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This paper presents a new visual aggregation model for representing visual information
about moving objects in video data. Based on available automatic scene segmentation
and object tracking algorithms, the proposed model provides eight operations to
calculate object motions at various levels of semantic granularity. It represents traject-
ory, color and dimensions of a single moving object and the directional and topological
relations among multiple objects over a time interval. Each representation of a motion
can be normalized to improve computational cost and storage utilization. To facilitate
query processing, there are two optimal approximate matching algorithms designed to
match time-series visual features of moving objects. Experimental results indicate that
the proposed algorithms outperform the conventional subsequence matching methods
substantially in the similarity between the two trajectories. Finally, the visual aggregation
model is integrated into a relational database system and a prototype content-based
video retrieval system has been implemented as well.
( 2001 Academic Press
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1. Introduction

WITH THE PROGRESS of high-capacity storage, high-performance compression and tele-
communication technologies, large-scale video archives have been extensively applied.
Generally, the content of video data can be classified as semantic content, visual content and
audio content [1]. Regarding visual content, video data simultaneously have spatial and
temporal characteristics. For temporal features, a visual query may contain either a single
image (key-frame) or a continuous sequence of frames. For spatial features in a frame,
a visual query may cover either a whole image (global feature) or local sub-images (local
feature). Hence, video retrieval systems fall into four categories based on the criterion of
spatio-temporal processing granularity: Single Image Global Feature (SIGF ), Single Image
Local Feature (SILF ), Multiple Images Global Feature (MIGF ), and Multiple Images Local
Feature (MILF ).

The SIGF approach serves to index the whole key-frames extracted from video data
with key-frame selection algorithms [2]. Meanwhile, the SILF approach partitions
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a key-frame into a set of small regions/objects [3] and analyzes spatial relationships
between objects. Both of these approaches are primarily derived from conventional
image database technologies, which emphasize visual features of an object or image such
as color, texture and shape. The MIGF approach is different; instead of analyzing still
images it takes into account a continuous frame sequence within a story unit (scene or
shot) such as [4]. The MILF approach goes even further, focusing on the variance in the
visual features of local objects over a period of time such as [5–16]. The MILF is the
most complicated mechanism and can represent the richness of video content. Its
applications include sports event analysis [6], traffic control and surveillance [9, 14].

A complete video data model can be viewed as a layered structure consisting of
a low-level physical/audio-visual model and a high-level logical/semantic model. In [1],
we have proposed a semantic inference model and annotation language based on the
properties of the individual semantic video-object. This investigation adopts the MILF
approach to propose an innovative visual aggregation model for expressing spatio-
temporal and visual information about moving objects in a video-frame sequence. The
proposed model supports numerous composition operations to assemble moving
objects at various levels of semantic granularity. The underlying premise of the model is
a so-called motion composition, a term with a broad range of meanings. For example,
a motion composition may describe the physical features of a car crashing into a train or
a set of red pixels hopping onto the upper part of a frame. The visual features of moving
objects considered herein include trajectory, color and size of a single moving object and
directional and topological relations among multiple ones. Size is used to capture the
movement of an object along the direction of depth. A user can specify the change of
one or more visual features by drawing one or more example motion.

Based on the conventional scene segmentation and object tracking algorithms,
a hierarchical structure of motion compositions is constructed semi-automatically and
a normalization mechanism is defined to compact each motion composition, thus
reducing coding redundancy. To measure the similarity between an example motion and
a database motion, this study develops new motion-matching strategies in the form of
triangulate string matching algorithms with/without merging. A series of simulation
experiments verifies the effectiveness of the proposed algorithms. The final stage is to
integrate the proposed conceptual model into a relational database system and imple-
ment a prototype content-based video retrieval system.

The rest of this paper is organized as follows. Section 2 describes related work in
content-based video retrieval by motion example. Section 3 introduces a new visual
aggregation model and corresponding composition operations. Section 4 designs two
matching algorithms for measuring the distance between two object motions. Section 5
presents experiments to evaluate the performance of the proposed matching algorithms.
Section 6 describes the prototype system’s storage structures, and Section 7 contains
some concluding remarks.

2. Related Work

Spatio-temporal information (Multiple Images Local Feature, MILF) analysis has been
increasingly applied to video data in recent years [5–18]. In contrast to semantic content
analysis, MILF allows automatic video content processing and the accessing of video
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data by specifying an example query. The conventional approach to MILF is to first
partition raw video into basic units (i.e. scenes/shots), recognize and track video objects
in a scene, extract visual features from any moving objects and finally model and index
these time-series visual features of moving objects. To compare two video sequences in
terms of the difference in object motion, a subsequence matching algorithm is required
to estimate their degree of similarity.

So far, numerous scene detection techniques [19] have been successfully developed.
MPEG-4 has standardized object-based video representation and compression, making
object recognition and tracking more efficient [20]. However, finding a general solution
to automatically extract and group objects of interest is very difficult [7, 9] since the
mapping between high- and low-level semantic features is complicated. In addition to
the automatic segmentation of specific objects under some constraints, certain
operations are required to group these fragmented objects into a meaningful one. These
operations not only allow multiple objects to be assembled into higher semantic
abstraction recursively but also provide the multiplicity of views for spatio-temporal
layout of the moving objects in a scene [21]. To the best of our knowledge, no previous
research has attempted to develop an efficient mechanism to tackle this problem.

Several annotation structures have been developed to represent spatio-temporal
features (e.g. trajectory) corresponding with a single object in the form of chain codes
[12, 16] or vertex sequences [7, 17]. These methods fail to describe the spatial relations
among multiple moving objects. The relevant aspects of a moving object include
trajectory (direction and displacement), color, shape, size, velocity, acceleration, etc.
[12, 16] merely consider the direction of a trajectory and omit the displacement.
Although [13] incorporates the displacement into its representation, it lacks matching
algorithms to evaluate this displacement. VideoQ [7] supports a rich set of visual
features but most of them remain consistent during an object’s movement. On the other
hand, some GIS and image database technologies have been applied to represent
directional and topological relations [22], 2D [5], 2D-B [15] and 2D-C string [11], which
are limited in terms of satisfactorily representing a single object’s time-series visual
features. [13] is the first to concurrently represent the trajectory of a moving object and
the relative spatio-temporal relations between moving objects. Unfortunately, its model
does not describe other visual features such as color and size.

In addition to the above limitations, when they are given an example of a moving
object, the conventional systems [7, 14, 16] produce a candidate list of matched objects
for each visual feature. All the candidate lists are then merged to get the final ordering of
candidate objects. The conventional systems thus neglect the relative ordering of
different feature sequences.

3. Object Motion Analysis

A video stream v is an ordered set of frames MI1, I2 , I3 ,2, INN, where Ik is the kth frame
in the sequence. For simplicity, we assume each frame is an RX]RY image. A scene s is
defined as a video subsequence MIs.a , Is.a#1 ,2 , Is.bN, where 14s.a4s.b4N. A (vis-
ual ) object either meaningful or meaningless to users is a physical region in a frame such
as a face, car and red circle. q denotes the set of objects that appear in l. An object
comprises a set of pixels and several objects can constitute a composite one by means of
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set operations. Each object contains two types of visual features: mean features and derived
features. Mean features can be obtained by averaging the time-series visual features of the
object such as direction, color and sizes while accumulating time-series features can get
derived features such as displacement or length. The functions used herein are defined
as follows.

j is a function mapping from l]q to @[, where @[ is the set of all possible RX]RY
binary images. For each j (Ii , o)"bo

i (o3q), bo
i (x, y) indicates the value of the pixel at

coordinate (x, y) of the bitmap bo
i . bo

i (x, y) is set to be 1 if the object o covers the location
(x, y) on I

i
; otherwise, bo

i (x, y) is set to be 0. An interval [x, y ] represents a continuous
sequence (ordered set) of numbers from x to y (x4y). The size of the interval [x, y ] is
y!x#1, denoted by D[x, y]D. [x1, y1]([x2, y2] if and only if y1(x2 . Given an interval
set T"M[xi , yi]D i"1 , . . , nN, the disjoint composition of T, denoted by disjoin(T ), is
a set of (disjoint) intervals. For each [x@ , y@ ]3disjoin (T ), the following hold:

1. &i ([x@, y@ ]-[xi , yi ]),
2. ∀i ([x@ , y@]-[xi , yi ]s [x@, y@]W[xi , yi ]"0 ) and
3. 2& [x@@ , y@@] ([x@@ , y@@]3disjoin (T )' [x@ , y@]L[x@@, y@@ ]).

s and ' stand for logical OR and AND, respectively.
For example, disjoin(M[1,4], [3,7], [9,10]N)"M[1,2], [3,4], [5,7], [9,10]N.

