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Bianchi type-I space and the stability of the inflationary Friedmann-Robertson-Walker solution
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A stability analysis of the Bianchi type-I universe in pure gravity theory is studied in detail. We first derive
the nonredundant field equation of the system by introducing the generalized Bianchi type-l metric. This
nonredundant equation reduces to the Friedmann equation in the isotropic limit. It is shown further that any
unstable mode of the isotropic perturbation with respect to a de Sitter background is also unstable with respect
to anisotropic perturbations. The implications of the choice of physical theories are discussed in detail in this
paper.
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I. INTRODUCTION Note that there is no particular reason why our universe is
initially isotropic to such a high degree of precision. Even
Inflationary theory provides an appealing resolution to theanisotropy can be smoothed by the proposed inflationary
the flatness, monopole, and horizon problems of our presefocess, it is also interesting to study the stability of the FRW
universe described by standard big-bang cosmofagyitis ~ space during the post-inflationary epoch. Nonetheless, it is
known that our universe is homogeneous and isotropic to &atural to expect that our universe starts out as an anisop-
very high degree of precisioi2,3]. Such a universe can be tropic universe. The universe is then expected to evolve from
described by the well-known Friedmann-Robertson-Walke®@ certain anisotropic universe, e.g., a Bianchi type-I universe,
(FRW) metric[4]. to an isotropic universe, such as the flat FRW space. Indeed,
It is also known that gravitational physics should be dif- it was shown that there exists such kind of BI-FRW solution
ferent from standard Einstein models near the Planck scal@®’ @ NS-NS model with a metric field, a dilaton, and an
[5,6] For examp]e, guantum gravity or String CorrectionSaXion field [13] This inﬂationary solution is also shown to
could lead to interesting cosmological consequendgds be stable against small field perturbatiphg]. Note also that
Moreover, some investigaﬂons have addressed the poss|b||| ability analysis has been studied in various fields of interest
of deriving inflation from higher-order gravitational correc- [15,16].
tions[7-10. A large class of models with the BI-FRW solutions will be
A general analysis of the stability condition for a variety Shown to be unstable against arbitrary anisotropic perturba-
of pure higher derivative gravity theories is very useful intions in this paper. We will first derive a stability equation
many respects. In fact, it was shown that a stability conditiorivhich turns out to be identical to the stability equation for
should hold for any potentia| candidate of inﬂationary uni- the existence of the inﬂationary de Sitter solution discussed
verse in the flat Friedmann-Robertson-WalkERW) space in Refs.[10,12. Note that an inflationary de Sitter solution
[10]. in pure gravity models is expected to have one stable mode
In addition, the derivation of the Einstein equations in theand one unstable mode for the system to undergo inflation
presence of higher derivative couplings is known to be verywvith the help of the stable mode. Consequently, the inflation-
complicated. The presence of a scalar field in induced gravit@ry era will come to an end once the unstable mode takes
models and the dilaton-gravity model makes the derivatiorpver after a brief period of inflationary expansion. The
even more tedious. In order to simplify the complications inmethod developed in Refgl0,12 was shown to be helpful
the derivation of the field equations, an easier way has beeifi choosing a physically acceptable model for our universe.
described11,12. We will try to generalize the work of Ref. Our result indicates, however, that the unstable mode will
[12] in order to obtain a general and model-independent foralso tamper with the stability of the isotropic space. To be
mula for the nonredundant field equations in the Bianchimore specific, if the model has an unstable mode for the de
type-1 (BI) anisotropic space. This equation can be applied tditter background perturbation with respect to isotropic per-
provide an alternative and simplified method to obtain theturbation, this unstable mode will also be unstable with re-
stability conditions in pure gravity theories. In fact, this gen-SPect to any anisotropic perturbations.
eral and model-independent formula for the nonredundant
field equations is very useful in many areas of interest. In | NONREDUNDANT FIELD EQUATION AND BIANCHI
particular, it will be applied to study a large class of pure IDENTITY
gravity models with inflationary BI-FRW solutions in this
paper. Any Bianchi type-l solution that leads itself to an Note that the generalized Bianchi typ¢gBI) metric can
asymptotic FRW metric at time infinity will be referred to as be read off directly from the following equation:
the BI-FRW solution in this paper for convenience.
ds’=g;. dx“dx”
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with b(t) the lapse function restored on purpose. Note also G =t,, )
that the Bianchi type-(Bl) metric can be obtained from GBI
metric by setting the lapse functids(t) equal to 1, i.e.p
=1, in Eq.(2).

