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Bianchi type-I space and the stability of the inflationary Friedmann-Robertson-Walker solution
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A stability analysis of the Bianchi type-I universe in pure gravity theory is studied in detail. We first derive
the nonredundant field equation of the system by introducing the generalized Bianchi type-I metric. This
nonredundant equation reduces to the Friedmann equation in the isotropic limit. It is shown further that any
unstable mode of the isotropic perturbation with respect to a de Sitter background is also unstable with respect
to anisotropic perturbations. The implications of the choice of physical theories are discussed in detail in this
paper.
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I. INTRODUCTION

Inflationary theory provides an appealing resolution to
the flatness, monopole, and horizon problems of our pre
universe described by standard big-bang cosmology@1#. It is
known that our universe is homogeneous and isotropic
very high degree of precision@2,3#. Such a universe can b
described by the well-known Friedmann-Robertson-Wal
~FRW! metric @4#.

It is also known that gravitational physics should be d
ferent from standard Einstein models near the Planck s
@5,6#. For example, quantum gravity or string correctio
could lead to interesting cosmological consequences@5#.
Moreover, some investigations have addressed the possib
of deriving inflation from higher-order gravitational corre
tions @7–10#.

A general analysis of the stability condition for a varie
of pure higher derivative gravity theories is very useful
many respects. In fact, it was shown that a stability condit
should hold for any potential candidate of inflationary u
verse in the flat Friedmann-Robertson-Walker~FRW! space
@10#.

In addition, the derivation of the Einstein equations in t
presence of higher derivative couplings is known to be v
complicated. The presence of a scalar field in induced gra
models and the dilaton-gravity model makes the derivat
even more tedious. In order to simplify the complications
the derivation of the field equations, an easier way has b
described@11,12#. We will try to generalize the work of Ref
@12# in order to obtain a general and model-independent
mula for the nonredundant field equations in the Bian
type-I ~BI! anisotropic space. This equation can be applied
provide an alternative and simplified method to obtain
stability conditions in pure gravity theories. In fact, this ge
eral and model-independent formula for the nonredund
field equations is very useful in many areas of interest.
particular, it will be applied to study a large class of pu
gravity models with inflationary BI-FRW solutions in thi
paper. Any Bianchi type-I solution that leads itself to
asymptotic FRW metric at time infinity will be referred to a
the BI-FRW solution in this paper for convenience.
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Note that there is no particular reason why our univers
initially isotropic to such a high degree of precision. Ev
anisotropy can be smoothed by the proposed inflation
process, it is also interesting to study the stability of the FR
space during the post-inflationary epoch. Nonetheless,
natural to expect that our universe starts out as an ani
tropic universe. The universe is then expected to evolve fr
a certain anisotropic universe, e.g., a Bianchi type-I unive
to an isotropic universe, such as the flat FRW space. Ind
it was shown that there exists such kind of BI-FRW soluti
for a NS-NS model with a metric field, a dilaton, and a
axion field @13#. This inflationary solution is also shown t
be stable against small field perturbations@14#. Note also that
stability analysis has been studied in various fields of inte
@15,16#.

A large class of models with the BI-FRW solutions will b
shown to be unstable against arbitrary anisotropic pertu
tions in this paper. We will first derive a stability equatio
which turns out to be identical to the stability equation f
the existence of the inflationary de Sitter solution discus
in Refs. @10,12#. Note that an inflationary de Sitter solutio
in pure gravity models is expected to have one stable m
and one unstable mode for the system to undergo infla
with the help of the stable mode. Consequently, the inflati
ary era will come to an end once the unstable mode ta
over after a brief period of inflationary expansion. Th
method developed in Refs.@10,12# was shown to be helpfu
in choosing a physically acceptable model for our univer
Our result indicates, however, that the unstable mode
also tamper with the stability of the isotropic space. To
more specific, if the model has an unstable mode for the
Sitter background perturbation with respect to isotropic p
turbation, this unstable mode will also be unstable with
spect to any anisotropic perturbations.

II. NONREDUNDANT FIELD EQUATION AND BIANCHI
IDENTITY

Note that the generalized Bianchi type-I~GBI! metric can
be read off directly from the following equation:

ds2[gmn
GBIdxmdxn

52b2~ t !dt21a1
2~ t !dx21a2

2~ t !dy21a3
2~ t !dz2, ~1!
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW D 64 107301
with b(t) the lapse function restored on purpose. Note a
that the Bianchi type-I~BI! metric can be obtained from GB
metric by setting the lapse functionb(t) equal to 1, i.e.,b
51, in Eq. ~1!.

Note that one can list all nonvanishing components of
curvature tensor as

Rt j
ti 5

1

2
@HiḂ12B~Ḣ i1Hi

2!#d j
i , ~2!

Rkl
i j 5HiH jBCkl

i j . ~3!

HereCkl
i j [e i jmemkl with e i jk the three space Levi-Civita ten

sor@4#. Here ‘‘•’’ denotes differentiation with respect tot and
Hi5ȧi /ai is the directional Hubble constant. We have a
written B[1/b2 for later convenience. Note also that th
indices i , j in both sides of the above equations are op
indices. Moreover,Rkl

i j 50 if i 5 j due to the symmetric prop
erties of the curvature tensor.