3.1. The Visual Aggregation Model

The model includes three major data structures: feature, motion and relation sequences.

Definition 3.1. A feature sequence f is a four-tuple f"( s, [a, b], o, t ) which represents
the feature value of the object o in a scene subsequence MIa , Ia#1 ,2, IbN, where a and
b are frame numbers of the first and last frames of the feature sequence such that
s.a4a4b4s.b, o3q and t consists of an ordered set of feature clips
Mc f

1 , c f
2 ,2, c f

Lf
N. A feature clip c f

i stands for a sub-interval of [s.a, s.b ], denoted by
[c f

i . a, c f
i . b ], in which the object o has a constant feature in some feature spaces. Notice

that [c f
i . a, c f

i . b ]([c f
i#1 . a, c f

i#1. b ] and Zi"1, 2 , Lf [c
f

i . a, c f
i . b ]"[s.a, s.b]. Each

feature clip c f
i is represented as (d,L ), where c f

i . d ("c f
i .b!c f

i . a#1) indicates the
number of frames and c f

i .L expresses o’s mean-feature values. No two consecutive feature
clips have the same values. Thus, c f

i .LOc f
i#1.L (i"1 ,2 , Lf!1).

To simplify the representation, the elements of a feature sequence f defined in
Definition 3.1 are denoted by f.s, f.a, f.b, f.o and f.t , respectively. Similarly, the notation
x.y, which denotes the value of the element/component y of x, is used hereinafter. For
example, q.s represents the scene s where the motion sequence q appears, as shown in
Definition 3.2.

Definition 3.2. A motion sequence q is a four-tuple q"( s, [a, b ], o, l ) which specifies the
motion of the object o in a scene subsequence MIa , Ia#1,2 , Ib N, where a and b are
frame numbers of the first and last frames of the motion sequence such that
s. a4a4b4s.b, o3q and l denotes an ordered set of motion clips
Mcm1 , cm2 ,2 , cmLmN. Similar to a feature clip, a motion clip cmi is represented by (d, t, u),
where cmi . d ("cmi .b!cmi .a#1) indicates the number of frames, t specifies an array
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of m pointers each of which refers to the corresponding feature clip in a feature
sequence and u denotes an array of derived feature values of the object o. Notice that the
interval set of motion clips is computed by the disjoint composition of that of all feature
clips for an object, that is,

Z
∀cmi 3l

M[cmi . a, cmi . b]N"disjoinA Z
∀t∀ c f

j 3t
M[c f

j . a, c f
j . b]NB.

Definition 3.3. A relation sequence r is a three-tuple r"( s, (qx , qy ), 0 ) specifying the
spatial relations of the two objects qx. o and qy . o in the sub-interval [a@, b@ ] of the scene s,
where qx and qy indicate motion sequences, qx. s"qy . s"s, qx. oOqy . o,
qx.o, qy . o3q, [a@, b@]"[ qx. a, qx .b ]W [q y .a, q y . b] and 0 denotes an ordered set of
relation clips Mc r1 , c r2,2 , c rL r

N. A relation clip cri stands for a sub-interval of [a@, b@ ],
denoted by [c ri . a, c ri . b], in which the two objects’ mean features and spatial relationship
are constant. [c ri . a, c ri . b ]([c ri#1 . a, c ri#1. b] and Zi"1,2,Lr [c ri . a, c ri . b ]"
[s. a, s. b ]. Each relation clip c ri is represented as (d, k, f), where
c ri . d ("c ri . b!c ri . a#1) indicates the number of frames, k specifies an array of two
pointers referring to the corresponding motion clips of the motion sequences qx and qy ,
respectively, and f defines the directional and topological relation between them. For
arbitrary consecutive relation clips c ri and c ri#1, the rule of c ri . fOc ri#1 . f is satisfied.

[23] introduces 13 spatial relations (R1–R13) between two objects (o1 and o2 ) projected
into 1-D space. The 13 relations present directional and topological information
together. R1 and R13 indicate ‘disjoint’, R2 and R12 ‘meet’, R3 and R11 ‘overlap’, R4 and
R8 ‘cover’, R10 and R6 ‘cover–by’, R5 ‘contain’, R9 ‘inside’, and R7 ‘equal’ 1. [23] can be
farther extended into 132 relations in 2-D space. Herein, we use [Ri , Rj ] to describe the
169 relations of the projections on the x- and y-axis. If [R i , Rj ] becomes [R@i , R@j ] after at
least k moves/transitions [8], k is the distance between them. According to Definition 3.3,
a relation clip is a part of a motion clip. Querying arbitrary combinations of the spatial
relations and visual features of two objects at the same time becomes possible.

Consequently, a motion (or feature) sequence denotes the motion (or feature) of
a visual object. A relation sequence denotes the relations between two objects. A motion
(or feature) clip is a segment of a motion (or feature) sequence with different mean
features to the preceding and following segments of the sequence. All the frames in
a clip share identical mean features. In our system, mean features include direction,
color and x- and y-axis-projection-interval sizes. Derived features include displace-
ment/length.

For example, Figure 1 reveals a scenario of a storm (o1) approaching, hitting,
overlapping and then going away from a land (o2 ) in the weather forecast. Let q1 and
q2 be the motion sequences of the objects o1 and o2, respectively. The features of
direction ( f1) and size ( f2 ) are considered herein. o1’s f1"(s1 , [1,510], o1 , M((330,
northwest), (180, northeast))N. o1’s f2"(s1 , [1,510], o1 , M(180,220), (330,350)N. o2’s
f1"(s1, [1,510], o2 , M(510,still)N. o2’s f2"(s1, [1,510], o2, M(510,380)N. q1"(s1, [1,510],
o1, M(180,(1,1),(1)), (150, (1,2),(0.4)),(180,(2,2),(0.8))N) and q2"(s1 , [1,510], o2, M(510,
(1,1),(1))N). The relation sequence of o1 and o2 is ((s1, (q1 , q2), M(150, (1, 1), [R1, R11 ]),
(30,(1,1), [R2 , R6 ]), (150,(2,1), [R3 , R9]), (30,(3,1), [R3,R10]), (150,(3,1), [R3, R3])N), as
illustrated in Figure 2.



Figure 1. The change of visual information about two objects

Figure 2. The representation of feature, motion and relation sequences
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Definition 3.4. A motion composition m is a two-tuple m"(Q,R ), where Q and R are,
respectively, the sets of motion sequences and relation sequences satisfying the following rule.
For each motion composition, no motion sequences of a single object in the same scene
meet or overlap. Thus, if a motion composition contains two motion sequences qi and
q j such that qi . s"q j . s and qi. o"q j . o, then [qi . a, qi . b ]X [q j. a, q j . b]O[qi . a, q j .b]
and [qi . a, qi .b ] W [ q j . a, q j . b ]"0.