Note that one can list all nonvanishing components of th
curvature tensor as

with t,,, denoting the generalized energy momentum tensor
éalssociated with the system. It is known that one of these
equations is in fact a redundant equation. Indeed, one can
defineH,,=G,,—t,, and write the field equation as,,

=0
Rij= %[HiBJr 2B(H;+H?)14!, 2) Hence one has

R =HiH;BC}. 3 D,H*"=0 9
HereCl=€Me,, with e'J‘f the three space Levi-Civita ten- rom the energy conservatioD(t“*=0) and the Bianchi
sor[A_f]. Here “-” denotes differentiation with respect tand identity (D,G*”=0). Now we have three independent scale
Hi=a;/a; is the directional Hubble constant. We have alsofactorsa; and four equations. Therefore one of the four equa-
written B=1/b? for later convenience. Note also that the tions has to be redundant. Indeed, the extended Bianchi iden-
indicesi,j in both sides of the above equations are opertity (9) can be shown to give
indices. MoreoverR),=0 if i = due to the symmetric prop-
erties of the curvature tensor.

Given a pure gravity model one can cast the action (0y+3H)Hy+ >, HiH;=0, (10
of the system as S=[d*xJgL=N/fdt(a;a,as/ ‘
VB)L(H; ,H;,B,B) in the GBI spaces. Her8l is a time-
independent integration constant. We will denote the volume&s soon as the Bl metric is substituted into equaii®n
factor asV=aja,asb. If we take VL as an effective La- Therefore Eq(10) indicates that: H;=0 impliesZ;H;H;
grangian, one can show that the variation with respedi to =0.” Hence two of theH;; equations vanish which imply
gives that the third one also vanishes.

On the other handH,;=H,=H3;=0 implies instead d;
+3H)H;=0. This implies that VH=const with V
=aja,a;. Hence theH; equation is the nonredundant equa-

(4)  tion while we are free to ignore one of the thrdg equa-
tions. Hence any conclusion derived without Hhg equation
after settingB=1. Here the last term comes from the varia- is known to be incomplete.

tion with respect tos(H;B) with the help of the identity

1 1
—ZL+Z

o1 _
5L+ S HiL+HiL'= 5 (H+3HH, +Hd/dyL' =0

IIl. PERTURBATION AND STABILITY

ﬁg(HiB):m‘s(HiB)_’ﬁHiaB ) One can thgn apply the perturbatidﬂi=Hio+§Hi , to
the field equation wittH;q the background solution to the
once we seB=1. One also needs an integration—by-partSyStem' This perturbation Wi_II e'nable one to understgnd
with respect tosB in order to obtain the result indicated in Whether the background solution is stable or not. In particu-
the last term of Eq(4). Note that the first equality in EdS5) lar, one would like to learn whether a BI-FRW-type evolu-

f the fact that the factét-B al h tionary solution is stable or not. It is known that our universe
comes from tne fact that the factoris always Shows up ., 4 start out anisotropic; even evidences indicate that our

with 2BH; as indicated by the curvature tensdt ; inEq.  unjverse is isotropic to a very high degree of precision in the

(2). Therefore one ends up with tieequation as post inflationary era. Therefore one expects that any physical
) _ model should admit a stable BI-FRW solution.
L—HLj=(H;—3HH;—H;d/dt)L' (6) Our result indicates that FRW inflationary solutions with a

, stable mode and an unstable mode is a negative result to our
after settingB=1. HereH=X;H;/3, Li=6L/éH;, andL' search for a physically acceptable model. Note that FRW
E&L/(‘)‘Hi for convenience. In addition, one can also deriveinflationary solutions with a stable mode and an unstable

mode will provide a natural way for the inflationary universe

L+ (3H+d/dt)L'=(3H+d/dt)L; (7)  toleave the inflationary phase. Our result indicates, however,

that such models will also be unstable against the anisotropic
as the variational equation af . The derivation of this equa- perturbations. Therefore such a solution will be harmful for
tion is tedious but straightforward. In additioWL is nor-  the system to settle from Bl space to FRW space once the
mally referred to as the effective Lagrangian. We will alsograceful exit process is done.
call L the effective Lagrangian unless confusion occurs. Note First of all, one can show that the first-order perturbation
that Eq.(7) is in fact the spacelikeéj component of the equation from the nonredundant field equatién with H;
Einstein equation —H+ 6H,, gives

107301-2



BRIEF REPORTS PHYSICAL REVIEW D 64 107301

LooH 8+ [ (3H2—H) L gp+ 3HHL o+ 3HH L 03] 8H; also tamper with the stability of the isotropic space. Indeed,
if the model has an unstable mode for the de Sitter perturba-
+(6HLgy+3H?L;—HL,g+ HLgpy+3HHL ;5 tion, this unstable mode will also be unstable against the
_ anisotropic perturbation.
+3HHL,;)6H;=0, (11 For example, one can show that the modél]
where all field variables are understood to be evaluated at the L=—R— aRg;RggRZQ (18

background FRW space whet¢;=H=a/a for all direc-
tions, with a the FRW scale factor. We will writél as the admits an inflationary solution whea<0. Note that this
Hubble parameter for the FRW space for convenience fronnodel is the minimal consistent effective low-energy two-
now on. Lp=52"PL/SH, 6H; - - - H, SH. SH. ... loop renormalizable Lagrangian for pure gravity thepty].

