed
least squares.
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Table 2

Estimates for money income data

Estimate β0 β1 β2 β3

2SLSE −0.034 −0.227 1.379 4.090
2�1 −0.052 −1.125 1.636 4.654

β̂KB(α)

α = 0.05 −0.053 −1.168 1.704 4.655
= 0.10 −0.033 −0.125 1.370 4.009
= 0.15 −0.046 −0.761 1.395 4.538
= 0.20 −0.044 −0.638 1.323 4.479
= 0.25 −0.054 −1.208 1.603 4.755
= 0.30 −0.054 −1.237 1.673 4.714

β̂W
nt = 1 −0.045 −0.691 1.245 4.626

= 2 −0.050 −1.032 1.599 4.639
= 3 −0.051 −1.080 1.626 4.629
= 4 −0.051 −1.093 1.635 4.627
= 5 −0.052 −1.108 1.613 4.656
= 6 −0.052 −1.145 1.646 4.659

To study two-stage estimators for the simultaneous equations model with asymmetric
error distributions, we performed a Monte Carlo simulation for the simple simultaneous equa-
tions model y = β0 +β1y1 +β2z1 +β3z2 +τ with reduced form [y y1] = [1 z1 z2][�1 �2]+
[v1 v2]. We let (u1, u2) denote a vector of independent exponential random variables with
mean 1. We assume that the error vector in the reduced form follows the following mixture
model

[
v1
v2

]
=




[ √
1 − ρ2 ρ

0 1

] [
u1 − 1
u2 − 1

]
with probability 1 − δ,

s

[
u1 − 1
u2 − 1

]
with probability δ.

This ensures that (v1, v2) has an asymmetric distribution with mean 0 and probability (1−δ)
from a distribution with covariance matrix

[ 1 ρ

ρ 1

]
, and probability δ from a distribution

with covariance matrix s2I2 , where large values of s may produce outliers.

We take (�1,�2) such that βj = 0.5, j = 0, 1, 2, 3, and we use sample size n = 40
and samples (z1, z2) randomly generated from a bivariate normal distribution. With 1000
replications, we generate observations (y, y1, z1, z2), obeying the assumptions above, and,
for estimating parameters βj , j = 0, 1, 2, 3, we compute the two-stage �1-norm estimates,
the two-stage trimmed LSE and the two-stage Welsh’s trimmed mean. Table 3 displays the
results in terms of average mean squared errors (MSE).

The outliers produced by asymmetric distributions are, in general, unbalanced with re-
spect to the population mean. Therefore none of the estimators is very efficient for estimating
the population mean, though the two-stage �1-norm estimator is relatively less efficient be-
cause it, in fact, estimates the population median. On the other hand, both the two-stage
Welsh’s trimmed mean and the two-stage trimmed least squares estimator are quite promising
and are very competitive in estimating the population mean for this asymmetric distribution.
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Table 3

MSE for two-stage estimators

Estimator δ = 0 δ = 0.1 δ = 0.1 δ = 0.2 δ = 0.2
s = 3 s = 10 s = 3 s = 10

2�1 20.70 7.047 23.98 10.370 35.81

β̂KB(α)

α = 0.1 0.405 0.372 0.436 4.374 1.985
= 0.2 0.551 1.94 3.371 0.526 0.814
= 0.3 0.395 2.506 2.143 0.911 0.685

β̂W
nt = 2 0.155 0.187 1.563 0.173 2.180

= 4 0.286 0.396 2.870 0.431 1.436
= 6 0.673 0.745 1.632 0.904 0.952
= 8 0.993 1.080 0.687 1.480 0.683

6. Large sample inference

Here we sketch some large-sample methods for confidence ellipsoids and hypothesis
testing based on the two-stage Welsh’s trimmed mean. First assume that we have a statistic
V which is a consistent estimator of the asymptotic covariance matrix γ TD(φ∗)γ�−1. For
0 < λ < 1, let

dλ(r, s) = r

1 − 2α
c1−λ(Fr,s) ,

where cq(Fr,s) denotes the q-quantile of the Fr,s distribution. Suppose for some integer �,
K is an �×p matrix of rank �. Let m be the number of residuals ei lying outside the interval
(η̂(α), η̂(1 − α)). Then

Pr
(
(β̂W − β)TKT(KV −1KT)−1K(β̂W − β) ≤ du(�, n−m− p)

) ≈ 1 − u.

If K = Ip , the confidence ellipsoid for β is given by

(β̂W − β)TV −1(β̂W − β) ≤ du(�, n−m− p).

Moreover, if we test H0:Kβ = v by rejecting H0 whenever

(Kβ̂W − v)T(KV −1KT)−1(Kβ̂W − v) ≥ du(�, n−m− p),

then this test has an asymptotic size of u.
We still need to have an estimator of asymptotic covariance matrix γ TD(φ∗)γ�−1. Let β̂

and Ĵ denote the two-stage Welsh’s trimmed mean of β1 and the matrix J in (A1), replacing
�2 by �̂2 , respectively. The estimator of � is given by �̂ = n−1Ĵ TZTZĴ . It remains to
estimate the matrix D(φ∗). Suppose that here �̂2 is the trimmed least squares estimator for
�2 . Denote the residual matrix as:



e11 e21 · · · ep11
e12 e22 · · · ep12
...