Given a pure gravity model one can cast the act
of the system as S5*d4xAgL5N*dt(a1a2a3 /
AB)L(Hi ,Ḣ i ,B,Ḃ) in the GBI spaces. HereN is a time-
independent integration constant. We will denote the volu
factor asV[a1a2a3b. If we take VL as an effective La-
grangian, one can show that the variation with respect tb
gives

2
1

2
L1

1

2
HiLi1Ḣ iL

i2
1

2
~Ḣ i13HHi1Hid/dt!Li50

~4!

after settingB51. Here the last term comes from the vari
tion with respect tod(HiḂ) with the help of the identity

dL

dHiḂ
d~HiḂ!5

dL

d2BḢi

d~HiḂ!→ dL

d2Ḣ i

HidḂ ~5!

once we setB51. One also needs an integration-by-p
with respect todB in order to obtain the result indicated i
the last term of Eq.~4!. Note that the first equality in Eq.~5!

comes from the fact that the factorHiḂ always shows up
with 2BḢi as indicated by the curvature tensorR t j

ti in Eq.
~2!. Therefore one ends up with theb equation as

L2HiLi5~Ḣ i23HHi2Hid/dt!Li ~6!

after settingB51. HereH[( iHi /3, Li[dL/dHi , and Li

[dL/dḢ i for convenience. In addition, one can also deri

L1~3H1d/dt!2Li5~3H1d/dt!Li ~7!

as the variational equation ofai . The derivation of this equa
tion is tedious but straightforward. In addition,VL is nor-
mally referred to as the effective Lagrangian. We will al
call L the effective Lagrangian unless confusion occurs. N
that Eq. ~7! is in fact the spacelikei j component of the
Einstein equation
10730
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Gmn5tmn ~8!

with tmn denoting the generalized energy momentum ten
associated with the system. It is known that one of th
equations is in fact a redundant equation. Indeed, one
defineHmn[Gmn2tmn and write the field equation asHmn

50.
Hence one has

DmHmn50 ~9!

from the energy conservation (Dmtmn50) and the Bianchi
identity (DmGmn50). Now we have three independent sca
factorsai and four equations. Therefore one of the four equ
tions has to be redundant. Indeed, the extended Bianchi i
tity ~9! can be shown to give

~] t13H !Htt1(
i

HiHii 50, ~10!

as soon as the BI metric is substituted into equation~9!.
Therefore Eq.~10! indicates that: ‘‘Htt50 implies ( iHiHii
50.’’ Hence two of theHii equations vanish which imply
that the third one also vanishes.

On the other hand,H15H25H350 implies instead (] t
13H)Htt50. This implies that VHtt5const with V
[a1a2a3. Hence theHtt equation is the nonredundant equ
tion while we are free to ignore one of the threeHii equa-
tions. Hence any conclusion derived without theHtt equation
is known to be incomplete.

III. PERTURBATION AND STABILITY

One can then apply the perturbation,Hi5Hi01dHi , to
the field equation withHi0 the background solution to th
system. This perturbation will enable one to understa
whether the background solution is stable or not. In parti
lar, one would like to learn whether a BI-FRW-type evol
tionary solution is stable or not. It is known that our univer
could start out anisotropic; even evidences indicate that
universe is isotropic to a very high degree of precision in
post inflationary era. Therefore one expects that any phys
model should admit a stable BI-FRW solution.

Our result indicates that FRW inflationary solutions with
stable mode and an unstable mode is a negative result to
search for a physically acceptable model. Note that FR
inflationary solutions with a stable mode and an unsta
mode will provide a natural way for the inflationary univer
to leave the inflationary phase. Our result indicates, howe
that such models will also be unstable against the anisotr
perturbations. Therefore such a solution will be harmful
the system to settle from BI space to FRW space once
graceful exit process is done.

First of all, one can show that the first-order perturbati
equation from the nonredundant field equation~6!, with Hi
→H1dHi , gives
1-2
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L02HdḦ i1@~3H22Ḣ !L0213HḢL1213HḦL03#dḢ i

1~6HL0113H2L112HL201ḦL0213HḦL12

13HḢL21!dHi50, ~11!

where all field variables are understood to be evaluated a
background FRW space whereHi5H5ȧ/a for all direc-
tions, with a the FRW scale factor. We will writeH as the
Hubble parameter for the FRW space for convenience fr
now on. Lab[da1bL/dHi i

dHi 2
•••Hi a

dḢ j 1
dḢ j 2

•••

dḢ j b
uHi→H . In deriving the above equations, we have us

the following identities:

(
i

Hi

dL

dHi
→H

dL

dH
, ~12!

dL

dHi
→ dL

3dH
, ~13!

f S (
i

HiHi D→ f ~3H2! ~14!

when we take the limitHi→H carrying the system from the
BI space to the flat FRW space limit. Heref (( iHiHi) de-
notes any functions of the variable( iHiHi . One can show
that Eq.~11! reduces to

L02dḦ i13H0L02dḢ i1~6L0113H0L112L20!dHi50
~15!

once we setH5H05const which denotes the de Sitt
space. This equation is identical to the stability equation
the existence of an inflationary de Sitter solution discusse
Refs.@10,12#. One notes that there are two other independ
Hi j equations that remain to be checked. These equations
be shown to be redundant after the limiting caseH05const
is implemented. Indeed, the anisotropic perturbation on
Hi j equations are expected to reproduce the redundant
tropic perturbation equation shown in Ref.@12#.

