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Kuu-young Young ∗, Jyh-Kao Wang
Department of Electrical and Control Engineering, National Chiao-Tung University, Hsinchu, 30050, Taiwan

Received 12 August 1998; received in revised form 21 March 2000; accepted 26 April 2000

Abstract

Learning controllers are usually subordinate to conventional controllers in governing multiple-joint robot motion, in spite
of their ability to generalize, because learning space complexity and motion variety require them to consume excessive
amount of memory when they are employed as major roles in motion governing. We propose using a fuzzy neural network
(FNN) to learn and analyze robot motions so that they can be classi7ed according to similarity. After classi7cation, the
learning controller can then be designed to govern robot motions according to their similarities without consuming excessive
memory resources. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Learning controllers are able to tackle highly com-
plex dynamics without explicit model dependence and
identi7cation [7,13,20,21]. In addition, they are also
considered capable of generalization [1,11]. However,
learning controllers are usually used as subordinates
to conventional controllers in governing robot motions
[10,12,14]. The conventional controller is responsible
for the major portion of the control, and brings the
system close to the desired state, after which the learn-
ing controller compensates for the remaining error.
Some learning control schemes do however use learn-
ing controllers alone to execute motion control. But,
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most of them need to repeat the learning process each
time a new trajectory is encountered [8]. This learning
controller de7ciency results mainly from the complex-
ity of motions associated with various task require-
ments, e.g., diEerent movement distances, velocities,
and loads. Consequently, when a learning controller is
given a major role in governing the general motion of
a multiple-joint robot manipulator, the learning space
it must deal with is extremely complicated [15,17].
In order to simplify the complexity of the learn-

ing space in using learning control to govern robot
motions, we propose, in this paper, performing sim-
ilarity analysis of robot motions using a fuzzy neu-
ral network (FNN) learning mechanism to classify
robot motions according to their similarities. The FNN
is basically a fuzzy system that uses a neural net-
work structure, such that the fuzzy system parameters
can be adjusted automatically [3,5,11]. During anal-
ysis, the FNN is 7rst used to learn to govern var-
ious robot motions. The FNN may require diEerent
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numbers of rules and shapes of membership functions
to govern each speci7c motion. The similarities be-
tween motions are evaluated according to the numbers
of rules and the shapes of the membership functions
the FNN requires to govern. After classi7cation, robot
motions can then be governed by using learning con-
trollers which are allocated memory resources accord-
ing to motion similarities. In particular, groups of
robot motions with high degrees of similarity will de-
mand learning controllers with smaller memory sizes
because these motions correspond to similar fuzzy pa-
rameters in the FNN. By contrast, when robot motions
are randomly arranged, learning controllers with larger
memory sizes will be needed to govern motions.
Application of the proposed similarity analysis on

robot motion classi7cation can therefore lead to an
organized and simpli7ed learning space for motion
governing. In addition, because both the similarity
analysis and motion governing use the learning mech-
anism, motion analysis and governing are consistent,
making the classi7cation more eEective. At the cur-
rent stage of the study, the proposed approach is not
ready for similarity analysis on general motions of
general industrial robot manipulators. Motion features
that can properly represent robot motion character-
istics in learning for serving as motion classi7cation
indices also remain to be found. Instead, the main
focus of this paper is to demonstrate how to classify
robot motions via the means of learning. The proposed
motion similarity analysis is discussed in Section 2.
Motion classi7cation based on similarity analysis is
presented in Section 3. In Section 4, simulations based
on use of a two-joint robot manipulator are reported.
Finally, discussions and conclusions are given in
Section 5.

2. Proposed motion similarity analysis

Motion similarity can be de7ned according to dif-
ferent characteristics. For example, a number of arbi-
trary robot motions can be categorized into classes of
motions with similar movement distances, velocities,
or loads [22]. However, this classi7cation cannot guar-
antee that motions in the same class will correspond
to similar fuzzy parameters when governed using an
FNN. In the proposed approach, we aim to group sim-
ilar motions to simplify the complexity in the learning

space. Therefore, from the standpoint of learning, in
this paper, similar motion is de7ned as

De�nition 1 (Similar motion). Two motions gov-
erned using an FNN are said to be similar if the
numbers of fuzzy rules they require are the same, and
the similarity among the shapes of their correspond-
ing membership functions is above a pre-speci7ed
threshold.