. a W a2 Indeed, one can show that
6Hjb|HiHH. In deriving the above equations, we have used

the following identities: : .
J L=, {2H;+4H?—4a[2(H;+H?)*—H?]}
|

oL oL
2 Mg Mo 12 z
' ' —4a(2 H?) —6(H+2H?2)—24a[ (H+H?)%+HE]
I
oL oL 13
SH, 36H" 13 (19)
when we seH;—H. Hence one can show that the general-
f( > HiHi)_>f(3H2) (14)  ized Friedmann equatiof®) gives
i

o _ Hy=—1/4a. (20)
when we take the limiH;—H carrying the system from the

Bl space to the flat FRW space limit. Hef€X;H;H;) de- | addition, the stability equatiofi1) for SH; can be shown
notes any functions of the variabH;H;. One can show g pe

that Eq.(11) reduces to

. : 12aHZ6H, +36aH3SH, — (1+12aH3) 8H;=0. (21
L a0kl + 3H L gp0H; + (BLog+ 3H oL 11— Log) H; =0 aHooH; +36aHpoH; — (1+ 12aHo) oM, @

(15 This equation can be solved to give

once we setH=Hgy=const which denotes the de Sitter

space. This equation is identical to the stability equation for oH;=ciexf (V35/3—3)Ht/2] +diexd — (V35/3

the existence of an inflationary de Sitter solution 'discussed in +3)H,t/2] (22)
Refs.[10,12. One notes that there are two other independent

Hj; equations that remain to be checked. These equations cgfi arbitrary constants; ,d; to be determined by the initial
be shown to be redundant after the limiting c&kg=const  yerurhations. This indicates that this model admits one

is implemented. Indeed, the anisotropic perturbation on thgiaple mode and one unstable mode following the stability
Hj; equations are expected to reproduce the redundant isgquation (15) for the inflationary de Sitter solution. It is
tropic perturbation equation shown in Rgt2]. shown to be a positive sign for an inflationary model that is
Note that an inflationary de Sitter solution is expected tOcapable of resolving the graceful exit problem in a natural
have one stable mode and one unstable mode for the systehnner. Our result indicates, however, that this model also
to undergo inflation with the help of the stable_ mode. Indeedggmits an unstable mode against anisotropic perturbation.
one can show that EG15) can be solved to give Hence this model will have a problem with remaining iso-
tropic for a long period of time. Therefore a pure gravit
SHi=ciex B, t]diexf B_t] (16) mo%lel of this sgrtpwill not solve the graceful el;)(it prgblem)./

with B.. = — 3H/2+ \/A_o/ZLoz and arbitrary constants ,d; One will need, for example, the help of a certain scalar field

to be determined by the initial perturbations. Hetg to end the inflation in a consistent way.
= 9H2L2,— 4L o(6L gy + 3HoL1s— L) is the discriminant One expects any unstable mode for a model to be of the

- : form S6H;~exdIHqt], to the lowest order irHgt, in a de
of the characteristic equation for E(.5), Sitter background witH some constant characterizing the
LooX2+ 3HoL X+ (BL o1+ 3HoL 11— Lo =0. (17)  Stability property of the model. In such models, the inflation-
ary phase will only remain stable for a period of the order
There will be an unstable mode B,>0. Therefore the At~1/H,. The inflationary phase will start to collapse after
inflationary era will come to an end once the unstable modé¢his period of time. This means that the de Sitter background
takes over. It was shown earlier to be a helpful way to selecfails to be a good approximation whee>At. Hence the
a physically acceptable model for our universe. Our resulanisotropy  will also grow according to JH;
shown here indicates, however, that the unstable mode will- 5H ex{IHAt] with SH? denoting the initial perturbation.
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The measure of anisotropy can be estimated by computingls appears to be much more complicated than one may ex-

the anisotropy parameter A=.%;6H i2/3H2
~ = (8H?)Z/3H2exd IHt]. Hence A

~+Zi(6H ?)2/3H02ex;:[60|] for a typical inflationary model
which requires a 6@-fold expansion. This gives us hope that

the small anisotropy observed today can be generated by t

initial inflationary instability for models with appropriate
factorl.

On the other hand, it is known that the Einstein-Hilbert

model

L=—R-2A

(23

admits only stable modes, which requir&d;=0, which is

pect. In another words, the phase transition during and after
the inflationary phase deserves more attention and requires
extraordinary care in order to resolve the problem lying
ahead.

he Note that the nonredundant field equation for field theo-

ries with many different sorts of fields coupled to the system
can also be derived similar to the pure gravity modéf).

Similar arguments also apply to these theories. Therefore
theories with one unstable mode under anisotropic metric
perturbations with respect to the de Sitter background will
not be able to hold the de Sitter space stable for a long period
of time even if there exist stable modes. Note that, in gen-
eral, one needs to consider two different fourth derivative

bad for the natural graceful exit. This model is, however,curvature terms when higher derivative theories are consid-
stable against anisotropic perturbations, which tends to keegred in four dimensions.

the universe isotropic as long as the model is in charge.

IV. CONCLUSION

In short, the result of this paper shows that graceful exit
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