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EXACT TANGENT STIFFNESS FOR

IMPERFECT BEAM-COLUMN MEMBERS
a

Discussion by Lip H. Teh,3 Kuo-Mo Hsiao,4

Donald W. White,5 and Ronald D. Ziemian6

The authors present a stability-function-based element
claimed to provide an exact solution for an imperfect beam-
column within the context of Timoshenko’s beam-column the-
ory. Unfortunately, there are a number of fundamental flaws
within the authors’ formulation. Furthermore, the authors make
a number of incorrect statements regarding cubic beam-col-
umn elements as well as the application of nonlinear analysis
in design. Recent advancements in analysis methods are pro-
viding the tools necessary for engineers to address two- and
three-dimensional stability issues in frame design with ease
and rigor. However, for these advancements to reach their full
fruition, fundamental flaws and misconceptions in nonlinear
frame analysis must be corrected. In this spirit, the discussers
offer the following comments.

The authors state that, based on their experience, the cubic
element should only be used when the axial force is small.
They reference White et al. (1993) for a suggestion that the
cubic element should not be used for axial loads larger than
40% of the Euler buckling load Pe (based on the length of the
finite element). This criterion is based on the fact that the
largest error in any of the terms of the basic, second-order
elastic, planar, cubic-element stiffness versus the correspond-
ing stiffness coefficients associated with the elastic stability
functions exceeds 1% at P/Pe = 0.43. However, other terms
within the cubic-element stiffness are less sensitive to the
value of the axial force, and for nearly all practical purposes,
two cubic elements per member are sufficient for accurate pla-
nar second-order elastic analysis when the element is properly
formulated (Teh 2001). For members that are subject to rela-
tive sway between their ends, one cubic element per member
is sufficient to obtain accurate second-order elastic solutions.
The ‘‘practical’’ worst-case errors associated with the use of
the elastic cubic element, for either buckling or for second-
order load-deflection analysis, are exhibited within linear
buckling solutions for a strut. Results for a full range of end
conditions are shown in Table 1. These results can be easily
verified by hand or using frame analysis programs that have
a linear buckling analysis facility using cubic elements, such
as the MASTAN2 educational software (Ziemian and McGuire
2000).

If the errors shown in Table 1 are acceptable, then one can
conclude that at most only two cubic elements per member
are required when there is substantial sidesway restraint, and
that only one cubic element per member is necessary in typical
sway frames. The authors’ results with one cubic element per
member in Fig. 4, and with two cubic elements per member
in Figs. 6–8, support the aforementioned conclusion for sec-
ond-order elastic load-deflection problems.

The authors imply in Fig. 3 that eight cubic elements are
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FIG. 9. Load-Deflection Graphs for Built-in Strut with Imperfection
of 1%

TABLE 1. Errors in Prediction of Flexural Buckling Loads for Strut
with Different End Conditions

Problem description Sway Elements % error

Fixed-fixed strut N 2 1.32
Fixed-pinned strut N 2 2.57
Pinned-pinned strut N 2 0.75
Fixed-fixed strut Y 1 1.32
Fixed-pinned strut Y 1 0.75
Cantilever, full fixity at one end Y 1 0.75

required for accurate load-deflection analysis of a sidesway-
inhibited imperfect fixed-fixed column, and they state that two
elements per member are insufficient. Fig. 9 shows an example
solution of this problem with the geometrically imperfect cu-
bic element developed by Hsiao and Hou (1987). This element
assumes a cubic curve for the initial out-of-straightness, as
opposed to the sinusoidal curve used in the authors’ formula-
tion. It can be observed that there is only a negligible differ-
ence in the analysis results between the models using two and
ten cubic elements for the built-in strut having a transverse
imperfection of 1% of the strut length.

