
374 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL.3, NO.4, DECEMBER 2001

An Efficient IP Routing Lookup by
Using Routing Interval

Pi-Chung Wang, Chia-Tai Chan, and Yaw-Chung Chen

Abstract: Nowadays, the commonly used table lookup scheme for
IP routing is based on the so-called classless interdomain routing
(CIDR).With CIDR, routers must find out the best matching prefix
(BMP) for IP packets forwarding, this complicates the IP lookup.
Currently, this process is mainly performed in software and several
schemes have been proposed for hardware implementation. Since
the IP lookup performance is a major design issue for the new gen-
eration routers, in this article we investigate the properties of the
routing table and present a new approach for IP lookups, our ap-
proach is not based on BMP and significantly reduces the complex-
ity, thus the computation cost of existing schemes can be signifi-
cantly reduced. We also propose an efficient IP lookup algorithm,
with which we improve the binary search on prefixes to 30 millions
of packets per second (MPPS) and 5,000 route updates/s under the
same experiment setup with an even larger routing table.

Index Terms: Internet, gigabit networking, IP address lookup.

I. INTRODUCTION

Speeding up the packet forwarding in the Internet backbone
requires high-speed transmission links and high performance
routers. The transmission technology keeps evolving and provi-
sion of gigabit fiber links is commonly available. Consequently,
the key to increase the capacity of the Internet relies on in fast
routers [1]. A multi-gigabit router must have enough internal
bandwidth to switch packets between its interfaces and enough
packet processing power to forwardmultiple MPPS [2]. Switch-
ing in the router has been studied extensively and solutions for
fast packet processing are commercially available. As a result,
the remaining major obstacle for the high performance router
design is the slow, multi-memory-access IP lookup procedure.
A router must search forwarding tables using the DA (destina-
tion address) as the key, and determine which table entry repre-
sents the best route to forward the packet to its destination. Since
the development of CIDR in 1993 [3], IP routes have been iden-
tified by a �routing prefix, prefix length� pair, where the prefix
length varies from 1 to 32 bits. Due to the fact that table entries
have variable lengths and that multiple entries may represent the
valid routes to the same destination, it may be time consuming
to find out the best matching prefix (BMP), especially in a back-

Manuscript received November 30, 2000; approved for publication by Norio
Shiratori, Division III Editor, June 21, 2001.
P.-C. Wang and C.-T. Chan are with the Telecommunication Laborato-

ries, Chunghwa Telecom Co., Ltd, Taipei, Taiwan, R.O.C, e-mail: pcwang@
cht.com.tw, ctchan@cht.com.tw.
Y.-C. Chen is now with the Department of Computer Science and Information

Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., e-mail:
ycchen@csie.nctu.edu.tw.

1229-2370/01/$10.00 c� 2001 KICS

bone router with a large number of table entries. It is extremely
important that routing lookup scheme much be simple and fast
for practical implementation in the next generation routers.
While designing the simple and fast routing lookup scheme,

the following considerations should be considered simultane-
ously.

� Simplicity: The data structure and the routing lookup op-
eration should be as simple as possible, such as using pre-
computation to avoid search complexity shown in [4].

� Reducing routing-table space: If we can reduce routing-
table size to fit into the high speed SRAM, the perfor-
mance can be promoted significantly.

� Fast routing-table reconstruction: The routing-table re-
construction is a major issue for the backbone router since
it requires frequently route updates [5]. Basically, the up-
date cost of the trie-based algorithm is the smallest. Other
schemes, such as cache, hash and binary search, might po-
tentially require full table refresh. To avoid this problem,
one usually adopted the 16-bits pre-computation table. By
dividing the whole address space into 64K small space,
the problem can be alleviated.

� Scalability: The IP routing lookup algorithm must be
scalable in the next generation network. Since the increas-
ing growth of table size and the migration of IP addresses
from 32 bits (IPv4) to 128 bits (IPv6) make the IP routing
lookups be a challenging problem.

� Parallelism: To provide next generation tera-bit/s high-
speed transmission, pipelining will play an important role.
Therefore, another issue is to exploit the high parallelism
within the routing-table lookups.

In this work, we introduce a new approach for IP table
lookups, which can resolve the BMP problem. The proposed
algorithm was initially inspired by the method in [4]. However,
we show that the new algorithm is both more efficient and more
flexible, and can be used to enhance the existing schemes signif-
icantly. According to the new approach, both the table construc-
tion time and table size of previous schemes can be significantly
reduced. For example, we have improved previous scheme to
achieve 30 MPPS and 5,000 route updates per second with the
same experiment setup and an even larger routing table. With
the state-of-the-art 700 MHz CPU, it can achieve more than 70
MPPS in average. The rest of the paper is organized as follows.
In Section II, we describe the related works. Section III presents
a new concept named as “Routing Interval” which can enhance
the previous schemes significantly. We discuss our proposed IP
lookup algorithm in Section IV. Section V outlines the experi-
ment setup and results. Finally, a concluding remark is given in

WANG et a1.: AN EFFICIENT IP ROUTING LOOKUP BY USINGROUTING INTERVAL

Section VI.