According to De7nition 1, Fig. 1 shows the con-
ceptual organization of the proposed motion similarity
analysis. An FNN is used to learn to govern the entire
trajectory of an input motion. Initially, a large num-
ber of FNN linguistic labels are used in the learning.
The learning process will terminate when the FNN can
successfully govern the motion up to a pre-speci7ed
accuracy. During learning, redundant fuzzy rules in
the FNN are eliminated, and the 7nal FNN fuzzy rule
number required and the corresponding membership
function distribution for governing the motion are then
determined. According to the FNN fuzzy rule numbers
and the similarity between the membership functions
by comparing the areas covered by the corresponding
fuzzy sets, the degrees of similarity between motions
are then obtained. Finally, the motions input in arbi-
trary fashion are classi7ed into groups of motions ac-
cording to their similarities.
For motion governing using an FNN in Fig. 1, the

system in the block is not only with an FNN, but also
includes a local controller connected in series with the
FNN, as shown in Fig. 2 [22]. With this hierarchi-
cal structure, the complexity in motion governing is
shared by the FNN and the local controller at diEer-
ent levels. By contrast, in previous approaches learn-
ing controllers are usually connected in parallel with
conventional controllers, and used as subordinates to
conventional controllers [10,12,14]. It can be seen that
without the local controller in Fig. 2, the FNN would
have to govern the robot manipulator directly. In other
words, the control signal from the FNN is in the torque
level, and thus very sensitive to Iuctuations. There-
fore, the system structure in Fig. 2 allows the FNN to
function at a higher level, and thus generate more ab-
stract, robust control signals [6,22]. Then, the fuzzy
parameters in the FNN will be more signi7cant for
similarity evaluation. Fig. 2 shows the reference po-
sition and velocity trajectories, �r and �̇r , of an input
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Fig. 1. Conceptual organization of the proposed motion similarity analysis.

motion being fed into the FNN, which in turn gen-
erates motion commands Cm and sends them to the
local controller. The local controller then modulates
the motion commands via position and velocity feed-
backs, � and �̇, and uses the resultant torque � to move
the robot manipulator. In our design, only the desired
position is speci7ed in the motion command. A sim-
ple position control law with linear damping is then
used for the local controller [19]:

� = Kp(Cm − �)− Kd�̇; (1)

where Kp and Kd are symmetric positive de7nite ma-
trices for stability considerations [16].
The system shown in Fig. 2 is used to derive the

FNN fuzzy parameters for motion similarity evalua-
tion. Those motions evaluated to be with high degrees
of similarity can then be governed by using very sim-
ilar fuzzy parameters. Those with medium degrees of
similarity can have their fuzzy parameters general-
ized to deal with a wider range of motions using a
learning mechanism with a memory allocated accord-
ing to the degrees of nonlinearity exhibited. In [22],
we reported that a CMAC-type neural network can be
used to generalize fuzzy parameters from sets of FNN
fuzzy parameters appropriate for governing a number
of sampled motions in a class to govern the whole
class of motions. In some sense, the FNN fuzzy pa-
rameter generalization implies that qualitative fuzzy
rules are generalized, and it tends to cover a larger
learning space. And those with low degrees of simi-
larity may demand learning mechanisms with larger
memory sizes for generalization. Learning controllers
can thus be designed and allocated appropriate mem-
ory sizes to govern the classi7ed robot motions with
diEering degrees of similarity.

3. Motion classi�cation based on similarity

Fig. 3 shows the block diagram of the proposed
motion classi7cation scheme in which the FNN learn-

Fig. 2. Block diagram of motion governing using an FNN.

ing mechanism discussed in Section 3.1 is used in
two learning processes involving motion classi7ca-
tion. The 7rst learning process is intended to elimi-
nate redundant linguistic labels for each input motion,
which will make the resulting FNN structure more
concise and allow evaluation of membership function
distributions to be more meaningful. A second learn-
ing process using an FNN with a new structure to ob-
tain new membership function distributions that are
then used for motion similarity measurement between
input motions. Both learning processes require simi-
larity analysis, as discussed in Sections 3.2 and 3.3,
respectively.
The operation of the proposed motion classi7ca-

tion scheme is as follows. As Fig. 3 shows, in the
7rst learning process a large number of FNN lin-
guistic labels are initially chosen in arbitrary fash-
ion and normal fuzzy sets are used as membership
functions. The learning process terminates when the
FNN can govern motion successfully; i.e., the posi-
tion mean-square error (M.S.E.) is less than a pre-
speci7ed value (e1). After the input motion has been
learned, the similarities between membership func-
tions corresponding to this motion are evaluated pair
by pair. When membership functions are very simi-
lar, it indicates that some of the linguistic labels are
unnecessary and can be eliminated. Therefore, after
the 7rst learning process, the FNN will have a sim-
pli7ed structure and be sent to the second learning
process. The second learning process also terminates
when the FNN can govern motion successfully; i.e.,
whenM.S.E.¡e2. The resulting membership function
distributions for all input motions can then be used for
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Fig. 3. Block diagram of the proposed motion classi7cation scheme.