The paper references Neuenhofer and Filippou (1998) for
confirmation of their conclusions regarding the cubic element.
Neuenhofer and Filipou (1998) presents three examples. Ex-
ample 1 of this paper is a simply-supported column subjected
to an eccentric axial load. No load-displacement solutions are
shown, only internal moments at a particular level of loading.
Both the internal moments and the load-displacement response
of the cubic element are quite accurate with two elements per
member in this problem. The third example is a snap-through
buckling problem similar to the Williams Toggle. As shown
by Teh and Clarke (1998a), a properly formulated cubic ele-
ment is capable of solving this problem accurately with only
one element per member.

The point of the discussers is not to discourage research on
new approaches that may offer distinct advantages relative to
the cubic element, such as the work conducted by the authors
and by Neuenhofer and Filippou. The important issue is that
new elements need to be tested comprehensively, compared
with the best performing existing elements, and the qualities
and limitations of the different elements need to be reported
01.127:1490-1492.
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FIG. 10. Bifurcation Buckling of Star Dome (Kani and McConnel
1987)

correctly and fairly. The discussers argue that the use of two
elements per member does not present any significant diffi-
culty for practical structural analysis of frameworks. Further-
more, this provides transverse deflection information directly
at the midlength of members, which can be useful within a
design context.

The authors state that the inclusion of member initial im-
perfections in the analysis is mandatory in codes and una-
voidable in practice. In current practice by all design standards
of which the discussers are aware (BSI 1990, CEN 1992, SAA
1998, CSA 1998, and AISC 1999), member out-of-straightness
is addressed within the development of the column strength
curve. Therefore, none of the present design standards actually
require that out-of-straightness be modeled in the analysis.
Nevertheless, the handling of initial out-of-straightness in the
element formulation, as suggested by the authors and ad-
dressed in prior literature on cubic elements, can be useful.
For many cases, however, where the response is dominated by
sidesway stability and/or primary bending, the effect of the
initial out-of-straightness is inconsequential (Lui 1992; Zie-
mian et al. 1992; Clarke and Bridge 1995).

The authors state that the initial out-of-straightness of the
members can be established in the direction of the deflections
caused by the external loads, apparently based on preliminary
linear elastic analysis or the first iteration of the first increment
of a nonlinear analysis. This is a useful approach for certain
problems (Teh and Clarke 1998b), particularly since it can be
automated within software for nonlinear analysis. However,
this approach is not appropriate for structures that tend to fail
by bifurcation onto a secondary equilibrium path. Fig. 10 de-
picts the lowest buckling mode of an experimental model
tested by Kani and McConnel (1987), which is identical to the
star dome analyzed in the paper except for the section prop-
erties and support condition. The bifurcation load of the star
dome is significantly lower than the snap-through limit load
predicted using the member imperfections that correspond to
the primary deflection path. For a general imperfect structure
of this type, the bifurcation problem becomes a load-deflection
one.

The modeling of geometric imperfections in general (joint
misalignment or out-of-plumbness as well as member out-of-
straightness) as proposed by the authors may also be inappro-
priate for structures that involve significant reversal in the di-
rection of displacements prior to reaching their maximum load.
Such behavior is common for space domes. In such structures,
the direction of the deflections due to the external loads can
depend significantly on the load level.

The authors refer to their element as ‘‘exact.’’ However, the
element is missing important terms involving coupling be-
tween torsion and flexure, as evidenced by the zeros within
the fifth row and column of (36). This error appears to be due
to the authors having developed their element based on a two-
dimensional formulation, with the torsional effects subse-
quently included as per (26). State-of-the-art cubic finite ele-
J. Struct. Eng. 2001
ments have been published that include the torsional-flexural
coupling terms missing in the authors’ formulation, e.g., Nu-
kala (1997), Hsiao and Lin (2000), and McGuire and Ziemian
(2000), among others. The discussers are not aware of any
stability-function-based formulation that has properly incor-
porated the coupling between flexure and torsion. This short-
coming is a major drawback that has been recognized by many
authors (McGuire and Ziemian 1988; White and Hajjar 1991;
Hancock 1994). Limit states involving torsional-flexural cou-
pling are a practical reality (Trahair 1993; McGuire and Zie-
mian 2000; Teh et al. 2000).