II. RELATED WORKS

There has been a remarkable interest in the organization of
routing tables during the last few years. The proposals include
both hardware and software solutions. Degermark etal. [6] pro
pose a trie-like data structure for quick routing lookups. It is
able to compact a large routing table with 40,000 entries into a
table with 150-160 kbytes size. The forwarding table is small
enough to fit in on-chip cache memory. In hardware implemen
tation, theminimum and maximum number ofmemory accesses
for a lookup are two and nine, respectively. Gupta et al. pre
sented fast routing-lookup schemes based ona huge DRAM [7].
Thescheme accomplishes a maximum of two memory accesses
for a lookup in a forwarding table of 33 Mbytes. Byadding an
intermediate-length table, theforwarding table canbereduced to
9 Mbytes: however, themaximum number of memory accesses
fora lookup is increased to three. When implemented ina hard
ware pipeline, it can achieve one route lookup every memory
access. This furnishes about 20 MPPS. Huang et al, [8] further
improve it by fitting theforwarding tables into SRAM.

Regarding software solutions, algorithms based on tree, hash
or binary search have been proposed. Srinivasan et ai. [9]
present a data structure based on binary tree with multiway
branching. By using a standard trie representation with arrays
ofchildren pointers, insertions and deletions ofprefixes aresup
ported. However, to minimize thesize of the tree, dynamic pro
gramming is needed. Karlsson et al. [10] solve the BMP prob
lem by LC tries and linear search. Waldvogel et al. proposed a
lookup scheme based ona binary search mechanism [11]. This
scheme scales verywell as thesize ofaddress and routing tables
grows. The scheme requires a worst-case time of log2(address
bits) hash lookups. Thus, five hash lookups areneeded for IPv4,
andseven for IPv6 (128-bit). This software-based binary search
work is further improved byemploying a cache structure aswell
as using multiway andmulticolumn search techniques [4]. Fora
database ofN prefixes with address length W, thenative binary
search scheme needs O((W x logN) searches. This improved
scheme takes only O(W + logN) searches.

Although theexisting works have theiradvantages, however,
those approaches either use complicated data structures which
result in high complexity for updating/building the forwarding
table, such as [4L [9]-[IIL or they arenotscalable to fit in IPv6
[6]-[8].

III. ROUTING INTERVAL

As mentioned above, each IP address might be covered by
multiple routing prefixes. However, only the longest one indi
cates the next-hop. From the geographical characteristic of the
destination location, we investigate the routing table and pro
pose a new routing concept based onthefollowing observations.
Before presenting ouridea, it is necessary to define thesegment
for IP address. Each IP address is divided into two parts: seg
ment (16 bits) and offset (16 bits).

The density of routing prefixes for segments is related to
its hop-count: From the network topology, we know that all

375

Fig. 1. Prefix count distribution.

networks (including enterprise, campus, ISP) areinterconnected
through trunks. Since there are multiple trunks for neighbor
cloud to connect with each other, thenumber ofrouting prefixes
is large and with disorderly information. Onthe other hand, the
routing prefixes aresimple andmuch fewer fortheremote cloud,
i.e., farther geographical region.

Sparseness of routing prefixes: Although the number of
Internet hosts increases exponentially, the number of routing
prefix is still very sparse. For example, there are 65,536 seg
ments but only about 56,000 routing prefixes in current back
bone router (Mae-East 8/12/2000). There is less than one rout
ingprefix persegment onaverage. We usetherouting tables of
fered bytheIPMA project [12L which provides a daily snap shot
of therouting table used by some major Network Access Points
(NAPs), as basis for our experiment. The number of prefixes
whose length is longer than 16 bits in each segment is shown
in Fig. 1. From the experimental results, we found that most
of routing prefixes identify thenext-hop onlyfor few segments;
we call this phenomenon as routing locality. It also reflects the
property thatmost prefixes arerelated to neighbor clouds.

In a router} the number of possible next-hops for a seg
ment is always much less than the total number of ports:
The number of distinct next-hops in a routing table is limited
by the number of other routers or hosts that can be reached in
one hop, it is clear that these numbers would be small even in
large backbone routers. For the enterprise or campus routers,
the heavy use of default routes for outside destinations further
reduces the routing table size and the number of next-hops. It
leads that few routing prefixes are used to define the routes for
most segments. Hence the number of next-hops for most seg
ments is small andmust be less than thenumber of related rout
ingprefixes, as shown in Fig. 2.

Based onabove discussion, wepropose a new routing concept
named as "Routing Interval" which fully utilizes the properties.
By sorting the routing prefixes based on their lengths, we can
build a new next-hop array in which each element maps to an
IP address interval and is filled with related next-hop. For ex
ample, three routing prefixes 140.113.0.0/255.255.0.0/N H I,

140.113.3.0/255.255.255.0/N H 2 and 140.113.215.0/255.255
.255.0/N H 3 with length 16, 24, 24, respectively. First the

376

Fig. 2. The distribution of next-hop count within a segment.

Fig. 3. Routing interval example.

routing prefix 140.113.0.0/255.255.0.0/N HI creates an IPad
dress interval 140.113.0.0 rv 140.113.255.255/NH1. When
the next routing prefix 140.113.3.0/255.255.255.0/NH 2 is
processed, the interval is further partitioned into three re
gions, 140.113.0.0 rv 140.113.2.255/N HI, 140.113.3.0 rv

140.113.3.255/NH2, 140.113.4.0 rv 140.113.255.255/NH1,

respectively. According to this simple rule, we can use three
routing prefixes to produce 5 elements based on the next-hop
value and record each with (begin address, end address, next
hop). We named this tuple as "Routlnq Interval" as shown in
Fig. 3.