3.2. Feature Extraction

This section discusses how to automatically extract mean and derived feature values
from a feature clip c f

j in a motion sequence q. For a given binary image bq.o
i , which

describes the location where the object q.o appears on Ii , we assume that MaxX (bq.o
i ),

MinX (b q .o
i ), MaxY (b q.

i ), and MinY (b q.o
i ), respectively, return the object’s projections
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on the x- and y-axis such that its minimum bounding rectangle, MBR (b q.o
i ), is defined by

((MinX (b q .o
i ), MinY (bq.o

i )), (MaxX (bq.o
i ), MaxY (bq.o

i )). c f
j . a and c f

j . b, frame numbers
of the first and last frames of the feature clip c f

j , are computed as

c f
j . a"q.a#

j!1
+

t"1
c f
t . d and c f

j .b"c f
j . a#c f

j . d!1. (1)

Then, the direction of the feature clip c f
j in the motion sequence q is computed as

Dir (q, c f
j )"G

1

c f
j . d!1

c f
j ,b!1

+
t"c f

j ,a
(Loc (bq .o

t#1 )!Loc (bq . o
t )) if c f

j . dO1

0 if c f
j . d"1

(2)

where

Loc (bq .o
t )"((MaxX (bq .o

t )#Min X (bq .o
t ))/2, (MaxY (bq .o

t ))#MinY (b q.o
t ))/2) (3)

Since the MBR representation tends to be sensitive to noise, the center of gravity can be
computed as the coordinate of an object to reduce the sensitivity. The x-axis-
projection-interval size of the feature clip c f

j in the motion sequence q is evaluated as

X!ProjSize (q, c f
j )"

(1/c f
j .d) + c f

j .b
t"c f

j . a (MaxX (bq .o
t )!MinX (bq .o

t ))

(1/c f
1 .d) + c f

1 .b
t"c f

1 . a (MaxX (bq .o
t )!MinX (bq .o

t ))
(4)

Similarly, replacing X with Y, respectively, yields the y-axis-projection-interval size.
The color histogram of the feature clip c f

j in the motion sequence q is formulated as

H (q, c f
j , n )"

1

c f
j . d

c f
j . b

+
t"c f

j .a

h (It , b
q .o
t , n), n"0 ,2 , Nb!1 (5)

where n denotes a bin/color, Nb is the total number of bins, and h (It , b
q .o
t , n), the ratio of

the number of pixels having color n to the number of bits whose values are equal to 1 on
bq .o
t , is defined as

h (It , b
q .o
t , n)"h@ (I t , b

q .o
t , n)N

Nb!1

+
k"0

h@ (It , b
q .o
t , k) (6)

where

h@ (I
t
, bq .o

t , n)"
R

N
!1

+
x"0

R
Y
!1

+
y"0 G

bq .o
t (x, y) if It (x, y)"n

0 otherwise

If the motion clip cmk refers to the feature clip c f
j in the feature space of direction, then the

relative length/displacement of the motion clip c m
j in the motion sequence q is
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formulated as

lenm

cmk P c f
j

(q, c m
k )"

c m
k . d

c f
j . d

]Len f (q , c f
j ) (7)

where Len f (q, c f
j )"ELoc (bq .o

c f
j .b )!Loc (bq .o

c f
j .a )E/ELoc (bq .o

c f
j .b )!Loc (bq .o

c f
j .a )E and E E is

L2 norm.
Equations (4) and (7) derive normal projection-interval size and normal displacement,

respectively, to provide a scale for database and query objects. Other features such as
velocity and acceleration can be easily integrated into the system.

3.3. Normalization

Since a motion sequence can be broken down into a sequence of interconnected
motion clips, the total clip number dominates the required storage space. Compact-
ing/normalizing the motion sequences will significantly reduce computational time and
storage space.

A salient image sequence is generated according to certain motion features, including the
object’s color, size and trajectory. Consider a motion sequence q with the duration in
terms of frames MIq .a , Iq .a#1 ,2, Iq .bN . Iq .a is treated as the first salient image in
default. Let di be Loc (bq .o

i ) as defined in Eq. (3) and h (xl , yl ) be the angle between the
vector xl and the vector yl . Figure 3 shows the salient image based on the trajectory,
generated as follows:

1. If min (Dh ( di di!1
——P, di di#1

——P) D , 2n! D h ( di di!1
——P, di di#1

——P) D)(p traj
1 ,then Ii is a

salient image.
2. If min (Dh ( di!k di!k#1

—————P, di!k di
——P) D , 2n! D h ( di!k di!k#1

—————P, di!kdi
——P

) D )(p traj
2 ,

where Ii!k is a salient image and Ii!k#1 ,2 , Ii!1 are not salient images, then Ii is
a salient image.

p traj
1 and p traj

2 are two thresholds to detect abrupt and gradual shape changes, respectively.
Similar to trajectory feature, let e (q, Ii ) be an evaluation function computing color and

projection-interval size of the object q.o in the image Ii as defined in Eqs. (4) and (5),
where a motion clip c f

j contains single frame Ii .+ (e1 , e2 ) in Figure 4 is a dissimilarity
function. The salient image based on the feature of color histogram or projection-
interval size is generated as follows:

1. If D + (e (q, Ii!1 ), e (q, Ii )) D'p Z
1 , then Ii is a salient image.

2. If D+ (e (q, I i!k ), e (q, I i )) D'pZ
2 , where I i!k is a salient image and

I i!k#1 ,2 , I i!1 are not salient images, then Ii is a salient image.
Figure 3. The salient points of a trajectory: (a) an abrupt change; (b) a gradual change



Figure 4. The salient points of the features of color histogram and projection-interval size: (a) an abrupt
change; (b) a gradual change
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pZ
1 and p Z

2 are two thresholds, where Z stands for either color histogram or
projection-interval size. For each visual feature, a local salient image sequence is
generated. Eventually, the global salient image sequence of a motion sequence is the
union of local salient image sequences based on the features of trajectory, color
histogram and projection-interval size. The dissimilarity of color histogram is defined as

+ hist (e hist (q, Ix ), e hist (q, Iy))

"

N
b
!1

+
i"0

N
b
!1

+
j"0

aij (h (Ix , bq .o
x , i )!h (Iy , b

q .o
y , i )) (h (Ix , bq .o

x , j )!h (Iy , b
q .o
y , j )) (8)

where aij is the correlation coefficient between color i and color j. The dissimilarity of
projection-interval size is computed by

+ size ( e size (q, Ix ), e size (q, Iy))"
D e size (q, Iy )!e size (q, I x ) D

min (e size (q, Ix), e size (q, Iy))
]100%. (9)

Definition 3.5. Normalization. For each (mean) feature of a moving object, a feature
sequence f"( s, [a, b], o, Mc f

1,2 , c f
L

f
N) and a salient image sequence S are generated.

If IC f
i
.a3S for i"1, . . . , Lf and DS D"Lf , then the feature sequence f is normalized.

If all of the feature sequences associated with a motion sequence q are normalized, then
the motion sequence q is normalized.

For example, assume that an image sequence demonstrates a person riding a skate-
board from left to right, as Figure 5 illustrates. The mean features of trajectory (T), color
histogram (C), X-axis-projection-interval size ( W ) and Y-axis-projection-interval size
(H) are extracted for each frame. According to the thresholds of p traj

1 "135, p traj
2 "30,

phist
1 "phist

2 "0.45, pW
1 "pW

2 "pH
1 "pH

2 "0.5, the salient image sequences based on
the features of trajectory, color histogram and x- and y-axis-projection-interval size are
(I1, I4 ), (I1, I8), (I1, I2, I8, I10) and (I1, I4, I8 ), respectively. The corresponding nor-
malized motion sequence has the interval set of M[I1 , I1], [I2, I3] , [I4, I7], [I8 , I9] ,
[I10, I10]N.



Figure 5. Normalization of a motion sequence

636 P.-J. CHENG AND W.-P. YANG
3.4. Composition Operations

This section introduces a series of operations used to manipulate motion composi-
tions. These operations have the property of closure.