motion similarity measurement. Before the similarity
measurement, membership functions are 7rst normal-
ized to place the similarity evaluation of membership
function distributions on the same scale. This is neces-
sary because various input motions may correspond to
diEerent ranges of movement distances and velocities.
Since the normalization involves only linear ampli7-
cation or compression of the membership functions,
their characteristics are not altered. Accordingly, in-

put motions are classi7ed into groups of motions with
diEering degrees of similarity.

3.1. The FNN learning mechanism

The FNN learning mechanism used in the proposed
scheme is as shown in Fig. 4. The representation of
a fuzzy system using a fuzzy neural network enables
us to take advantage of the learning capability of the
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Fig. 4. The structure of the FNN.

neural network for automatic tuning of the parameters
in the fuzzy system. The fuzzy reasoning parameters
are thus expressed in the connection weights or node
functions of the neural network [3,5,11]. In the pro-
posed scheme, we choose an FNN with a structure
similar to that in [5], of course, other types of FNN can
also be used. As Fig. 4 shows, the inputs to the FNN
are position and velocity trajectories of input motions,
�r and �̇r , and the outputs are motion commands Cm.
There are four layers in the FNN: the input layer, the
linguistic layer, the rule layer, and the output layer.
Gaussian functions with adjustable means and vari-
ances are used as membership functions. Parameters
to be learned in this FNN are premise parameters in
the second layer, representing the means and variances
of the Gaussian functions, and consequence parame-
ters in the fourth layer, representing the weights for

the consequence links connected to the output node. A
gradient-descent-based back-propagation algorithm is
employed for learning [13]. More detailed discussions
of the structure and learning process of this FNN can
be found in Appendix A.

3.2. Similarity measure for redundant rule
elimination

To eliminate redundant rules in using an FNN to
govern a motion, the similarities between member-
ship functions after learning are evaluated pair by
pair. The method for similarity measure of fuzzy sets
proposed in [4,11] was adopted for evaluation. In
[4,11], similarities between fuzzy sets are computed by
comparing the areas covered by fuzzy sets according
to geometric points. The similarity measure between
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Fig. 5. Similarity measure of two fuzzy sets, A and B: (a) B⊆A, (b) A and B have one intersection point, (c) A and B have two
intersection points, (d) A∩B = ∅.

two fuzzy sets A and B is thus de7ned as

E(A; B) =
M (A ∩ B)
M (A ∪ B)

; (2)

where E(A; B) is the degree of similarity between A
and B, ∩ and ∪ denote the intersection and union
operators, respectively, andM (·) is the size of a fuzzy
set, i.e., the area it covers. Note that 06E(A; B)61;
E(A; B)= 1, when A=B, and E(A; B)= 0, when they
do not intersect.
Because Gaussian functions are used as member-

ship functions, the computation of the intersection and
union in Eq. (2) involves two Gaussian functions with

nonlinear shapes. To simplify computation, the trian-
gular function described in Eq. (3) is used to approx-
imate the Gaussian function:

exp
[
− (x − m)2


2

]
→

[
0;



√
�− |x − m|


√
�

]
; (3)

where m and 
 are the mean and variance of the
Gaussian function, and m and 


√
� the center and

width of the triangular function, respectively. Via the
approximation, the similarity measure between A and
B can be divided into four cases, as shown in Fig. 5.
Detailed discussions can be found in Appendix B.
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3.3. Motion similarity measure

The similarity measure described in Section 3.2 is
used to eliminate redundant rules for each input mo-
tion, and is based on the area covered by two fuzzy
sets. To evaluate similarities between motions, the
measure is extended to deal with group of fuzzy sets
corresponding to various motions. Thus, the areas cov-
ered by all membership functions that govern input
motions are used. In addition, the fuzzy sets need to
be normalized to place the similarity evaluation of
membership function distributions on the same scale,
because various input motions may correspond to dif-
ferent ranges of movement distances and velocities.
Assume there are two motions, m1 and m2, having

several inputs. For a speci7c input i, the similarity
measure between m1 and m2 for input i is de7ned as