Most of existing algorithms use different approaches to han
dle the BMP problem and result in either complex data struc
ture or extra storage, or both. The most benefit to transform
the routing prefix into routing interval is that the complexity of
BMP problem can be avoided. For example, each node in Pa
tricia tries consists of three pointers, one for prefix entry and
two forchild nodes due to possible longer match. Although var
ious implementations of the Patricia tries have been proposed
andtheperformance has been improved significantly, it still can
be improved via applying the routing interval. The inefficient
data structure canbesimplified, with which each node maycon
tain either a prefix pointer or two child pointers, but not both.
With low transformation cost we reduce the BMP problem into
a much simpler search problem. The algorithm of transforma
tionwillbe addressed below. Notice thatouridea is completely
different from the previous work [13L which concerns how to
reduce the number of routing prefixes, while we focus on how
to remove theBMP problem.

JOURNALOF COMMUNICATIONS AND NETWORKS, VOL,3,NO.4,DECEMBER 2001

Fig. 4. Number of generated routing intervals for Mae-East.

Theoretically, themaximum number of generated routing in
tervals is 2N - I, where N is the number of routing prefixes
(including default route). However, the experiments show dif
ferent results. The result generated from the large routing ta
ble (Mae-East) is shown in Fig. 4. We found that the total
number of routing intervals is less than that of routing pre
fixes in this case. Three reasons cause this: (I) For a region
which indicates identical next-hop value, it has to be repre
sented by several routing prefixes due to the limitation that
the occupied region of routing prefixes must be the order of
2. (II) Some routing prefixes belong to the same routing in
terval, thus they can be merged into a single interval. For ex
ample, two routing prefixes, 140.113.0.0/255.255.0.0/N H I,

140.113.3.0/255.255.255.0/NHI, are with different prefix
length and identical next-hop value. The routing prefix
140.113.3.0/255.255.255.0/NH1 is redundant and can be re
moved. (III) There are zero-range intervals which canbe elim
inated. This phenomenon will be discussed in Section IV. The
results of other NAPs areshown inTable I, where thevalue fol
lowing the slash is the number of routing prefixes. In the most
numerical results, the generated numbers of intervals are fewer
than thatof therouting prefixes.

For most segments, the routing information, including the
next-hops and routing prefixes, is verysimple. Further, the dis
tribution is related to the network topology. The routing infor
mation is more complex forthenearby region (intopology). We
believe that the IP lookup scheme can be improved based on
these characteristics, thus we convert the hierarchical routing
prefixes into flat routing intervals. With the concept of routing
interval, IP lookup complexity canbe greatly reduced. We will
address how existing schemes cantake advantage ofthis concept
below.

A. Qualitative Analysis and Enhancement with Existing Rout
ing Schemes

Many existing algorithms use pre-computation to solve the
BMP problem. We introduce three typical schemes and describe
how they canbe improved withrouting intervals. Here, we only
discuss how to reduce the complexity of algorithm in brief. In
thenext section, we willprovide quantitative analysis in theas-

WANG et a1.: AN EFFICIENT IP ROUTING LOOKUP BY USINGROUTING INTERVAL

Table 1. Comparison of routing prefixes/routing intervals in different dates.

377

Date AADS Mae-East Mae-West PacBell Paix
9/9/1999 9,287/35,769 44,233/47,784 28,853/28,998 22,263/26,278 9,341/9,270

12/22/1999 12,075/17,460 44,904/52,372 30,387/30,688 21,141/25,406 8,711/9,237
5/15/2000 24,451/23,515 42,800/53,226 30,492/33,514 23,619/29,959 8,944/11,587
8/12/2000 23,411/26,109 46,557/56,039 30,501/31,060 25,807/33,680 14,201/13,878

Fig. 5. Number of processed routing intervals for Mae-East.

pects ofbuilding time, lookup time and required storage through
experiment.

The scheme proposed by Waldvogel et al. [11] performs the
IPlookup based onthelengths of theprefixes. Theprefixes with
the same length arestored in a hash-table. Thebinary search is
used to find out the longest prefix, and one hash-table lookup
is performed at each step of this search. However, to find out
the BMP with binary search is not trivial. Foreach prefix with
length L, an extra marker must be added to the hash table with
length 1 to L - 1 to indicate that there exists a longer match,
so that it will lookup the longer-prefix hash table. Furthermore,
thebestmatch prefix forthemarker should also be calculated to
avoid misleading. While we usetherouting interval as therout
ingprefixes in this algorithm, it does notneed to change theba
sic mechanism, but the pre-computation of bestmatch for each
marker can be removed. Since no misleading will happen with
the usage of routing interval, there is no backtracking problem.
Thus, we cansave the pre-computation costas well as simplify
the data structure of forwarding table.

To migrate the routing prefixes to routing intervals here, we
have to further divide the routing intervals so that the region of
each interval canbe represented withthepower of 2. Forexam
pIe, an interval whose region is 6 will be cut into two intervals
with region value 4 and 2, respectively. A sample result con
verted from Fig. 4 is shown in Fig. 5. Thenumber of processed
intervals would be a trade off between simplified constructing
andsearching efficiency.