The composition operations on the motion compositions are

(1) Creation and deletion of a motion composition,
(2) Selection and projection of a motion composition, and
(3) Join and union/intersection/difference of two motion compositions.

A motion composition includes a set of motion and relation sequences. A motion
sequence q"( s, [a, b], o, l ) is mainly determined by q.s, q.a, q .b and q .o. q.l can be
derived from these by applying feature extraction and normalization as outlined in
Sections 3.2 and 3.3. Similarly, a relation sequence can be derived from overlapped
motion sequences. This section merely emphasizes what q . s, q .a, q .b and q.o are. The
following motion database shown in Figure 6 serves as an example. Consider the three
motion compositions of m1"Mq1, q2, q3 , r1N, m2"Mq4, q5N, and m3"Mq6, q7N, where
q1"(s1, [1, 260], o1, l1 ), q2"(s1, [100, 450], o2, l2 ), q3"( s2 , [600, 920], o1, l3 ), q4"

( s1, [200, 300], o2, l4), q5"(s2, [800, 1500], o1 , l5), q6"(s1 , [500, 630], o3 , l6), q7"

(s2 , [800, 920], o4, l7) and r1"(s1 , (q1, q2), 01). r1 describes the spatial relations of o1
and o2 in [100, 260].

In Figure 6, a motion composition in our data model can be viewed as a relation in the
relational data model. The selection operation (a) returns a motion composition consisting
of all sequences from a specified motion composition that satisfy a specified condition.



Figure 6. An example motion database with three motion compositions
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For example, p∀q3m1 .Q (q.s"s1 and a .o"o1) (m1)"Mq1N. The projection operation (n) returns
a motion composition consisting of all sequences that remain as subsequences
in a specified motion composition after specified intervals have been eliminated.
For example, n[100, 200] (m1)"Mq8"(s1, [100, 200], o1, l8), q9"(s1 , [100, 200], o2, l9),
r2"(s1 , (q8, q9), 0 2 )N. The join operation (?) returns a motion composition consisting
of all sequences appearing in either or both of two specified motion compositions.
Notice that if two returned motion sequences with the same scene and the same object
have intersection, they should be merged together. For example,
m1?m2"Mq1, q2 , q10"(s2, [600, 1500], o1, l10), r1N in which q4 and q2 are merged into
q2, and q3 and q5 are merged into q10. The union (X), intersection (W), difference (!)
operations are the standard mathematical operations on sets. For example,
m2 Xm3"Mq4, q6 , q11"(s2, [800, 920], o1 X o4 , l11), q12"(s2,[921, 1500], o1, l12)N.
m1 Wm2"Mq4, q13"(s2 , [800, 920], o1 , l13)N. The intersection operation can be ex-
pressed using union and difference as m2Wm3"(m2Xm3)-((m3!m2)X (m2!m3)),
where m2Wm3"0, m2!m3"m2 and m3!m2"m3. The set of composition opera-
tions Mp, n,? , X,!N is a complete set by which any spatial and temporal combina-
tions as a sequence of operations can be expressed.

Given two motion compositions m1 and m2, the complexity of selection/projection of

m1 is OA +
∀t (t3m1 .QXm2 .QXm1 .RXm2 .R)

t .dB, where t is either a motion sequence or

a relation sequence and the complexity of join and set operations of m1 and m2 is

OADm1 D log Dm1 D#Dm2 D log Dm2 D#k +
∀t (t3m1 .QXm2 .QXm1 .RXm2 .R )

t. dB, where Dm1 D and

Dm2 D are, respectively, the size of m1 and m2, and k is the mean time of single-image
processing.

4. Motion-Matching Algorithm

This section develops new motion-matching algorithms for evaluating the difference
between an example motion and a database motion. If each clip is treated as an abstract
symbol, the motion-matching problem is equivalent to the approximate string-matching
(ASM) problem. Similar to the edit distance between two symbols in string matching,
the penalty function to evaluate the dissimilarity between two relation clips c r1 and c r2 is
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defined as

p (c r1 , c r2 )" +
∀k (k3Mtraj, color, size N)

uk )+ (ek
1 , ek2 )#uspatial–relation .+ (cr1 .f, c r2 .f)50

where uk is a weighted coefficient of feature k determined by users and + is illustrated
in Eqs. (8) and (9). The dissimilarity of trajectory between two motion/relation clips is
defined later in Section 5.1. p (c r1 , c r2 ) is a weighted sum of the dissimilarity between the
mean, derived and spatial relation features of c r1 and c r2 . The distance between two
motion clips can be computed by p (c r1, c r2 ) with uspatial

}
relation"0.

The motion-matching problems can be categorized as full matching and partial
matching. Full matching concerns the correspondence of whole sequences while partial
matching concerns the match between two subsequences.

4.1. Full Matching

Definition 4.1. Triangulate association function ( TAF). TAFAPB (abbreviated as TAF if
not confused) is a triangulate association function of sequences A"a1a2a3 ,2 , an and
B"b1b2b3 ,2 , bm if and only if there is an onto mapping TAF :
M1, 2,2, nNPM[x, y] D14x , y4mN such that (i(j )N ((TAF ( i )"TAF ( j )'
DTAF ( i ) D"DTAF ( j )D"1)s (TAF ( i )(TAF ( j ))). dTAF denotes the number of
distinct TAF ( i ) (14i4n) $TAF stands for the number of one-to-one correspond-
ences of A and B and is defined as

$TAF"

n

+
i"1

DTAF (i ) D

Different from the association function of OCS defined in [22], a triangulate
association function is a full mapping between two sequences (APB ), as shown in
Figure 7, which shows TAF (1)"TAF (2)"TAF (3)"[1, 1], TAF (4)"[2, 4] and
TAF (5)"[5,5]. DTAF (1) D"1 and DTAF (4) D"3. dTAF"7 and $TAF"15. ai ’s
correspondence is bTAF (i ) . If TAF( i )"[x, y], then bTAF (i )"b[x, y]"bxbx#1 ,2, by .
TAFAPB has a corresponding TAFBPA . Figure 7 also shows a full mapping (BPA )
such that TAF (1)"[1,3] and TAF (2)"[4,4]. Notice that dTAFAPB"dTAFBPA
and $TAFAPB"$TAFBPA . For simplicity, TAFAPB and TAFBPA are used to
represent a single TAF hereinafter.

Definition 4.2. Optimal triangulate correspondence of sequences without merging (OTCS/o).
Given two sequences A"a1a2a3 ,2 , an and B"b1b2b3 ,2 , bm , the OTCS/o problem
Figure 7. A triangulate association mapping between two sequences
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of A and B is to find a TAF of A and B such that the total penalty

FMPOTCS/o
TAF (A, B )" +

∀ i ( j3TAF (i ))
p (ai , bj )

is minimized. p is a penalty function.
Based on OTCS/o, the distance between A and B is defined as follows:

DOTCS/o
full (A, B )"

min
∀TAF

FMPOTCS/o
TAF (A,B)

$TAF
(10)

where the division by $TAF is an averaging process which is omitted by conventional
string-matching algorithms [6, 24]. This avoids matching long sequences which accumu-
lates errors. Equation (10) can be evaluated by a dynamic programming procedure to
determine the minimum distance path through a penalty table, as shown in Algorithm 4.1,
which produces a triangulate association mapping (see Lemma 4.1 and Theorem 4.2 in
Appendex A).