Ei(m1; m2) =
Mi(m1 ∩ m2)
Mi(m1 ∪ m2)

; (4)

where Mi(m1 ∩m2) and Mi(m1 ∪m2) stand for the
intersection and union areas of the membership func-
tions of m1 and m2 for input i. Fig. 6 shows an ex-
ample of two sets of membership functions, mm1 and
mm2, having three linguistic labels, to which two mo-
tions corresponding to one speci7c input belong; the
shaded areas are the intersection area between mm1

andmm2. By considering all the inputs and performing
a minimum operation (min) upon similarity measures
de7ned in Eq. (4), the similarity measure between m1

and m2 can be de7ned as

E(m1; m2) = min
i
{Ei(m1; m2)}: (5)

In Eq. (5), the use of the min operation guarantees
that the similarity measures for all the inputs will be
above certain threshold. As an example, the similar-
ity measure between m1 and m2 for a two-joint robot
manipulator with four inputs, �r1, �r2, �̇r1, and �̇r2, can
be found using

E(m1; m2) =min{E�r1 (m1; m2); E�̇r1
(m1; m2);

E�r2 (m1; m2); E�̇r2
(m1; m2)}: (6)

4. Simulation

Simulations were performed to demonstrate the ef-
fectiveness of the proposed motion similarity analysis

Fig. 6. Similarity measure of two groups of fuzzy sets with three
linguistic labels.

Fig. 7. A two-joint robot manipulator.

based on use of the two-joint robot manipulator shown
in Fig. 7. The dynamic equations for this two-joint
robot manipulator are expressed as follows:

�1 = H11 M�1 + H12 M�2 − H�̇
2
2 − 2H�̇1�̇2 + G1; (7)

�2 = H21 M�1 + H22 M�2 + H�̇
2
1 + G2; (8)

where

H11 =m1l2c1 + I1

+m∗
2 [l

2
1 + l∗2c2 + 2l1l∗c2 cos(�2)] + I∗2 ; (9)

H22 = m∗
2l

∗2
c2 + I∗2 ; (10)

H12 = m∗
2l1l

∗
c2 cos(�2) + m∗

2l
∗2
c2 + I∗2 ; (11)

H21 = H12; (12)
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H = m∗
2l1l

∗
c2 sin(�2); (13)

G1 =m1lc1g cos(�1)

+m∗
2g[l

∗
c2 cos(�1 + �2) + l1 cos(�1)]; (14)

G2 = m∗
2l

∗
c2g cos(�1 + �2) (15)

and

m∗
2 = m2 +M; (16)

l∗c2 =
m2lc2 +Ml2

m∗
2

; (17)

I∗2 = I2 + m2(l∗c2 − lc2)
2 +M (l2 − l∗c2)

2 (18)

with m1 = 2:815 kg; m2 = 1:640 kg; l1 = 0:30 m; l2 =
0:32 m; lc1 = 0:15 m; lc2 = 0:16 m; I1 = I2 = 0:0234
kg m2, and M represents the mass of the load. The
eEect of gravity was ignored in the simulation. To
provide various input motions, a second-order system
was used, as described below:

L M�+ B�̇+ K(�− �d) = 0; (19)

where L is the load, K the stiEness, B the damp-
ing coeNcient, and � and �d the actual and desired
joint positions for each joint, respectively. DiEer-
ent motions were generated by varying L, B, K ,
�d, damping ratio �, and undamped natural fre-
quency Wn. For motion control, each joint of the
robot manipulator was equipped with an FNN and
a local controller. The gains of the local controller
in Eq. (1) were set to Kp = 30 and 8 N m=rad and
Kd = 5 and 1 N m=(rad=s) for joints one and two,
respectively.
In the 7rst simulation, applying the proposed mo-

tion classi7cation scheme shown in Fig. 3 resulted in
two sets of motions being classi7ed as having high and
low degrees of similarity, as shown in Fig. 8. Initially,
the number of linguistic labels for all motions input
to the FNN was set at 7ve, and thus there were 25
fuzzy rules in the rule layer of each FNN. In the 7rst
learning process for eliminating redundant linguistic
labels, the similarity threshold between membership
functions was set at E¿ 0:9. After redundant rule
elimination was performed on all motions in Figs. 8(a)
and (b), the numbers of linguistic labels for inputs,
�r1, �r2, �̇r1, and �̇r2, reduced to 5; 5; 3; and 2, respec-
tively, for a total of 15 and 10 fuzzy rules for joints one