Another scheme proposed by Srinivasan et al. [9] consists of
two parts. In the first part it reduces the number of distinct
prefix lengths. With dynamic programming, the optimal expan
sion level canbecalculated. Consequently, it constructs thetries
based ontheresults. Leafpushing and Cache line alignment are

used to improve the performance. While applying routing in
tervals, the operation of leafpush canbe eliminated because no
longer match will occur. Each element in the node indicates a
pointer to either the next node or the prefix table. In fact leaf
pushing is conceptually similar to our idea, but ours is more
generalized. In [9L they also address how to improve the per
formance of binary search on hash table. By applying the rout
ing interval concept the enhancement discussed above can be
applied, too.

In [1 OL Nilsson et al, use the skill called level compression
(LC tries) to reduce the height of trie. The basic point is: since
there is a fixed cost for comparing strings whose lengths are
equal or less than the machine word, it is therefore more ef
ficient to compare more bits at a time to reduce the number of
comparisons andmemory accesses. However, to improve theef
ficiency of data structure, theydidn't handle the BMP problem
inthetrie. Each internal node keeps thenumber ofnodes andthe
address of the leftmost one. Thesearch only stops at leafnode,
which contains the pointer to theprefix table. Once the pointed
prefix doesn'tmatch, it willjumpto theshorter prefix of current
one indicated in this entry. Therefore, it deals the BMP prob
lem with linear search, this might result in poor performance in
some cases.

Applying routing interval can eliminate the aforementioned
problems. Ifweconstruct thetriewith routing intervals, each in
terval willcorrespond to a leafnode in thetrie. Once thesearch
reaches a leaf node, the bestmatching will be found. Since no
linear search is needed, theprefix table canbe removed.

I~ PROPOSED IP LOOKUP SCHEME

We have introduced three enhancements to previous schemes
and show theadvantages ofusing therouting interval. Basically,
it cansimplify thedata structure andreduce thepre-computation
cost that leads to low table construction time. It might also re
duce the required memory storage and the number of accesses
in some cases. The transformation from routing prefix to rout
ing interval is essential to design an effective routing scheme.
Consequently, we propose an efficient transformation method,
as well as an IP lookup scheme which further takes advantage
of routing intervals. The proposed algorithm can handle 5,000
route updates per second, which includes the interval transfor
mation andforwarding table construction.

A. Routing Interval Transformation

According to therouting interval concepteach routing prefix
implies a routing interval thatcanbe identified byjust append
ing (32 - prefix length) O's and (32 - prefix length) l's as
starting and ending address, respectively. Forexample, routing

378 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL.3, NO.4, DECEMBER 2001

prefix �� � �������������������� is with a routing interval
��� � ������������ �� � ���������������� ����. However,
it is an imprecise routing interval since it overlaps with other
routing interval in the boundary; this causes the ambiguous rout-
ing lookup. Consequently, the major purpose of routing interval
transformation is used to distinguish the routing intervals pre-
cisely.
The processing of each routing prefix will at most generate

three routing intervals which are �	
�
�
� ����� 	
�
�
�,
���� 	
�
�
����� and ���	�� 	
�
�
� 	
�
�
�. The
transformation algorithm is used to make up the unknown field.
Basically, the transformation from routing prefix to interval
is irreversible because the hierarchical information carried in
routing prefix is removed. Each route update causes the re-
transformation of routing interval. To ease the implementa-
tion, we adopt two link-lists, �� and ��. The former is used
to store the generated routing interval formats and initialized to
be empty. The latter is used to store the possible routing inter-
val ���	�� 	
�
�
� 	
�
�
� and implemented as a stack,
which performs “push,” “pop,” and “modification” operations.
With the sorted routing prefixes, let ��, �� and ���

be the starting address, ending address and the next-hop of
the routing interval ��, respectively, where �� � �� �
� � � � �� (� is the number of routing prefixes, � �
� � �). At the beginning, we append the interval
��� 	
�
�
� ����	�� ��	��� to �� to �� and push the in-
terval ����������������� ���������������� ����	�� ��	���
into ��. To simplify the description, we use the subscript
��� and ���� to represent the starting address, ending address
and next-hop of the top and rear routing interval in � � and
��, respectively. For each routing prefix with imprecise rout-
ing interval���� ��� ����, we firstly check whether Stop (i.e.,
the starting address of the ��� interval in ��) is smaller than
����� � ���� � �, then ����� � ���� � �. Then, we pop
the top element, say, ������ ����� ������, of �� and append it
to the rear of ��. After that, we update ������ with �����.
We repeat these steps until there is no smaller interval in ��,
i.e., ���� � ��, and modify ����� to �� � �. It means that
there exist an interval ������� �� � �� �������. Moreover,
we must check whether ����� is equal to �� or not. If yes,
then we replace ������ with ���. Otherwise, we append
���� 	
�
�
����� to ��. Since it belongs to an unclear in-
terval, we must further check whether ���� is equal to �� 	 �
or not. If ���� � �� 	 �, then we replace ����� with ���.
Otherwise, we push an interval, ���	�� 	
�
�
�����, into
��. Finally, we pop all intervals stored in �� and append them
to �� in sequence. The detailed algorithm is shown as below.