...
. . .

...

e1n e2n · · · ep1n


 = [y − D̂nβ̂W Y1 − Z�̂2].
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Also, let η̂j (λ) be the λth empirical quantile based on residuals eji, i = 1, . . . , n and define

φ̂j (a) =



η̂j (α) if a < η̂j (α),

a if η̂j (α) ≤ a ≤ η̂j (1 − α),

η̂j (1 − α) if a > η̂j (1 − α).

An estimator of C where �̂2 is the trimmed least squares estimator is given by D̂(φ∗) =
(1 − 2α)−2n−1 ∑n

i=1 φ̂φ̂
T, where φ̂ = (φ̂1(e1i ), . . . , φ̂p1

(ep1i
)). On the other hand, if we

consider that �̂2 is the �1-norm estimator of �2 , let D̂(φ1) = n−1 ∑n
i=1 φ̂1φ̂

T
1 , where φ̂1 =

(φ̂1(e1i ),
1
2 − I (e2i < 0), . . . , 1

2 − I (ep1i
< 0)). We also let f̂j (0) be the estimator of fj (0)

for j = 2, . . . , p1 ; it can be the estimator by Koenker & Portnoy (1987), Welsh (1991) or
Chen (1997). Then D̂(φ∗) , the estimator of D(φ∗) when we use �1-norm estimator for �2 ,
equals

diag
(
(1 − 2α)−1, f̂−1

2 (0), . . . , f̂−1
p1
(0)

)
D̂(φ1) diag

(
(1 − 2α)−1, f̂−1

2 (0), . . . , f̂−1
p1
(0)

)
.

7. Appendix

Proof of Theorem 4.1. Let

H(t) = n−1/2
n∑
i=1

(
γ − I (v1i < F−1

1 (γ )+ n−1/2zT
i t)

)
.

From Jurečková (1984), we have

H(T )−H(0)− f1

(
F−1

1 (γ )
)
n−1

n∑
i=1

zT
i T = op(1)

for any random vector T with T = Op(1). From Ruppert & Carroll (1980), we have

n−1/2
n∑
i=1

(
γ − I (ei < η̂(γ )

) = op(1). (6)

By rearrangement, the following equation holds

ei − η̂(γ ) = v1i − F−1
1 (γ )− n−1/2zT

i Tn(γ )

with Tn(γ ) = n1/2[Ĵ (β̂0 − β)− (�̂2 −�2)β1 + (
η̂(γ )− F−1

1 (γ )
)
a
]
, (7)

where a is a vector of zeros except for the first element which is 1. The method of Jurečková
(1977 proof of Lemma 5.2) and (7) also show that for δ > 0, there exist positive values s, k
and N0 such that

Pr

(
inf
|t |≥k

n−1/2
∣∣∣∣
n∑
i=1

(
γ − I

(
v1i < F−1

1 (γ )+ zTi t
))∣∣∣∣ < s

)
< δ (8)
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for n ≥ N0 . From (6) and (8), it is seen that Tn(γ ) = Op(1) which implies that η̂(γ ) is

consistent for F−1(γ ), as
η̂(γ ) = F−1

1 (γ )+ op(1).

Let M(t, γ ) = n−1/2
n∑
i=1

ziv1iI
(
v1i ≤ F−1

1 (γ )+ n−1/2zT
i t

)
.

Now n−1/2ZTAV1 = M
(
Tn(1 − α), 1 − α

) −M
(
Tn(α), α

)
. (9)

From Ruppert & Carroll (1980) and Jurečková (1984), we have

M(T , γ )−M(0, γ ) = F−1
1 (γ )f1

(
F−1

1 (γ )
)
n−1

n∑
i=1

zT
i T + op(1) (10)

for any sequence T with T = Op(1). Then (9) and (10) induce the following,

n−1/2ZTAV1 = F−1
1 (1 − α)f1

(
F−1

1 (1 − α)
)
n−1

n∑
i=1

ziTn(1 − α)

− F−1
1 (α)f1

(
F−1

1 (α)
)
n−1

n∑
i=1

ziTn(α)

+ n−1/2
n∑
i=1

ziv1iI
(
F−1

1 (α) ≤ v1i ≤ F−1
1 (1 − α)

) + op(1). (11)

Similarly,

n−1/2η̂(α)ZTδα + n−1/2η̂(1 − α)ZTδ1−α

= F−1
1 (α)f1

(
F−1

1 (α)
)
n−1

n∑
i=1

ziTn(α)− F−1
1 (1 − α)f1

(
F−1

1 (1 − α)
)

n−1
n∑
i=1

ziTn(1 − α)+ F−1
1 (α)n−1/2

n∑
i=1

zi
(
I (v1i < F−1

1 (α)
) − α)

+ F−1
1 (1 − α)n−1/2

n∑
i=1

zi
(
I
(
v1i > F−1

1 (1 − α)
) − α

) + op(1). (12)

Combining (11) and (12), we have

n−1/2ZTAV1+n−1/2η̂(α)ZTδα+n−1/2η̂(1−α)ZTδ1−α = n−1/2
n∑
i=1

zT
i φ(v1i )+op(1). (13)

Then the induced form of Theorem 4.1 follows from (5), (13) and because n−1ZTAZ =
(1 − 2α)Q+ op(1) and �̂2 = �2 + op(1).
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