Fig. 8. (a) Motions with high degrees of similarity. (b) Motions
with low degrees of similarity.

and two, respectively. Performing the second learn-
ing operation on these motions resulted in the degrees
of similarity listed in Tables 1 and 2, respectively.
Table 1 shows the similarities among motions shown
in Fig. 8(a) above 0.9; Table 2 shows those shown
in Fig. 8(b) below 0.7. Note that if the numbers of
linguistic labels for some motion inputs diEered from
those of other motions, the motions were taken to be
dissimilar directly, and did not need the second learn-
ing phase.
In the second simulation, we intended to show that

learning controllers with smaller memory allocations
can be designed to govern motions with high degrees
of similarity. Table 3 shows the corresponding means
and variances (the premise parameters in the second
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Table 1
Similarities between motions with high degrees of similarity in
Fig. 8(a)

Motion number Motion number

1 2 3 4 5

1.0 0.963 0.966 0.943 0.921 1
1.0 0.927 0.938 0.962 2

1.0 0.975 0.953 3
1.0 0.917 4

1.0 5

Table 2
Similarities between motions with low degrees of similarity in
Fig. 8(b)

Motion number Motion number

1 2 3 4 5

1.0 0.324 0.245 0.420 0.113 1
1.0 0.442 0.376 0.531 2

1.0 0.482 0.691 3
1.0 0.287 4

1.0 5

layer) in the FNN governing those motions with high
degrees of similarity in Fig. 8(a). In Table 3, the dif-
ferences between these means and variances are very
small, indicating that the input membership function
distributions are very similar. We thus designed a
learning controller to govern the entire group of mo-
tions in Fig. 8(a), in which the same set of premise
parameters, i.e., the average means and variances cor-
responding to the motions, were used for all the gov-
erning FNNs and the consequence parameters in the
fourth layer of the FNN were generated by general-
izing those consequence parameters corresponding to
each separate motion. Under this design, the number
of FNN parameters needed to be managed was greatly
reduced, because only the consequence parameters
had to be dealt with. Simulation results show that this
learning controller could successfully govern those
motions in Fig. 8(a). We further applied the learn-
ing controller to govern some test motions, shown in
Fig. 9, that diEer from the motions in Fig. 8(a) in
movement distance. In Fig. 9, the generated trajecto-
ries approximate the reference ones quite well. The
results demonstrate that this learning controller, with
smaller memory allocation, was able to govern a group

of similar motions and generalize their corresponding
FNN parameters to govern other similar motions.
Finally, in the third simulation, a group of arbi-

trary motions with diEerent movement distances, ve-
locities, loads, etc., were used for classi7cation, as
shown in Fig. 10(a). These motions were divided into
the six classes listed in Table 4, and are shown in
Fig. 10(b): motions in classes 1–4 have similarities
above 0.85, and motions in classes 5–6 have lower de-
grees of similarity. The results show that motions with
diEerent movement distances, velocities, and loads can
be similar, and that motions with the same distances
or loads may not be similar. This demonstrates that
motion classi7cation based on using an FNN learning

Fig. 9. Test motion governing using a learning controller with
smaller memory allocation.

Fig. 10. (a) A group of arbitrary motions. (b) Motions after
classi7cation.
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Fig. 10. Continued.
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Table 3
The corresponding means and variances in the FNN for governing of motions with high degrees of similarity in Fig. 8(a)

Input �d1

Motion number Linguistic label

NB NS Z PS PB

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

1 − 3:999 1:999 − 2:000 2:000 0:001 2:000 2:000 2:000 4:000 2:000
2 − 4:000 2:000 − 2:000 2:000 0:000 2:000 2:000 2:000 4:000 2:000
3 − 4:000 2:000 − 2:000 2:000 0:000 2:000 2:000 2:000 4:000 2:000
4 − 4:000 2:000 − 2:000 2:000 0:000 2:000 2:000 2:000 4:000 2:000
5 − 4:000 2:000 − 2:000 2:000 − 0:001 2:000 2:000 2:000 4:000 2:000
Average − 3:999 1:999 − 2:000 2:000 0:000 2:000 2:000 2:000 4:000 2:000