Note that an inflationary de Sitter solution is expected
have one stable mode and one unstable mode for the sy
to undergo inflation with the help of the stable mode. Inde
one can show that Eq.~15! can be solved to give

dHi5ciexp@B1t#diexp@B2t# ~16!

with B6523H0/26AD0/2L02 and arbitrary constantsci ,di
to be determined by the initial perturbations. HereD0

[9H0
2L02

2 24L02(6L0113H0L112L20) is the discriminant
of the characteristic equation for Eq.~15!,

L02x
213H0L02x1~6L0113H0L112L20!50. ~17!

There will be an unstable mode ifB1.0. Therefore the
inflationary era will come to an end once the unstable m
takes over. It was shown earlier to be a helpful way to se
a physically acceptable model for our universe. Our res
shown here indicates, however, that the unstable mode
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also tamper with the stability of the isotropic space. Inde
if the model has an unstable mode for the de Sitter pertu
tion, this unstable mode will also be unstable against
anisotropic perturbation.

For example, one can show that the model@10#

L52R2aRbg
mnRsr

bgRmn
sr ~18!

admits an inflationary solution whena,0. Note that this
model is the minimal consistent effective low-energy tw
loop renormalizable Lagrangian for pure gravity theory@17#.
Indeed, one can show that

L5(
i

$2Ḣ i14Hi
224a@2~Ḣ i1Hi

2!32Hi
6#%

24aS (
i

Hi
3D 2

→6~Ḣ12H2!224a@~Ḣ1H2!31H6#

~19!

when we setHi→H. Hence one can show that the gener
ized Friedmann equation~6! gives

H0
4521/4a. ~20!

In addition, the stability equation~11! for dHi can be shown
to be

12aH0
2dḦ i136aH0

3dḢ i2~1112aH0
4!dHi50. ~21!

This equation can be solved to give

dHi5ciexp@~A35/323!H0t/2#1diexp@2~A35/3

13!H0t/2# ~22!

with arbitrary constantsci ,di to be determined by the initia
perturbations. This indicates that this model admits o
stable mode and one unstable mode following the stab
equation ~15! for the inflationary de Sitter solution. It is
shown to be a positive sign for an inflationary model that
capable of resolving the graceful exit problem in a natu
manner. Our result indicates, however, that this model a
admits an unstable mode against anisotropic perturbat
Hence this model will have a problem with remaining is
tropic for a long period of time. Therefore a pure gravi
model of this sort will not solve the graceful exit problem
One will need, for example, the help of a certain scalar fi
to end the inflation in a consistent way.

One expects any unstable mode for a model to be of
form dHi;exp@lH0t#, to the lowest order inH0t, in a de
Sitter background withl some constant characterizing th
stability property of the model. In such models, the inflatio
ary phase will only remain stable for a period of the ord
Dt;1/lH 0. The inflationary phase will start to collapse aft
this period of time. This means that the de Sitter backgrou
fails to be a good approximation whent@Dt. Hence the
anisotropy will also grow according to dHi

→dHi
0exp@lH0Dt# with dHi

0 denoting the initial perturbation
1-3
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The measure of anisotropy can be estimated by compu
the anisotropy parameter A[A( idHi

2/3H2

;A( i(dHi
0)2/3H0

2exp@lH0t#. Hence A
;A( i(dHi

0)2/3H0
2exp@60l # for a typical inflationary model

which requires a 60e-fold expansion. This gives us hope th
the small anisotropy observed today can be generated by
initial inflationary instability for models with appropriat
factor l.

On the other hand, it is known that the Einstein-Hilbe
model

L52R22L ~23!

admits only stable modes, which requiresdHi50, which is
bad for the natural graceful exit. This model is, howev
stable against anisotropic perturbations, which tends to k
the universe isotropic as long as the model is in charge.

IV. CONCLUSION

In short, the result of this paper shows that graceful e
and stability of any de Sitter model cannot work along in
naive way. The physics behind the inflationary de Sitter m
t.
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els appears to be much more complicated than one may
pect. In another words, the phase transition during and a
the inflationary phase deserves more attention and requ
extraordinary care in order to resolve the problem lyi
ahead.

Note that the nonredundant field equation for field the
ries with many different sorts of fields coupled to the syst
can also be derived similar to the pure gravity models@12#.
Similar arguments also apply to these theories. There
theories with one unstable mode under anisotropic me
perturbations with respect to the de Sitter background w
not be able to hold the de Sitter space stable for a long pe
of time even if there exist stable modes. Note that, in g
eral, one needs to consider two different fourth derivat
curvature terms when higher derivative theories are con
ered in four dimensions.
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