Algorithm 4.1. Distance–OTCS/o(A"a1a2a3 ,2, an , B"b1b2b3 ,2 , bm , p )

D(0,0)"0; N(0,0)"0;
for i"1 to n do begin D(i, 0)"R; N (i, 0)"0; end;
for j"1 to m do begin D(0, j )"R; N (0, j )"0; end;

for i"1 to n do
for j"1 to m do begin
t1"D (i!1, j!1); t 2"D (i!1, j ); t 3"D(i, j!1);
D (i, j )"t1# p (ai , bj ); N (i, j )"N (i!1, j!1)# 1;
if (t 2(t 1 and t2(t 3) then begin D (i, j )"t 2#p (ai, bj ); N (i, j )"N (i!1, j )#1; end;
if (t 3(t 1 and t3(t 2 ) then begin D (i, j )"t 3#p (ai , bj ); N (i, j )"N (i, j!1)#1; end;

end;
return D (n, m)/N(n, m);

The penalty table D (i, j ) determines an optimal matching of two sequences and the
correspondence can be traced back to construct the desired TAF. The complexity of
Algorithm 4.1 is O (nm) (" O (n2 ) if n" m ), where p is evaluated by a lookup table in
constant time.

Consider the following sequences A"0670, B"01070, C"02070 and
D"00067700, where each symbol/digit (from 0 to 7) represents a moving direction
(from East to Southeast anti-clockwise) on a plane, as shown in Figure 8. Some
researches [12,13,16] use a series of chain codes to specify a sequence of eight possible
directions of the trajectory. Suppose the distance between two symbols a and b is
min (Da!bD, 8! Da!b D ). According to OTCS/o, D (A, B )"0.33, D (A, C )"0.5
and D (A, D )"0. We have TAFAPB"TAFAPC"M(1, [1,3] ), (2,[4,4] ),(3, [4,4] ),
(4, [5,5] )N. If we adopt the OCS algorithm whose miss penalty is set to be 2, then
D (A, B )"D (A, C )"4, and D (A, D )"8. We have the association mapping (from
B or C to A ) F: M1,2,3,4,5N"M1,o, 2,3,4N satisfying OCS, where o is a null symbol
denoting the second line segments of B and C match nothing. Compared with OCS in



Figure 8. An example of trajectory representation

640 P.-J. CHENG AND W.-P. YANG
this example, OTCS/o distinguishes the detailed differences between AB and AC more
efficiently than OCS, which has limitation on discriminating miss penalties. Moreover,
from the viewpoint of direction, A and D are the same obviously. D may be produced
by the proposed model introduced in Section 3 since two adjacent motion/relation clips
may have identical directions but different colors or sizes. OCS fails to detect the
equivalence between A and D.

Definition 4.3. Optimal triangulate correspondence of sequences with merging (OTCS/w). Given
two sequences A"a1a2a3 ,2 , an and B"b1b2b3 ,2 , bm , the OTCS/w problem of
A and B is to find a TAF of A and B such that the total penalty

FMPOTCS/w
TAF (A, B )" +

∀i ( DTAFAPB (ai ) D51)

p (ai , TAFAPB (ai))

# +
∀j ( DTAFBPA (bi ) D'1)

p (bi , TAFBPA (bi))

is minimized, where p is a penalty function evaluating the dissimilarity between one
symbol and a subsequence.

Based on OTCS/w, the distance between A and B is defined as follows:

DOTCS/w
full (A, B)"

min
∀TAF

FMPOTCS/w
TAF (A , B )

dTAF
(11)

Algorithm 4.2. Distance–OTCS/w(A"a1a2a3 ,2 , an , B"b1b2b3 ,2 , bm , p)

D(0, 0)"0; N(0, 0)"0;
for i"1 to n do begin D(i , 0)"R; N (i, 0)"0; end;
for j"1 to m do begin D (0, j )"R; N (0, j )"0; end;
for i"1 to n do

for j"1 to m do begin
min—value"ti!1, j!1"D (i!1, j!1)#p(ai , bj );
for x"1 to i -2 do tx, j!1"D (x, j!1)#p (bj , ax#12 a i ;
for y"1 to j - 2 do t i!1, y"D (i!1, y )#p (ai , by#12 bj );
for each t u, v ((u"1 . . i -2, v"j!1) and (u"i!1, v"1 . . j -2))
if (tu, v(min—value) then begin D (i, j )"tu, v ; N (i, j )"N (u, v )#1; min—value"tu, v ; end;

end;
return D (n, m)/N (n, m) ;



Figure 9. Trajectory representation in the example
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This algorithm produces the optimal matching (see Theorem 4.1 in Appendix A) with
the complexity of O (nm (n#m)) ("O (n3) if n"m), where p can be evaluated by
a lookup table in constant time. The desired TAF can be generated by tracking back the
correspondence in the penalty table D (i, j ). Furthermore, OTCS/o is a special case of
OTCS/w (see Lemma 4.2 in Appendix A).

As far as trajectory matching is concerned, OTCS/o works only with the direction
feature; however, OTCS/w works with both direction and displacement features. For
example, Figure 9 illustrates three trajectories of A"(0,10)(1,20)(0,10)(7,18),
B"(0,10)(2,4)(1,14)(0,10)(7,18),C"(0,10)(2,16)(0,15)(7,20) and D"(0,10)(1,6)(0,22)
(7,18), where each symbol is represented by the pair of (direction, displacement/length).
According to OTCS/o, we have TAFAPB"M(1,[1,1] ),(2,[2,3] ),(3,[4,4] ),(4,[5,5] )N,
D (A, B )"D (A, C )"1, D (A, D )"0. If the OTCS/w algorithm is taken, in which
the distance between a symbol a and a subsequence b1 ,2 , bn is Da’s len!+∀ i b i’s
len D#5 )+∀ i min ( Da’s dir!bi’s dir D , 8!Da’s dir!bi’s dir D), we have D (A , B )"7,
D(A , C )"16 and D (A , D)"26. Compared with OTCS/o, OTCS/w can merge
adjacent symbols such that the total displacement is considered in the similarity measure.

4.2. Partial Matching

Full matching can be changed into partial matching by attaching dummy symbols to
the beginning and end of sequences. Given two sequences A"a1a2a3 ,2 , an and
B"b1b2b3 ,2 , bm , two dummy symbols ad and bd are introduced. Let
A@"ada1a2a3 ,2 , anad and B@"bdb1b2b3 ,2 , bmbd . Partial matching of A and B can
be converted into full matching of A@ and B@, as shown in Figure 10. p (ad ,bx ,2 , by ) and
p (bd , ax ,2 , ay ) are so-called miss penalties. p (ad , bd ) is set to be 0 in default.

Assume that the situation in Figure 10 is a triangulate mapping between A @ and B@
such that the total penalty is minimized. Let the matched subsequences be
A @@"a3a4 ,2 , a8 and B @@"b1b2 ,2, b 7 . For the partial matching of OTCS/o, the
total distance is computed as

DOTCS/o
partial (A@, B@ )"DOTCS/o

full (A@@, B@@ )# +
∀ad

p (ad , b j )#+
∀bd

p (bd , ai ) (12)

For the partial matching of OTCS/w, the total distance is computed as

DOTCS/w
partial (A@, B@ )"DOTCS/w

full (A@@, B@@)#+
∀ad

p (ad , TAFAPB (ad))

# +
∀bd

p (bd , TAFBPA ( bd)) (13)



Figure 10. A partial matching of two sequences A and B
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The more mismatched the symbols, the larger is the total distance. Generally, mis-
matched symbols are independent of each other. p (ad, bx ,2, by )"+ j"x, . . , y p (ad , b j )
and p (bd , ax ,2 , ay)"+ i"x , . . , y p (ai , bd ).

Generally, a user can insert dummy symbols into a query sequence arbitrarily. The
algorithms which evaluate Eqs. (12) and (13) are similar to Algorithms 4.1 and 4.2 and
have the complexity of O ((n#k) (m#k)) ("O (n2 ) if n"m ) and O ((n#k )
(m#k) (n#m#k)) ("O (n3 ) if n"m ), respectively, where k is the number of
dummy symbols.