Input �d2

Motion number Linguistic label

NB NS Z PS PB

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

1 − 4:001 2:001 − 2:000 2:001 0:002 1:999 2:001 2:001 4:001 1:999
2 − 3:999 1:975 − 2:001 1:993 0:012 1:999 2:001 2:001 3:997 2:001
3 −3:998 2:001 − 2:002 2:004 − 0:002 2:001 2:001 2:001 3:989 2:003
4 − 4:000 2:001 − 1:999 2:001 −0:001 2:001 2:001 2:001 4:001 2:000
5 − 4:013 1:935 − 1:999 2:001 0:044 2:001 2:001 1:999 3:859 1:999
Average − 4:002 1:982 − 2:000 2:000 0:011 2:000 2:001 2:001 3:969 2:000

Input �̇d1

Motion number Linguistic label

S Z B

Mean Variance Mean Variance Mean Variance

1 − 2:996 2:596 − 0:045 2:531 2:596 3:640
2 − 2:946 2:595 − 0:032 2:483 2:645 3:620
3 − 2:999 2:499 0:001 2:496 2:732 3:212
4 − 2:999 2:499 − 0:001 2:499 2:844 2:956
5 − 2:804 2:721 − 0:004 2:534 2:915 2:935
Average − 2:948 2:582 − 0:016 2:508 2:746 3:272

Input �̇d2

Motion number Linguistic label

S B

Mean Variance Mean Variance

1 − 1:980 2:534 1:869 2:852
2 − 1:863 2:762 1:901 3:023
3 − 2:166 2:238 1:862 2:893
4 − 1:999 2:507 1:833 2:827
5 − 1:824 2:644 1:942 2:912
Average −1:966 2:537 1:881 2:901
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mechanism does not correspond only to the kinematic
or dynamic features.

5. Discussion and conclusion

This paper has proposed motion similarity anal-
ysis from the standpoint of learning. Similar mo-
tions were de7ned as those corresponding to the
same number of fuzzy rules and similar member-
ship function shapes when governed using an FNN
learning mechanism. By classifying motions ac-
cording to their similarities, learning controllers can
then be designed and allocated appropriate mem-
ory sizes for motion governing. Simulations per-
formed veri7ed the eEectiveness of the proposed
approach.
At the current stage of the study, simulation and

analysis are based on use of a two-joint robot ma-
nipulator. As one of our future works, the proposed
approach will be used to analyze motion similarities
for general industrial robot manipulators. From our
preliminary simulation results, we found when those
motions, originally executed by two-joint robot ma-
nipulators, were executed by six-joint robot manipu-
lators, the fuzzy rule numbers in the rule layers of the
six FNNs used for governing the six joints slightly
increased from teens to still under 20. However, the
time required for the FNN learning process much in-
creased in tackling the highly complicated dynamic
couplings present among joints. Because the fuzzy rule
numbers and the corresponding membership function
distributions are still manageable for similarity anal-
ysis and motion classi7cation, we consider that the
proposed approach is able to deal with general in-
dustrial robot manipulators at the expense of learning
time.
As the gradient-descent-based back-propagation

algorithm is used for learning in the FNN, the
learning may fall into diEerent local minima when
the FNN learns to govern a motion. It means
that the number of rules and shapes of mem-
bership functions in the FNN may be diEerent
in governing a motion, depending on the learn-
ing result. Then, a question that may be raised is
how the proposed motion similarity analysis and
governing will be aEected under this situation.
Although a motion may be categorized into mo-
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tion classes with diEering similarities according to
diEerent learning results, this motion still belongs
to a class of motions with similar fuzzy parame-
ters in their governing FNNs. Thus, we can still
design a learning controller with smaller mem-
ory allocation to perform the subsequent motion
governing.
Because the motions used for simulations in this pa-

per were generated by step signals, an issue of interest
is how the system’s performance will be aEected when
the proposed motion classi7cation scheme is applied
to motions generated by diEerent kinds of input sig-
nals. The simulation results show that when motions
were generated by input signals in the form of steps,
low-order polynomial functions, or sinusoids with dif-
ferent frequencies, the FNN could successfully gov-
ern the motions by using reasonable numbers of fuzzy
rules, because these motions were in some sense well-
behaved. We also let the FNN learn to guide the robot
manipulator to track the trajectories of human hand-
writing. The results show that the FNN required more
fuzzy rules and learning time in handwriting trajec-
tory tracking than in previous cases, due to the irregu-
larity of the trajectory contours and the corresponding
complicated dynamics.
A point that also deserves discussion is about the ef-