In addition, the stability matrix [N] quoted from Ho and
Chan (1991), who in turn refer to Meek and Tan (1984) for
its form and derivation, does not properly account for the finite
rotation kinematics or the behavior of nodal moments in three
dimensions. This flaw results in the failure of the nonlinear
analysis to detect flexural-torsional instability of framed struc-
tures (Teh and Clarke 1998a). The properly derived spatial
cubic element is capable of detecting various modes of out-
of-plane buckling, including flexural-torsional buckling of
beam-columns (Hsiao and Lin 2000; McGuire and Ziemian
2000; Teh et al. 2000) and flexural buckling of torsion mem-
bers (Trahair and Teh 2001).

Finally, the authors’ two-dimensional element formulation
is exact only for a linearly elastic prismatic member, assuming
small displacements and rotations relative to the member
chord. In any problems in which distributed yielding due to
the presence of residual stresses, etc., is important, the author’s
element involves significant approximations of the member be-
havior. The discussers are not aware of any beam-column el-
ement that is capable of solving the general second-order in-
elastic problem accurately with one element per member. With
respect to potential future applications of inelastic frame anal-
ysis for structural analysis/design of steel frames, one crucial
advantage of the cubic element over the stability-function-
based beam-column is that it is readily extended to material
nonlinear analysis. While the cubic element has been success-
fully used for plastic-zone (Izzuddin and Smith 1996; Teh and
Clarke 1999) and plastic-hinge (McGuire et al. 2000) analyses,
the stability functions such as those described in the paper are
valid only for a linearly elastic material.
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Closure by Siu-Lai Chan7 and Jian-Xin Gu8

The writers are thankful for the discussers’ interest and val-
uable comments on their paper.

First, the term ‘‘exact’’ refers to the formulation under the
assumptions made in the paper. It is unfair to extend the ap-
plication of the formulation outside the assumptions stated
clearly by the writers—such as in the lateral-torsional buck-
ling of beams mentioned by the discussers—since not a theory
in the world can cover all cases without any prerequisite as-
sumptions.

The ‘‘Advanced Analysis’’ in Appendix D of AS 4100
(1998) also requires the provision of full lateral restraint, and
the proposed method is an efficient, robust, and practical tech-
nique for implementation of the method by the use of a single
element per member, with the static design load limited to the
first plastic hinge as a conventional design requirement in
practice. Nevertheless, it is good to see the discussers agree
that the element is exact under the assumptions of linear elastic
and small rotations about the chord, which are also stated in
the writers’ paper. This represents a benchmark solution for
this type of element that can be found to have a wide appli-
cation in practical design of steel structures based on the first
plastic hinge assumption.

In the writers’ method, the elemental P-d effect is automat-
ically handled by the element formulation while the global
structural imperfection or the P-D is modeled by insertion of
notional forces or imperfect structural geometry at real joints
between members. A model for a linear analysis can be
adopted here, and artificial division of a member into two el-
ements is not needed. Note that the sole replacement of the
P-d effect by notional forces may not be possible when a sin-
gle element models a member. For example, the column im-
perfection in a simple nonsway frame with sway at all floor
levels prevented by a shear wall cannot be simulated by in-
sertion of notional force unless two elements are used to model

7Prof., Dept. of Civ. and Struct. Engrg., Honk Kong Polytechnic Univ.,
Hong Kong, China.

8Postgrad. Student., Dept. of Civ. and Struct. Engrg., Hong Kong Pol-
ytechnic Univ., Honk Kong, China.
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a column, which is inconvenient in practical design. Also, web
members in a plane or a space truss may face a similar diffi-
culty.