Routing Interval Transformation Algorithm

Input: � routing prefixes.
Output: The set of ordered routing intervals.
Let �� and �� be the starting and ending address, ��� be
the next-hop of ��	 routing prefix, respectively. (The subscript
��� and ���� represent the starting address, ending address
and the next-hop of the ��� and ���� interval in �� and ��,
respectively.)
Let � � ��� ��� � � � � ���� be the set of sorted prefixes of an
input segment.

For any pair of prefixes �� and �
 in the set, � � � if and only
if �� � �
 .
Append interval ��� 	
�
�
� ����	�� ��	��� into �� and
push interval ����� � � ��� ���� � � ���� ����	�� ��	��� into
��.
For � � � to � do

1. For the imprecise interval ���� ��� ���� of ��	 routing
prefix. Check if �� larger than ����.

2. If yes, modify����� with ������. Pop the top interval
from �� into ��. Then modify ������ with �����.
Repeat step 1&2 until the result of comparison is false.

3. Consequently, modify����� as (�� � �).
4. Check if ����� � ��,

4.a If yes, overwrite������ with���.
4.b Otherwise, append ���� 	
�
�
����� into ��.

5. Check if the ���� � �� 	 �,
5.a If yes, overwrite����� with���.
5.b Otherwise, push ���	�� 	
�
�
����� into��.

Push all intervals stored in �� and append into ��.
For all generated intervals do
Merge two successive intervals with identical next-hop.
Stop.

In Fig. 6, we use an example to illustrate the process of
the routing interval transformation. After processing the rout-
ing prefix ��, the top element of �� and rear elements of ��

are ���� 	
�
�
����� and ���� 	
�
�
�����, respec-
tively. For the routing prefix ��, it firstly compares with ����.
Since ���� is smaller than ��, ����� is modified to ��. It pops
the top element, ���	�� 	
�
�
�����, of�� and append it
to the rear of ��. Then we modify��� with���. Since there
is no smaller interval in ��, we replace ����� with �� � �. It
further checks whether ����� is equal to �� or not. Because they
are different, it must append the interval ���� 	
�
�
�����
to ��. In addition, ���� is unequal to �� 	 �, thus it pushes the
interval ��� 	 �� 	
�
�
����� into ��.
After processing all prefixes, the ordered intervals will be

available in the array. We can perform another improvement
by scanning all intervals again and merge two consecutive in-
tervals with identical next-hop value. The time complexity of
the transformation algorithm without prefix sorting is �
�� �
�
����� � �
�� where� is the interval count and� is the
prefix count.

B. Modification of Binary Search for Speedup

In [4], Lampson et al. use two copies of the routing pre-
fixes; one copy is padded with zeros and the other with ones,
for IP lookup. With pre-computation, it can perform the prefix
matching with binary search in a sorted array containing these
extended prefixes. The required memory of forwarding table is
about 1Mbytes, which cannot fit into the L2 cache of most mod-
ern CPUs. Recall that a CPU READ to a byte will prefetch an
entire cache line into the L2 cache, multiway search with cache
line alignment are used to improve the performance. In spite
of its scalability to IPv6, the route update will cause the recon-
struction of forwarding table, which costs around 350 ms in the
worst case.

WANG et al.: AN EFFICIENT IP ROUTING LOOKUP BY USING ROUTING INTERVAL 379

S
4
, E

4
, NH

4

L
2

S
0
, S

1
-1, NH

0

S
2
, S

3
-1, NH

2

E
1
+1, S

2
-1, NH

0

S
1
, E

1
, NH

1

L
1

E
3
+1, unknown, NH

2

S
3
, E

3
, NH

3

S
0
, S

1
-1, NH

0

S
2
, S

3
-1, NH

2

E
1
+1, S

2
-1, NH

0

S
1
, E

1
, NH

1

L
1

S
3
, unknown, NH

3

E
0
, E

0
, NH

0

E
2
+1, unknown, NH

2

E
3
+1, unknown, NH

3

L
2

State After Processing P
3

S
0

S
3

S
2

E
1

S
1

E
2

E
4

S
4

E
3

E
0

<P
1
,L

1
,NH

1
>

<P
0
,L

0
,NH

0
>

<P
3
,L

3
,NH

3
>

<P
2
,L

2
,NH

2
>

Routing Prefixes

<P
4
,E

4
,NH

4
>

E
0
, E

0
, NH

0

E
2
+1, unknown, NH

2

E
3
+1, unknown, NH

3

L
2

E
0
, E

0
, NH

0

E
2
+1, unknown, NH

2

S
0
, S

1
-1, NH

0

S
2
, S

3
-1, NH

2

E
1
+1, S

2
-1, NH

0

S
1
, E

1
, NH

1

L
1

E
3
+1, S

4
-1, NH

2

S
3
, E

3
, NH

3

S
4
, unknown, NH

4

L
2

E
0
, E

0
, NH

0

E
2
+1, unknown, NH

2

E
4
+1, unknown, NH

4

E
4
+1, unknown, NH

4

Compare & Push7

Modify5

Append6

4 Modify

3 POP

1 Compare
2 Modify

Fig. 6. An example of routing interval transformation.

Interval 1

Interval 2

Interval 3

Interval 4

Interval 5

Interval 6

Interval 7

Interval 8

Interval 9

NH
1

NH
5

NH
4

NH
3

NH
2

L

H

L

H

L

L

H

H

L

H

Prefix 1

Prefix 2

Prefix 3

Prefix 4

Prefix 5

Region

Region

Region

Region

Region

Region

Region

Region

Region

NH
1

NH
5

NH
4

NH
3

NH
2

NH
2

NH
2

NH
1

NH
1

Fig. 7. Mapping from previous scheme into proposed scheme.