fects of adopting diEerent types of FNNs or local con-
trollers for the proposed motion classi7cation scheme.
In the proposed scheme, the FNN and local controller
were chosen from the current existing ones. It can be
expected that when diEerent types of FNNs or local
controllers were used for similarity analysis, the re-
sulting analysis and subsequent motion classi7cation
might be somewhat diEerent. However, we consider
which types of FNNs or local controllers to be used in
the proposed scheme may not be that crucial, because
our intention is to show how to apply FNNs to im-
plement the proposed similarity analysis and how to
use local controllers to make fuzzy parameters in the
FNN be more meaningful for similarity evaluation.
Finally, an interesting future work will focus

on how to properly classify general robot motions
over the entire learning space. Simulation results in
Section 4 demonstrate that motion classi7cation via
the means of learning does not correspond only to the
kinematic or dynamic features, and proper features
for motion classi7cation remain to be found. There-
fore, classi7cation of general robot motions may

demand further investigation into similarities among
the general motions, proper motion feature selection,
and concomitant reorganization of the learning space.

Appendix A: Description of the FNN

The FNN adopted for the proposed scheme consists
of four-node layers, in which all nodes are of the same
type within each layer [5]. Each of the four layers
performs one stage of the fuzzy inference process, as
described below:
Layer 1 (Input layer): Inputs in this layer are trans-

mitted to the next layer directly without any compu-
tation. As Fig. 4 shows, there are two nodes for two
inputs �r and �̇r for motions with a single degree of
freedom.
Layer 2 (Linguistic term layer): In this layer, crisp

data are transformed into fuzzy data through linguistic
labelling (small, large, etc.). Each node i in this layer
has the node function

O2
i = �Ai(x); (A.1)

where � : X → [0; 1] is a membership function, x is the
input to node i, and Ai is the linguistic label associated
with this node function. The Gaussian function is cho-
sen for �Ai(x), because it is a diEerentiable function
suitable for use in the learning process, described as

�Ai(x) = exp

{
−
(
x − ci
ai

)2
}
; (A.2)

where ai and ci represent the variance and mean of the
Gaussian function, respectively, and are referred to as
premise parameters. DiEerent membership grades at
the same crisp point can be obtained by adjusting the
parameter set {ai; ci}. The Gaussian function is not the
only choice as the membership function; other contin-
uous and piecewise diEerential functions can also be
used.
Layer 3 (Rule layer): This layer is intended

for implementation of the fuzzy rules. Each node
in this layer corresponds to a rule, and has only
one antecedent link from a linguistic-term node
of a linguistic label to the output node. There are
n= n�r × n�̇r rules in the FNN, where n�r and
n�̇r are the numbers of linguistic labels for inputs
�r and �̇r , respectively, and n the total number
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of fuzzy rules. In this layer, each node outputs the
7ring strength of the rule, O3

i , by using the T-norm
operator to perform the fuzzy AND process [18]:

O3
i =

(x!1 + x!2)
1=!

2
; (A.3)

where x1 and x2 are the outputs from the linguistic
term layer and !¿1. Note that there is no weight to
be adjusted in this layer.
Layer 4 (Output layer): This layer is the output

layer, and has as many nodes as there are output ac-
tion variables. In Fig. 4, only one node is needed for
a single motion command Cm. All consequence links
are fully connected to the output node, and each con-
nected link has its own weight wi, referred to as the
consequence parameter. The defuzzi7cation approach
adopted is the centroid defuzzi7cation method [9]:

O4 =
n∑

i=1

wiO3
i : (A.4)

The parameters to be learned in this FNN in-
clude the premise parameters {ai; ci}, representing
the means and variances of the Gaussian function,
and consequence parameters {wi}, representing the
weights of the consequence links. A gradient-descent-
based back-propagation algorithm is employed to
learn these parameters [13]. For the determination of
the parameters via the learning process for generating
motion commands Cm corresponding to input mo-
tions, an error rate is 7rst speci7ed in the last layer
(Layer 4). This error rate is then back-propagated to
adjust the parameters sequentially from layer to layer.
Because a concise form of the inverse dynamic model
of the robot manipulator is not available, the error
rate cannot be obtained directly by diEerentiating the
error between the desired motion and the actual mo-
tion relative to the motion command Cm. Instead, we
use the combined feedback error of position (e) and
velocity (ė) between the desired and actual motions,
denoted as E=Gpe + Gd ė, to derive the error rate
@E=@Cm [2,8]:

@E
@Cm

=
@E
@O4

= �(Gpe + Gd ė); (A.5)

where � is a learning rate and Gp and Gd are gains.
The error rate @E=@Cm in Eq. (A.5) is estimated, but

not exact, for describing the diEerential relationship
between the motion command Cm and the resultant
motion. Nevertheless, the results in [2,8] and also ours
show that the use of this error rate is appropriate for
the learning. Using the error rate @E=@Cm and some
straightforward manipulation, we can derive updates
for the parameters ai, ci, and wi.