5. Performance Evaluation

This section presents the results of experiments that evaluate the performance of the
proposed matching algorithms from Section 4. The performance metric, test database
and simulation parameters are described and, then, the experimental results and related
analysis are given.

5.1. Performance Metric

There is no standard to decide the degree of similarity in all applications, particularly
because the trajectory-matching problem generally depends on users’ perceptions and
requirements. Current research on curve and shape recognition determines the similarity
between two given trajectories by the following four policies, as illustrated in Figure 11.
Two methods compute distance based on the distance each vertex of a trajectory
projects onto the other one while the others are based on the distance between
corresponding equidistant points on the two trajectories. None of the four policies are
dependent on the computation of distances. This work uses Euclidean distance (the dist
function) to make a meaningful comparison.

Suppose a trajectory T is a concatenation of individual line segment chains repre-
sented by an ordered list of N vertices T"Mui Dui"(xi , yi ), 14i4NN"MS j DS j"

u j u j#1 , 14j4N!1N, where (xi , yi ) is the x!y coordinates of a vertex. If a point
u lies on S j , the path length between u1 and u is + k"1,. . . , j!1 DS k D# Du ju D, denoted by
PT (u1, u). For any two points ui and u j on T, their path length PT (ui , u j ) is
DPT (u1, ui )!PT (u1, u j ) D. An arbitrary fragment of a trajectory T from point ui to point
u j is denoted as T [ui , u j ], where PT (u1 , u j )5PT (u1 , ui ). Details of similarity measure
between two trajectories T1"M t 1 , t 2 ,2 , t NN and T 2"Mu 1 , u 2 ,2 , uMN , as illus-
trated in Figure 11, are defined as follows:



Figure 11. Four trajectory-matching policies: (a) average/maximum distance bases on vertices’ projec-
tions; (b) average/maximum distance based on equidistant points
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(1) The average distance based on vertices’ projections (AP ) is defined as

AP (T1 , T 2 )"
+ N

i"1 dist ( ti , u @i )#+M
j"1 dist (u j , t @j )

N#M

where u @i"Proj ( ti , T 2 [u @i!1 , uM ] ), t @j"Proj (u j , T 1 [ t @j!1 , tN ] ), Proj ( t i , T 2
[u @i!1 , uM ] ) and Proj ( u j , T 1 [ t @j!1 , t N ] ), respectively, return t i ’s projection point on
the T 2 ’s fragment from u @i!1 to uM and u j ’s projection point on the T 1’s fragment from
t @j!1 to tN , u @0"u1 , and t @0"t1 . In our experiment, we restrict the projection range to
satisfy the directional property of trajectories, which shape recognition lacks.

(2) The maximum distance based on vertices’ projections (MP ) is defined as

MP (T1 , T2 )"Max A
N

Z
i"1

dist ( t i , u @i ),
M

Z
j"1

dist (u j , t @j )B
where u @i and t @j are defined in AP.

(3) The average distance based on equidistant points (AE ) is defined as

AE (T1 , T2 , n )"
+ n

i"1 dist ( t @@i , u @@i )
n

where t @@1 "t1 , u @@1 "u1 , t @@n "t N , u @@n "u M , and PT1 ( t @@i , t @@i#1 )"PT1 ( t1 , t N )/
(n!1) and PT2 (u @@i , u @@i#1 )"PT2 (u 1 , uM )/( n!1 ) for i"1 , . . , n!1. T1 and
T2 are divided into n!1 fragments with equal length by n points.

(4) The maximum distance based on equidistant points (ME ) is defined as

AE (T 1 , T2 , n)"Max A
n

Z
i"1

dist ( t @@i , u @@i )B
where t @@i and u @@i are defined in AE.

These four trajectory-matching policies simulating user-defined preference relation
among trajectories are designed to be the basis for judging the retrieval performance of
motion-matching algorithms. To examine the impact of the proposed matching
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algorithms on motion recognition, the study experiments with optimal correspondence
of subsequences (OCS) [24] (conventional string-matching algorithm), the VIOLONE
approach [16], optimal triangulate correspondence of sequences without merging
(OTCS/o) and optimal triangulate correspondence of sequences with merging
(OTCS/w). According to the four trajectory-matching policies, the penalty function in
Definition 4.3 can be evaluated by AP, MP, AE, or ME. Restated, OTCS/w can be
categorized into OTCS/w#AP, OTCS/w# MP, OTCS/w#AE, or OTCS/w#ME
depending on the penalty function design.

Suppose the rank ordering of database trajectories induced by the investigated
algorithms (D system ) are FOCS , FVIOLONE , FOTCS/o , FOTCS/w#AP , FOTCS/w#MP ,
FOTCS/w#AE and FOTCS/w#ME . The rank ordering of trajectories induced by the four
basis policies (D expert ) are FAP , FMP , FAE and FME . Three main performance metrics
used are recall (Rk ), precision (Pk ) and Rnorm [25], where k is a threshold varying
between 1 and database size. Rk and Pk are defined as

Rk (D system , D expert )"
DMthe top k objs in D system N i aK M the top k objs in D expert N D

D M the top k objs in D expert N D

and

Pk (D system , D expert )"
D M the top k objs in D system N i aK M the top k objs in D expert N D

M the top k objs in D system N

A straightforward way to evaluate the permutation quality of results is to use Rnorm [23].
As users prefer retrieving the top k relevant trajectories instead of all of the trajectories,
the domain examined in this study only includes the top k relevant results. Then Rk

norm is
defined as

Rk
norm (D system , D expert )"Rnorm (D system

k , D expert
k )"

1
2 A1#

S #
!S !

S #

Max B
where

D system
k "Mthe top k objs in D system N!(M the top k objs in D system N!M the top k objs

in D expertN) and D expert
k "Mthe top k objs in D expert N!(M the top k objs in

D expert N!M the top k objs in D system N ).
S # is the number of trajectory pairs where a better trajectory is ranked ahead of

a worse one by D system
k , S ! the number of trajectory pairs where a worse trajectory is

ranked ahead of a better one by D system
k , and S#

Max the maximum possible number of
S# from D exoert

k . Rnorm values vary from 0 to 1. The larger the Rnorm value, the closer the
rank ordering.

5.2. Test Database and Simulation Parameters

This study generates a test database with 120 trajectories by rotating 15 different
S-shape samples, from 0, n/8 to 7n/8. Each trajectory is normalized in advance as
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explained in Section 3.3 and represented as a set of directions and displacements.
A pattern selected from the database randomly is considered to be the query trajectory.
An exhaustive searching algorithm has been implemented to minimize the proximity
measurements for all possible relative positions of the two trajectories. The basis
policies (AP, MP, AE and ME) are independent of the scale and the translation of
trajectories. The algorithms investigated herein are OCS, VIOLONE, OTCS/o,
OTCS/w#AP, OTCS/w#MP, OCTS/w#AE and OCTS/w#ME. As Section 4
explained, OCS, VIOLONE and OTCS/o merely consider the directional feature of the
trajectory, which is independent of the scale and the translation of the trajectories.
Meanwhile, OTCS/w can satisfy the conditions of scale and translation by normalizing
each displacement and shifting one of the trajectories to the center of gravity of the other.

To verify the merits of OTCS/w, this study conducted two experiments to compare
its performance with OCS and OTCS/o under various matching situations, including
full matching and partial matching. The difference between two directions xl and yl is
computed by 15](1!(xl ) yl )/Dxl D D yl D ), which varies from 0 to 30. The top 30 ranked
trajectories are taken as the results which users expect (D expert ) for each experiment.

5.3. Experimental Results

In the experiment of full matching, we slightly modify OCS such that the first and last
symbols must be matched and miss penalty is set to be 10. The number of retrieved
objects k from D system varies from 10 to 60. Figures 12–15 show the recall (Rk ) and
precision (Pk ) results based on the criteria of four full trajectory-matching policies.