The discussers’ Table 1 shows the need of using two ele-
ments per member in the buckling analysis for such cases as
the fix-fixed strut or the fix-pinned strut. Consider the case
when we use the cubic element for analysis of moderate or
large-sized practical frames such as the ones conducted by the
writers (Chan 1999, 2001), in which there are thousands of
members to be designed and analyzed nonlinearly. Some of
them are connected to other, stiffer members and these col-
umns are close to the boundary conditions of a fixed-fixed
case. For the typical nonsway case of a column connected to
a much stiffer beam or slab at top and at bottom, the use of a
single cubic element is inadequate because the buckling mode
is close to the fix-fix case.

The use of two elements per member will lead to a sub-
stantial increase in computer time in a nonlinear analysis, as
in the case of analyzing a high-rise building of more than
16,000 members (Chan 2001). More importantly, the statement
by the discussers that ‘‘the transverse deflection information
directly at the midlength of members . . . can be useful within
a design context’’ is not valid in many cases. For the common
case of a column in a sway frame under lateral wind load, the
column is bent under double curvatures, the midspan deflec-
tion is not maximum, and the P-d effect at midheight is not
critical. In another example, the writers agree that the use of
eight elements is unnecessary, but a common practice in finite
element is to use many elements for the exact solution.

Teh and Clarke (1998) showed that the cubic element is
adequate for snap-through analysis of the William toggle
frame. The reason is that they used a problem where the P-d
effect is unimportant and the P-D effect controls; this point
has also been made by the writers in the example of the star-
shaped frame. In this case, the axial force is small when com-
pared with Euler’s buckling load of the column. Here, the
discussers are reminded that there are two principal and com-
mon sources of geometrically nonlinear effects, the P-D and
the P-d effects.

The ability to handle the snap-through buckling of shallow
domes shows that the analysis method is able to consider the
P-D effect accurately, but it does not mean that it can do the
same for the P-d effect. This point has been confused by many
other researchers who consider their element or method to be
sufficiently accurate when they can analyze the snap-through
buckling of shallow toggle frame. Note that one can convert
the P-d effect to the P-D effect by using more elements, and
this is another way of explaining the reason that two less ac-
curate cubic elements are adequate for the buckling analysis
of a simple column. Therefore, before the discussers can claim
that their element is sufficiently accurate for buckling analysis
using one element per member, they must first try problems
with members under high axial force; otherwise their element
is not properly tested.

The P-D effect is considered in the writers’s paper by con-
tinuously updating the coordinates and the rotations using the
corotational method for joint and member orientation. This
approach can handle rotations larger than 157 (Oran 1973),
which is believed to be more than sufficient for practical civil
engineering structures.

While the element by the writers and Chan and Zhou (1995)
converges to the cubic-element solution for columns with no
axial force and is superior to the cubic element in the presence
of axial force, the writers cannot see any reason to avoid its
use. The discussers’ assessment of a single cubic element per
member for sway or nonsway cases is not needed when using
a better element. The writers wonder if engineers will ever
bother to assess its validity manually when deciding on
1.127:1490-1492.
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FIG. 11. Slender Cross Bracing with Stiffer Tension Members Taking
Most Force

whether one or two elements per member should be used,
provided that a more reliable element is available. Also, the
analyst needs to insert imperfection or notional forces at nodes
between the two elements for simulation of member imper-
fection which, although possible by computer programming,
involves more complicated effort than simply adopting the
writers’ element. This additional and unnecessary work makes
the second-order analysis and design less attractive to practi-
tioners.

The handling of initial imperfection proposed by the writers
is to impose the imperfection in the same direction as the
deflection for consistency with the design code. It has been
demonstrated by the first writer, using the computer program
NAF-Nida, that the program contains options of imposing im-
perfection in the eigen-buckling mode and also in the direction
of deflections. The first consideration may be useful for an
additional check after analysis by the second approach.