Appendix B: Similarity measure of two fuzzy sets

Suppose that A and B are two fuzzy sets with cor-
responding centers, mA and mB, and widths, 
A and

B. The similarity measure between A and B can be
divided into four cases, as shown in Fig. 5. In Cases
2–4, it is assumed that mA¿mB; if mA¡mB, then mA

and mB, and 
A and 
B are switched.
Case 1: mA=mB and 
A¿
B. In this case, A and

B have the same center and no intersection point, as
shown in Fig. 5(a). Using Eq. (2), the similarity mea-
sure can be derived from

E(A; B) =
M (B)
M (A)

=

B

A

; (B.1)

where

M (A ∩ B) = M (B); (B.2)

M (A ∪ B) =M (A) +M (B)−M (A ∩ B) = M (A):

(B.3)

From Eq. (B.1), the degree of similarity between A
and B is equal to the ratio of 
B to 
A. In particular,
if 
A= 
B, then E(A; B)= 1; i.e., A=B.
Case 2: |
A−
B|

√
�6mA−mB6(
A+
B)

√
� and

mA¿mB. In this case, A and B have an intersection
point at (s1; h1), as shown in Fig. 5(b). From Fig. 5(b),
we can obtain

M (A) +M (B) = (
A + 
B)
√
�; (B.4)

M (A ∩ B) = 1
2 (c1 + c2)h1; (B.5)

where

c1 =

A(mB − mA) + 
A(
A + 
B)

√
�


A + 
B
; (B.6)
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c2 =

B(mB − mA) + 
B(
A + 
B)

√
�


A + 
B
; (B.7)

h1 =
(mB − mA) + (
A + 
B)

√
�

(
A + 
B)
√
�

: (B.8)

From Eqs. (B.4) and (B.5), the similarity measure can
be derived as

E(A; B) =
(c1 + c2)h1

2(
A + 
B)
√
�− (c1 + c2)h1

: (B.9)

Case 3:mA−mB6|
B−
A|
√
� andmA¿mB. In this

case, A and B have two intersection points at (s1; h1)
and (s2; h2), as shown in Fig. 5(c). There are two
conditions in this case: (i) 
A6
B and (ii) 
A¿
B.
From Fig. 5(c), we can obtain

M (A ∩ B) = 1
2 [c1h1 + c2h2 + c3(h1 + h2)]: (B.10)

For (i) 
A6
B:

c1 =

A(mB − mA) + 
A(
A + 
B)

√
�


A + 
B
; (B.11)

c2 =

A(mB − mA) + 
A(
B − 
A)

√
�


B − 
A
; (B.12)

c3 = 2
A
√
�− (c1 + c2); (B.13)

h1 =
(mB − mA) + (
A + 
B)

√
�

(
A + 
B)
√
�

; (B.14)

h2 =
(mB − mA) + (
B − 
A)

√
�

(
B − 
A)
√
�

: (B.15)

For (ii) 
A¿
B:

c1 =

A(mB − mA) + 
B(
A − 
B)

√
�


B − 
A
; (B.16)

c2 =

B(mA + mB) + 
B(
B − 
A)

√
�


A + 
B
; (B.17)

c3 = 2
B
√
�− (c1 + c2); (B.18)

h1 =
(mB − mA) + (
A − 
B)

√
�

(
A − 
B)
√
�

; (B.19)

h2 =
(mB − mA) + (
A + 
B)

√
�

(
A + 
B)
√
�

: (B.20)

The similarity measure can be derived as

E(A; B)

=
c1h1 + c2h2 + c3(h1 + h2)

2(
A + 
B)
√
�− [c1h1 + c2h2 + c3(h1 + h2)]

:

(B.21)

Case 4: mA − mB¿(
A + 
B)
√
� and mA¿mB.

In this case, A and B have no intersection, as shown
in Fig. 5(d). Thus,

M (A ∩ B) = 0: (B.22)

And the similarity measure is

E(A; B) = 0: (B.23)
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