In the experiment of partial matching, each symbol’s miss penalty is set to be 10 for
all methods. The number of retrieved objects k from D system varies from 10 to 60.
Figures 16–19 show the recall (Rk ) and precision (Pk ) results based on the criteria of
four partial trajectory-matching policies.

Experimental results indicate that at either full matching or partial matching, the
order of performance in maximizing recall and precision is OTCS/w'OTCS/o'
VIOLONE'OCS. Namely, OTCS/w performs best and OCS performs worst for the
Figure 12. Recall and Precision under the criterion AP (full matching): ( ), OCS; ( ), VIOLONE;
( ), OTCS/o; ( ), OTCS/w-AP; ( ), OTCS/w-MP; ( ), OTCS/w-AE; ( ),

OTCS/w-ME



Figure 13. Recall and Precision under the criterion MP (full matching): ( ), OXR ; ( ), f IOKONE;
( ), OTXR/o; ( ), OTXR/u-AP ; ( ), OTXR/u-M; ( ), OTXR/u-AE; ( ),

OTXR/u-ME

Figure 14. Recall and Precision under the criterion AE (full matching): ( ), OCS; ( ), VIOLONE;
( ), OTCS/o; ( ), OTCS/w-AP; ( ), OTCS/w-MP; ( ), OTCS/w-AE; ( ),

OTCS/w-ME

Figure 15. Recall and Precision under the criterion ME (full matching): ( ), OCS; ( ), VIOLONE;
( ), OTCS/o; ( ), OTCS/w-AP; ( ), OTCS/w-MP; ( ), OTCS/w-AE; ( ),

OTCS/w-ME
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Figure 16. Recall and Precision under the criterion AP (partial matching): ( ), OXR ; ( ),
f IOKONE; ( ), OTXR/o; ( ), OTXR/u-AP ; ( ), OTXR/u-M; ( ), OTXR/u-AE;

( ), OTXR/u-ME

Figure 17. Recall and Precision under the criterion MP (partial matching): ( ), OCS; ( ),
VIOLONE; ( ), OTCS/o; ( ), OTCS/w-AP; ( ), OTCS?w-M

Figure 18. Recall and Precision under the criterion AE (partial matching): ( ), OCS; ( ),
VIOLONE; ( ), OTCS/o; ( ), OTCS/w-AP; ( ), OTCS/w-MP; ( ), OTCS/w-AE;

( ), OTCS/w-ME
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Figure 19. Recall and Precision under the criterion ME (partial matching): ( ), OCS; ( ),
VIOLONE; ( ), OTCS/o; ( ), OTCS/w-AP; ( ), OTCS/w-MP; ( ), OTCS/w-AE;

( ), OTCS/w-ME

Table 1. The experimental result of Rk
norm

Match

Full matching Partial matching

Thre- Method
shold
k" OCS VIOLONE OTCS/o OTCS/w OCS VIOLONE OTCS/o OTCS/w

30 0.626 0.652 0.754 0.846 0.462 0.565 0.711 0.846
60 0.671 0.671 0.764 0.837 0.387 0.522 0.740 0.850
90 0.689 0.692 0.762 0.834 0.421 0.543 0.750 0.849

120 0.696 0.693 0.763 0.834 0.421 0.544 0.750 0.851
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four criteria of AP, MP, AE and ME. The main reason for this result is that OTCS/w
incorporates direction and displacement features, while displacement is absent from the
others. OTCS/o performs better than VIOLONE because OTCS/o allows one-to-
many and many-to-one matching while VIOLONE merely allows one-to-many match-
ing between a query object and a database object. VIOLONE performs better than OCS
because OCS omits the characteristic of continuation of a trajectory. When the penalty
function of OTCS/w is consistent with the criterion, it generally performs better. For
example, OTCS/w-AP performs best for the criterion AP. However, the performance
difference among all OTCS/w’s is smaller than that among OCS, VIOLONE, OTCS/o
and OTCS/w. Thus, algorithm selection appears more important than the design of
penalty functions.

The rank ordering of extracted trajectories can be compared with that of the
trajectories which users expect by observing the R k

norm , as shown in Table 1. Experi-
mental results indicate that at either full matching or partial matching, the order of
performance in maximizing R k

norm is OTCS/w'OTCS/o'VIOLONE'OCS. In
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other words, OTCS/w provides better permutation quality of the retrieved results than
the others. As the order of computational complexity is OTCS/w'OTCS/o"
OCS'VIOLONE, our system takes OTCS/w as the query-processing algorithm
when both features, direction and displacement, are considered while OTCS/o is taken
when only direction feature is considered. In addition, determining the missed penalty of
OCS when there is full matching is inconvenient and difficult for a less experienced user
while no parameters are required by the others.

6. Implementation

This section presents the overall architecture of a prototype system, which was
developed based on the proposed visual aggregation model in the Microsoft Window
environment.

The system has two main modules: storage and retrieval modules, as shown in Figure 20.
In the storage module, a video sequence is decomposed into scenes using the histo-
gram-based technology [19] and then moving objects in a scene are tracked using the
template-based technology [9]. The extracted moving objects are represented as motion
sequences. For each motion sequence, a motion composition is automatically created
and normalized. With the assistance of composition operations, as illustrated in
Figure 21, users can recursively group the generated motion compositions in the
database into a complex one, whose features are analyzed and normalized if necessary. If
two arbitrary motion sequences in a motion composition overlap, the system automati-
cally generates a corresponding relation sequence. In the retrieval module, the system
accepts a request specified by drawing example motions, extracts and normalizes the
appropriate visual features and, then, performs motion-matching algorithms, as shown
in Figure 22.

The proposed visual aggregation model has been integrated into relational databases
in our system, which maintains 13 main tables, as shown in Figure 23. The RVT table
maintains bibliographic data of video in the database. The SDT table describes scenes.
The FST, RST and MST tables present feature sequences, relation sequences and
motion sequences, respectively, while the FCT, RCT and MCT tables describe the
Figure 20. The architecture of the prototype system



Figure 21. The interfaces of select operation

Figure 22. An example query for the bowling application
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Figure 23. The storage structure of the system
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corresponding clips. Motion composition table comprises the M-MCT and R-MCT
tables. For selection operations, indexing on the color attribute of the C-FCT table
can facilitate the nearest-neighbor queries in a multidimensional space such as
R-tree. The direction and size attributes of the D-FCT, X-FCT and Y-FCT tables
can be indexed by B-tree and hashing. For projection operations, a two-dimensional
indexing structure is used to evaluate temporal range queries. The system also provides
a filtering mechanism [8], which preprocesses the database objects before querying
processing.
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7. Conclusions

In this paper, we presented a visual aggregation model for the representation of visual
features (trajectory, color and size) of a single moving object and the directional and
topological relations among multiple objects in video databases. A set of composition
operations is introduced for the purpose of calculating object motions at various levels
of semantic granularity. Two algorithms of triangulate matching with/without merging
are designed for motion recognition, which can be applied into other applications such
as shape, curve and handwritten recognition. Experimental results indicate that at either
full matching or partial matching, the proposed algorithms significantly improve traject-
ory-matching performance of the conventional approaches.

Some issues need to be addressed about querying by motion examples in video
databases. In some applications, people usually focus a camera on a moving object of
interest to them. Therefore, the object is always located in the center of the viewport and
its trajectory would be hidden from the camera operation. We are investigating how to
evaluate object motion from the movement of its background and compute the corre-
sponding coordinate sequence of a moving object. To automatically determine the
thresholds mentioned in the processing of normalization in our system, we are planning to
apply image-segmentation technologies such as local gradient and Laplacian computa-
tions. In addition to sports event analysis such as bowling applications, we also intend to
extend our system to support other applications, including surveillance and satellite image
sequences.
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Appendix A

Lemma 4.1. Algorithm 4.1 produces a triangulate association mapping.