The discussers suggest the use of a column strength curve
in place of member imperfection. They should be aware that
the strength curves are often plotted from the formula for an
imperfect column. For example, of the first code cited by the
discussers, the Perry-Robertson formula is used to generate the
column buckling curve, which assumes the initial imperfection
as 0.1% of column length [see Appendix C, BSI (1990)]. The
proposed element is capable of generating the same buckling
strength curve (see Chan and Zhou 1998), which means that
the P-d effect is theoretically included in the curved element
formulation. This feature allows the writers’ element to pro-
duce the same design results as the code for cases where the
effective length is obvious, while the proposed method can be
extended to cases where the effective length is not obvious.

Most important of all, the disadvantage of using the strength
curve in code instead of allowing the effect through element
formulation is that the variation of member stiffness cannot be
considered in the analysis and the forces in indeterminate
frames cannot be computed accurately. For example, the com-
pressive member in a simple cross bracing in Fig. 11 takes a
much smaller load than the force in the tension member. To
the extreme, it does not buckle before the tension member fails
by yielding since the compression member near buckling does
not take force due to its small stiffness (Chan and Zhou 1998).
When we use strength curve to control failure, this variation
of stiffness cannot be accurately modeled and the output by a
single less accurate cubic element per member is therefore
again incorrect. This is another reason to justify the use of an
accurate element in a second-order analysis.

About the limitation of the writers’ element in considering
coupling between torsion and flexure, this point has been
stated clearly in the writers’ paper. Many researchers have at-
J. Struct. Eng. 2001
FIG. 12. Load versus Deflection at Plastic Hinge by 1 PPEP Element/
Member

tempted to develop an element that can consider all buckling
modes, including those mentioned by the discussers as well as
one not mentioned by the discussers, the local plate buckling
for slender sections (Chan 1990). However, this objective has
not been achieved and the writers believe the problem is more
complicated than the discussers think, because the effective
length of a beam cantilever can vary from 0.5 to 7.5 of its
length, depending on the connection details and load height
[see Table 10, BSI (1990)], which are not directly related to
the currently used analysis parameters. If we include these
details into the analysis program, in addition to the compli-
cation in formulation, the analysis will become much more
complicated than the method proposed by the writers.

The [N] matrix by Ho and Chan (1991) is used in the tan-
gent stiffness matrix. The accuracy is known to be unimportant
in an incremental-iterative Newton-Raphson method type of
numerical analysis, provided that numerical convergence can
be achieved. For this purpose, the accuracy of [N] is adequate
for the present analysis allowing for the second-order effect
due to axial force only. For example, the accuracy of the tan-
gent stiffness in the modified Newton-Raphson method is pur-
posely abandoned for the sake of computational efficiency by
reforming the tangent stiffness matrix only once in a load in-
crement. Only the accuracy of the secant stiffness relation is
important in the incremental-iterative analysis of path-inde-
pendent problems.

The use of the refined element by Chan and Zhou (1995)
in inelastic analysis is possible (see Liew et al. 1999). Use of
a single element per member for inelastic buckling analysis is
also feasible, and a paper describing the work is under prep-
aration and should be published soon. Fig. 12 shows the buck-
ling plot of such an analysis.

Finally, the writers are working to make the second-order-
analysis-based design method practical. In doing so, the
method must be simple to use so that modeling of a member
by two elements is not needed. It must produce reliable results
under practical conditions and be consistent with the design
codes when their assumptions are the same. This will build
confidence in adopting the advanced technique. The concept
should be introduced to the engineers perhaps through an in-
cremental-iterative manner, where more buckling and design
factors are incorporated gradually into the method and with
iteration for refinement in satisfying their needs and require-
ments. The computer program NAF-Nida (1996) has been
used by a number of research groups and engineers for second-
order analysis and design of virtual and real steel frames with
satisfactory performance (see, for example, Peng et al. 1997).
JOURNAL OF STRUCTURAL ENGINEERING / DECEMBER 2001 / 1493
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