We claim that the performance can be greatly improved by
adopting the routing interval. The mapping of previous scheme
from routing prefix to routing interval is shown in Fig. 7. From
the left part of Fig. 7, one can see that a native binary search can
support IP lookup without any further pre-computation. More-
over, the number of entries (�) is always less than that of pre-
vious scheme (��). However, the problem of route updates re-
mains, there is no existing update technique that is faster than
just building a table from scratch. Another problem resulted
from the unbalanced interval distribution, as shown in Fig. 1,
might degrade the effect of binary search.
To alleviate both problems, we split an IP address into two

parts: the segment (16bits) and the offset (16bits), and add a
segment table which extract the prefixes with length less than
16, as used in [4]. Each entry of the segment table consists
of two fields: address of the first interval and the number of
intervals, as shown in Fig. 8. If the interval count is zero, the
value in another field indicates the next-hop. Otherwise, it will
perform binary search to the intervals whose first 16-bits are the
same. With 2 bytes for each field, the size of segment table will
be 256 kbytes.
However, this scheme might not be helpful for future IPv6

routing table since we are unable to predict it. With address
space, there might be 200,000 prefixes sharing the same first
16-bit stream while 100 prefixes sharing the other. Moreover,

Segment Table

64 K

entries

next-hop0

N
2

N
1

32 bits

Routing Intervals

N
1
 entries

Routing Intervals

N
2
 entries

Fig. 8. Binary search with 16-bits segment table.

the 128-bit address is much longer than 32-bit machine word,
i.e., 4 comparisons are required for each step. The multicolumn
mechanism described in [4] can be applied to solve this problem.
Since IPv6 is still some way off, we focus on how to enhance the
lookup performance for IPv4.

C. Further Improvement with Memory Bus Alignment

To achieve higher performance, two requirements should be
met. At first, the size of forwarding table should be small
enough to fit into the L2 cache. By constructing the forward-
ing table, the total size including segment table is less than 480
kbytes for Mae-East routing table. Consequently, the data struc-
ture for binary search should comply with the memory bus. Un-
like the cache line alignment described in the previous scheme,
our improvement focus on the characteristic of memory bus be-
tween L1 and L2 cache. Most modern CPUs have larger bus
width, such as 64bits, for access efficiency. Therefore, we merge
two intervals (5bytes for each) into one entry with 8 bytes, as
shown in Fig. 9. The binary search will test two routing inter-
vals within one L2 cache access. The size of forwarding table
can be reduced and the lookup speed can be made faster.

380 JOURNALOF COMMUNICATIONS AND NETWORKS, VOL,3,NO.4,DECEMBER 2001

Table 2. Build, search speed, and memory usage complexity.

Algorithms Build Search Memory
Patricia trie O(NW) O(W) O(NW)

Binary search on hash tables O(Nlog2 W) O(lOg2 W) O(Nlog2 W)
Multibit trie O(hW 2

) O(h) O(hN)
LC tries O(hN) O(h) O(hN)

Multiway search O(N) O(logM(2N)) O(2N)
Proposed scheme O(N) O(log2(2N)) O(2N)

N: the number of the prefixes, W: the length of the address,
h: the height of the trie, M: the number of branches

BANK 1

Segment Table

64 K
entries

BANK 4

I~~ BI
Bi: Binary Search Table with Probability Pi

(1<= i <=N, P,>=P 2>= .. >=P N)

next-hop

32 bits

Fig. 10. ParallellP lookup with four memory banks.

space. For example, to evaluate the worst-case performance,
we choose thesegment with maximum number of routing inter
vals (about 120). The required storage for this segment is 492
bytes after memory bus alignment. Then wemake 256 copies of
this segment with 123 kbytes totally, which is much larger than
the size of L1 cache (32 kbytes). Consequently, we perform IP
lookup for the address with maximum number of memory ac
cesses around these 256 segments. As a result we can make
sure that each data is always fetched from the L2 cache. This
method will be applied to our experiment for the practical re
sult.

The detailed performance metrics are shown in Table 3. The
proposed scheme works verywell even with a large routing ta
ble. The update time represents the costof table reconstruction
for the segment with most of the intervals. Both build and up
date time are accounted as the cost of interval transformation.
The proposed scheme can support at least 5,000 route updates
per second which is much faster than 100 update/s as required
in some BGP implementation [4]. Thereason for the shortened
build/update time is that our table construction is very simple.
With link-list implementation, no large memory copy is needed
in the interval transformation. Moreover, the construction of
memory-bus-alignment array is much simpler than anyexisting
schemes. Theconstructed forwarding table is small enough tofit
into CPU L2 cache. Besides, thememory bus alignment helps to
improve the access efficiency as well as decrease thenumber of
entries with a factor of 2. Fortherouting table of Mae-East the
worst-case forwarding rate is larger than 4 MPPS. If we assign
each IP address with the same weight the average forwarding
rate is about 30 MPPS. As used practical environment we be
lieve thattheperformance would be better due to the locality of

Fig. 9. Memory bus alignment for access efficiency.

v PERFORMANCE EVALUATION

To simplify the comparison with previous schemes, we need
a comparable platform as used in previous work [4]. We choose
a 300-MHz Pentium II running Windows NT that has a 512
kbytes L2 cache. We also use another 700MHz K7 CPU, to
show what performance level we can achieve. Five routing ta
bles from the IPMA project on August 12, 2000 are used for
the experiment. We will show the performance of the proposed
scheme with respect to three metrics: worst/average search time,
storage and construct/update time.