Proof . Lemma 4.1 can be intuitively proved by showing that the following statements
hold:

(a) D ( i , j )"D ( i!1, j )#p (ai , b j ) never generates a TAFAPB such that
TAF (i!1 )"[ j!1, j ] and TAF ( i )"[ j, j ], and

(b) D ( i, j )"D (i , j!1 )#p (ai , b j ) never generates a TAFAPB such that
TAF (i!1)"[ j!1, j!1 ] and TAF ( i )"[ j!1, j ].
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Assume (a) is false. When p (ai!1 , b j )'0, D ( i, j )"D ( i!1, j )#p (ai , b j )"
( D ( i!1, j!1 )# p ( ai!1 , b j ) )#p ( ai , b j )4D ( i!1, j!1 )#p ( ai , b j ),
which is a contradiction. When p (a i!1 , b j )"0, D (i!1, j )"D ( i!1, j!1 ) and
TAF ( i!1 )"[ j!1, j ] can be reduced to TAF (i!1 )"[ j!1, j!1 ]. The same
as (a), (b) also conflicts. Therefore, Algorithm 4.1 gives a TAF. K

Theorem 4.1. Given two sequences A"a1 a2 a3 ,2 , a n and B"b1 b2 b3 ,2 ,b m , a triangu-
late association function (TAF ) of A and B and a relation

D (i, j )"min G
D ( i!1, j!1 )#p (ai , b j )

D ( i!1, y )#p (ai , by#1 ,2 , b j ) for y"1,2 , j!2

D (x, j!1)#p (b j , ax#1 ,2 , a i ) for x"1,2 , i!2

with D (1,1)"p (a1 , b1 ), D (i, 1)"+∀ i p (a i , b1 ) and D (1, j )"+∀ j p (a1 , b j ), then

∀TAF , D (n , m )4 +
∀ i ( DTAFAPB (ai ) D51)

p (ai , TAF APB ( ai ))

# +
∀ j ( DTAFBPA (bj ) D'1)

p (bi , TAF BPA ( bi ) )

Namely, D (n, m ) is optimal.

Proof . We prove it by double induction over i and j (14i4n, 14j4m ).
Basis. D (1,1)"p (a1 , b1 ). For all i, j, D (i, 1)"+ ∀ i p (a i , b1 ) and D (1, j )"

+ ∀ j p (a1 , b j ). The statement is true by definition of D.
Induction. Assume that D (i, j ) is optimal for 14 i4n!1 and 14 j4m!1. We

wish to show by induction that D (n, m) is optimal.

Case 1. D (n , m )"D (n!1, m!1)#p (a n , bm ). If D (n , m ) is not optimal, there
exists a D @ (n , m ) such that D (n , m )"D (n!1, m!1)#p (a n , bm )'D @ (n, m )"
D @ (n!1, m!1 )#p (a n , bm ). Thus, we have D (n!1, m!1)'D @ (n!1,
m!1 ), which is a contradiction. Similarly, the other cases (D (n,m)"D (n!1, y )
#p ( a n , b y#1 ,2 , bm ) for y"1 ,2 ,m!2 and D (n!1, m)"D (x, m!1)#
p (bm , a x#1 ,2 , an ) for x"1,2 , n!2 ) satisfy the inequality. Therefore, by defini-
tion D (n , m ) is optimal. K

Lemma 4.2. Given two sequences A"a1 a2 a3 ,2 , a n and B"b1 b2 b3 ,2 , bm , if
p (ai , bub u#1 ,2 , bv )"+ j"u , . . , v p (ai , b j ) and p (b j , aua u#1 ,2 , av )"+ i"u , . . , v p

(a i , b j ) then FMPOTCS/w
TAF (A , B )"FMPOTCS/o

TAF (A , B ). In other words, OTCS/o is a
special case of OTCS/w.
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Proof. According to Lemma 4.1 and Algorithm 4.1, if p (a i , b u b u#1 ,2 , b v )"
+ j"u p ( ai , b j ) and p (b j , au a u#1 ,2 , a v )"+ i"u . . v p (ai , b j ) then

D ( i, j )"min

G
D ( i!1, j!1 )#p (a i , b j )

D ( i!1, j )#p (ai , b j )"min (D (x, j!1)

#p (b j , a x#12 a i ) for x"1,2 , i!2 ), where

D ( i , j!1 )#p (ai , b j )"min (D (i!1, y )

#p (a i , b y#12 b j ) for y"1 ,2 , j!2 )

D (i!1 , j )#p (a i , b j )

"min (D ( i!2, j!1)#p (a i!1 , b j ), D ( i!2, j )#p (a i!1 , b j ) )

#p (a i , b j )"2

"min (D (x , j! 1)#p (b j , ax#12 a i ) for x"1 ,2 , i!2 ).

Notice that D ( i!1, j )OD ( i!1, j!1)#p (a i!1 , b j ); otherwise, the map-
ping between A and B will not be a TAF based on Lemma 4.1. Similarly, D ( i ,
j!1)#p (a i , b j )"min (D (i!1, y )#p (a i , b y#12 b j ) for y"1,2 , j!2)
also holds. Thus, OTCS/w is equivalent to OTCS/o when p (a i , bubu#1 ,2 , b v )"
+ j"u , . . , v p (ai , b j ) and p ( b j , a u au#1 ,2 , a v )"+ i"u , . . , v p ( a i , b j ). K

Theorem 4.2. Given two sequences A"a1 a2a3 ,2 , a n and B"b1 b2 b3 ,2 , b m , a tri-
angulate association function (TAF ) of A and B , and a relation

D ( i , j )"min G
D ( i!1, j!1 )#p (a i , b j )

D ( i!1 , j )#p (a i , b j )

D ( i, j!1 )#p (a i , b j )

with D (1, 1)"p (a
1
, b

1
), D (i, 1)"+∀ i p (a i , b 1 ) and D (1, j )"+∀ j p (a1 , b j ), then

∀TAF, D (n, m )4+∀ i ( j3TAF ( i )) p ( a i , b j ) . That is, D (n , m ) is optimal.

Proof. This theorem results from Theorem 4.1 and Lemma 4.2. K

Appendix B

Notation Description

[x , y ] interval of numbers from x to y
disjoin disjoint combination of an interval set
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v video stream
s scene
q the set of objects in v
m motion composition (m"Q*R )
q motion sequence (Q"a set of q )
f feature sequence
r relation sequence (R"a set of r )
c m motion clip (l"an ordered set of c m )
c f feature clip ("an ordered set of c f )
c r relation clip (0"an ordered set of c r )
[x . a , x .b ] frame interval of x, where x"s, q, f, r, c m , c f or c r

x . d frame-interval size of x, where x"s, q, f, r, c m, c f or c r

p x normalization threshold, where x"traj , hist or size
e ( ) evaluation function
+ ( ) dissimilarity function
Ii the ith image frame (v"an ordered set of I )
p selection operation of m
n projection operation of m
? join operation of m’s
X, W,! union/intersection/difference operation of m’ s
p ( ) penalty function
TAF ( ) triangulate associate function
OTCS/o optimal triangulate correspondence of sequences without merging
OTCS/w optimal triangulate correspondence of sequences with merging
Dx

y (A , B) distance between sequences A and B, where X"OTCS/o or
OTCS/w and Y"full or partial

T [u i , u j ] an arbitrary fragment of a trajectory T from point u i to point u j
AP (T1 , T 2 ) average distance between T 1 and T 2 based on vertices’ projections
MP (T 1 , T 2 ) maximum distance between T 1 and T 2 based on vertices’ projections
AE (T1 , T 2 ) average distance between T1 and T 2 based on equidistant points
ME (T 1 , T 2 ) maximum distance between T 1 and T 2 based on equidistant points
Rk recall of the top k objects
Pk precision of the top k objects
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