To show therealistic performance of proposed algorithm, the
simulation should avoid any L1 cache hit for example, the re
sult derived based on continuous address lookup will be im
proved externally since each required data might be located in
L1 cache. To avoid this problem, weshould adopt a larger search

E. Complexity

In Table 2, we show the complexity required for different
software-based schemes. Note that these complexity measures
donotindicate anything about thephysical speed oractual mem
oryusage. In theworst case, the number of routing intervals is
twice of the number of routing prefixes. We will show the real
istic performance metrics in the next section.

D. Parallelism

We can further speedup the IP lookup by deploying parallel
hardware. The basic idea is to distribute the IP lookups to the
four memory banks equally. To achieve that we have to record
thereferenced probability foreach binary search table, and then
sort the tables in terms of the referenced probability. Conse
quently, the tables are dispatched to each memory bank based
on referenced probability sequentially. As shown in Fig. 10,
weusefour independent memory banks thatcanperform binary
search separately. In the optimum situation, the performance
can be improved almost four times. Also, with more memory
banks, the IP lookup speed canbe further increased.

WANG et al.: AN EFFICIENT IP ROUTING LOOKUP BY USING ROUTING INTERVAL 381

Table 3. Performance evaluation with five routing tables.

Performance Metrics AADS Mae-East Mae-West PacBell Paix

Prefix count 26,109 56,039 31,060 33,680 13,878
Interval count 23,411 46,557 30,501 25,807 14,201

Memory required (kbytes) 374 459 393 372 327
Build time (msec) 93 141 109 110 62
Update time (�sec) 183.6 183.6 121.1 183.6 121.1

Average lookup time (nsec) 34 39 34 32 29
Worst case lookup time (nsec) 244 244 244 244 244

Table 4. Comparison with multiway search.

Performance metrics Multiway search Proposed scheme

Worst case lookup time (nsec) 330 244
Worst case update time (msec) 352 0.2

Build time (sec) 5.8 0.14
Memory required (kbytes) 950 459

Table 5. Comparison with other existing works.

Previous Schemes Worst Case Lookup Memory Required
Time (ns) (kbytes)

Patricia trie 1,650 3,262
Binary search on hash tables 650 1,600

Lulea scheme 409 160
Multiway search 330 950

�� ����� ���500 464
Multibit trie 236 640

Proposed scheme 244 459
���This is the average performance since the worst-case performance is not addressed.

Table 6. Performance evaluation with 700 MHz CPU.

Site Memory Requried Build Time Update Time Average Lookup Worst Case Lookup
(kbytes) (msec) �sec Time (nsec) Time (nsec)

Mae-East 459 70 117 22 153

traffic flows.
Consequently, we compare the proposed scheme with mul-

tiway search. The result generated from the routing table of
Mae-East is shown in Table 4. Note that numbers measured on
200MHz Pentium Pro have been proportionately scaled to 300
MHz, as used in [4]. The critical build/update problem is signif-
icantly improved. This is mainly because the pre-computation
cost for solving the BMP problem is removed in the proposed
scheme. Moreover, the transformation from routing prefixes to
intervals is performed cost effectively with link-list implemen-
tation. As a result, we can reduce the build/update cost signifi-
cantly. Since no pre-computation information should be carried,
our forwarding table is very simple and efficient. It can fit into
the CPU L2 cache, thus results in better lookup performance.
Therefore, even with slower L2 cache (150 MHz vs. 200 MHz),
the worst-case lookup time is much shorter than that in multiway
search. We didn’t compare the average lookup time because it
is not listed in [4].
In Table 5, we further compare other existing algorithms with

ours. Again, we proportionately scaled all results of previous
works to 300MHz CPU to ease the comparison. The worst-case

lookup time of LC tries [10] is not addressed in the literature
so we fill it with average lookup time. Another important fac-
tor not shown in the table is the cost of route update that is not
described in the papers on LC tries, binary search on hash ta-
bles, and Lulea compressed tries. However, all these schemes
potentially require changing the complete data structure during
a route update, they are likely to feature slow insertion/deletion
times. In spite of the worst-case lookup time of multibit trie [9]
is better than the proposed scheme, we used a larger routing ta-
ble for experiment (56,039 vs. 38,816). Also, their worst-case
update time (2.5 msec) is much larger than ours.

From the results of performance evaluation, the proposed
scheme not only reduces the memory size significantly, outper-
forms the existing schemes in lookup speed, but also provides a
fast routing-table update. Furthermore, it just uses simple data
structure and routing lookup operations. Finally, we employ the
AMD 700 MHz CPU to investigate the higher performance of
the proposed scheme. As shown in Table 6, the average packet-
forwarding rate is above 70 MPPS with 6 MPPS in the worst
case. Thus, both build and update time benefit from the upgrade
of CPU speed.

382 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL.3, NO.4, DECEMBER 2001

VI. FUTURE WORKS AND CONCLUSIONS

In this work we present a new concept named “routing in-
terval” which can be used to resolve the BMP problem and
significantly reduces the routing complexity. A routing inter-
val transformation algorithm is proposed to support an efficient
IP routing lookup. Via experiment, both the table construction
time and table size can be reduced significantly. The proposed
scheme not only reduces the memory size significantly, outper-
forms the existing schemes in lookup speed, but also provide a
fast routing-table update. The constructed forwarding table is
small enough to fit into the CPU L2 cache. By using the fast
table-reconstruction algorithm, it is able to provide more than
5,000 route updates per second. This feature is preferred by
the backbone router for handling the frequently route updates.
With memory bus alignment, the scheme can further achieve
70 MPPS with 700 MHz CPU. These results demonstrate that
the proposed scheme is efficient and flexible for IP packets for-
warding. In the future work, we are trying to use intelligent
data structure to further improve the performance of IP lookup
and focus on hardware-based IP lookup scheme with high par-
allelism.

REFERENCES
[1] S. Keshav and R. Sharma, “Issues and trends in router design,” IEEE Com-

mun. Mag., vol. 36, no. 5, pp. 144–151, May, 1998.
[2] C. Partridge et al., “A 50-Gb/s IP router,” IEEE/ACM Trans. Networking,

vol. 6, no. 3, pp. 237–248, June, 1998.
[3] Y. Rekhter and T. Li, “An architecture for IP address allocation with

CIDR,” RFC, no. 1518, 1993.
[4] B. Lampson, V. Srinivasan, and G. Varghese, “IP lookups using multiway

and multicolumn search,” IEEE/ACM Trans. Networking, vol. 7, no. 4,
pp. 323–334, June, 1999.

[5] S. Bradner, “Next generation routers. overview,” in Networld Interop,
1997.

[6] M. Degermark et al., “Small FORWARDING TABLES FOR FAST
ROUTING LOOKUps,” in Proc. ACM SIGCOMM, Sept. 1997, pp. 3–14.

[7] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” in Proc. IEEE INFOCOM, Mar. 1999, pp. 1240–
1247.

[8] N. Huang, S. Zhao, and J. Pan, “A novel IP-routing lookup scheme and
hardware architecture for multigigabit switching routers,” IEEE J. Select.
Areas Commun., vol. 17, no. 6, pp. 1093–1104, June, 1999.

[9] V. Srinivasan and G. Varghese, “Fast IP lookups using controlled prefix
expansion,” ACM Trans. Computers, vol. 17, pp. 1–40, Feb. 1999.

[10] S. Nilsson and G. Karlsson, “IP-address lookup using��������,” IEEE
J. Select. Areas Commun., vol. 17, no. 6, pp. 1083–1092, June, 1999.

[11] M. Waldvogel et al., “Scalable high speed IP routing lookups,” in Proc.
ACM SIGCOMM, Sept. 1997, pp. 25–36.

[12] Merit Networks Inc., “Internet performance measurement and analy-
sis (IPMA) statistics and daily reports,” IMPA Project. Available at
http://www.merit.edu/ipma/routing table/.

[13] R. P. Draves et al.,“Constructing optimal IP routing tables,” in Proc. IEEE
INFOCOM, Mar. 1999, pp. 88–97.

[14] “High-speed routing table search algorithms,” Torrent Networking Tech.
Technical Paper. Available at http://www.torrentnet.com.

[15] S. Deering and R. Hinden, “Internet protocol version 6 (IPv6) specifica-
tion,” RFC., no. 1883, 1996.

[16] A. Tam, “How to survive as an ISP,” Networld Interop, 1997.
[17] W. Doeringer, G. Karjoth, and M. Nassehi, “Routing on longest-matching

prefixes,” IEEE/ACM Trans. Networking., vol. 4, no. 1, pp. 86–97, Feb.
1996.

[18] A. Moestedt and P. Sjodin, “IP address lookup in hardware for high-speed
routing,” in Hot Interconnects VI, Aug. 1998.

Pi-Chung Wang received his Ph.D. degree in com-
puter science and information engineering from Na-
tional Chiao Tung University, Hsinchu, Taiwan in
2001. He is now with the Telecommunication Lab-
oratories Chunghwa Telecom Co,. Ltd. His research
interests include the Internet multimedia communica-
tions, traffic control on high-speed network and L3/L4
switching technology. He is a member of IEEE.

Chia-Tai Chan received his Ph.D. degree in com-
puter science and information engineering from Na-
tional Chiao Tung University, Hsinchu, Taiwan in
1998. He is now with the Telecommunication Lab-
oratories Chunghwa Telecom Co,. Ltd. His research
interests include the design, analysis and traffic engi-
neering of broadband multiservice networks.

Yaw-Chung Chen received his Ph.D. degree in
computer science from Northwestern University,
Evanston, Illinois in 1987. During 1987-1990, he
worked at AT&T Bell Laboratories as a Member of
Technical Staff. In August 1990, he joined the faculty
of the Department of Computer Science and Informa-
tion Engineering, College of Electrical Engineering
and Computer Science, National Chiao Tung Univer-
sity, as an Associate Professor. He has been a Profes-
sor since 2000. His research interests include Internet
traffic engineering, multimedia communications and

high speed networking. He is a member of IEEE and ACM.

