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Acoustic Echo Cancellation Using
Iterative-Maximal-Length Correlation and

Double-Talk Detection
Jang-Chyuan Jenq and Shih-Fu Hsieh

Abstract—The conventional maximal-length-correlation (MLC)
algorithm to estimate room impulse response for adaptive echo
cancellation (AEC) is disturbed by both far-end and near-end
speeches. In this paper, a new iterative-maximal-length-cor-
relation (IMLC) algorithm is proposed to reduce the far-end
speech interference. To avoid the near-end interference, a new
double-talk detection (DTD) method is proposed by tracking the
squared coefficients errors of the AEC filter. This DTD method
has well-separated detection margins among single-talk (ST),
double-talk (DT), and echo path changes. Statistical analysis and
computer simulations confirm that our proposed IMLC-DTD
algorithm outperforms conventional methods.

Index Terms—Acoustic echo cancellation, adaptive filters,
double talk detection, echo suppression, maximal length sequence.

I. INTRODUCTION

H ANDS-FREE conversation is popular in various fields of
communication such as teleconferencing, video confer-

encing and mobile radio telephone. However, in those appli-
cations the presence of coupling from the loudspeakers to the
microphone would result in undesired acoustic echo and sig-
nificantly degrade the speech quality. Therefore, an effective
adaptive echo canceler (AEC) is required [1]. A typical AEC
is shown in Fig. 1: where the coefficients of the AEC filter
are used to model the room impulse response (RIR) be-
tween the microphone and the loudspeaker. If a far-end speech

is sent into the near-end room, a synthesized echo replica
speech is generated by the AEC filter, (
denotes linear convolution) and subtracted from the microphone
signal . The residue echo signal in the return path is
given by

(1)

Equation (1) shows that if the filter coefficients are the
same as that of the RIR , then the echo will be canceled per-
fectly and there remains only the near-end signal , which
includes a near-end speech and a background noise ,
in the return path.

Manuscript received July 24, 2000; revised August 9, 2001. This work
was supported in part by the National Science Council under Grant NSC
90-2213-E-009-112. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Michael S. Brandstein.

The authors are with the Department of Communication Engineering,
National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail:
ojjc@ms17.hinet.net; sfhsieh@cc.nctu.edu.tw).

Publisher Item Identifier S 1063-6676(01)09669-9.

Recently, several AEC filter techniques have been proposed
[2]. They are typically implemented using a finite impulse re-
sponse (FIR) filter for stability reason. The most popular and
computationally efficient adaptive algorithms are the LMS al-
gorithms [3]. However, all existing adaptive AEC filters share
serious problems during “double-talk” (DT) when simultaneous
talks occurs for both near-end and far-end speakers. In this situ-
ation, the microphone signal includes near-end signal
which acts like a large disturbing noise to the residue echo signal

and the filter coefficients will be greatly disturbed. There-
fore, the echo cannot be canceled any more and will become
intolerable echo.

To overcome the DT problem, almost all of current techniques
attempt to effectively turn off adaptation during DT [6], [9],
[10], [14]. However, a critical question is that merely measuring
the residue echo cannot discriminate between DT and echo path
changes. Furthermore, the detection and discrimination algo-
rithm must be fast in order to prevent the adaptive filter from
being misadjusted.

Another technique which is more robust to estimate RIR
, during DT situation, is the maximal length correlation

(MLC) algorithm [7], [8]. The basic MLC method is done
by sending a periodic maximal-length sequence (MLS)
with period to the loudspeaker [ is set to zero] and
cross-correlate the microphone signal with . We can
estimate RIR as follows:

c (2)

where c denotescorrelation: c
; is the order of the AEC filter and the microphone signal

can be expressed as . We can rewrite
(2) as

c

c c

(3)

In (3), we have used the associative law between correlationc
and convolution : c c .
This is because of c and the convolu-
tion operation satisfies the associative law. Since the MLS

1063–6676/01$10.00 © 2001 IEEE



JENQ AND HSIEH: ACOUSTIC ECHO CANCELLATION 933

Fig. 1. Echo canceler.

is a pseudo random noise with magnitude1, and its auto-cor-
relation is nearly a delta function [8], we have c

. Equation (3) can be rewritten as

c

c

(4)

In (4), the second term is the average
of RIR which can be neglected if has no DC term,
and the third term can be very small whenis large and
and are uncorrelated. Thus we can find that during DT,
the MLC method with large is robust to estimate . In ad-
dition, because , we find the correlation in (2)
only needs additions without multiplications. However, the con-
ventional MLC method [7], [8] requires injecting the training
sequence to the near-end room before talking. This is too
noisy for human hearing.

To overcome the noisy problem in MLC and maintain a ro-
bust estimation for RIR during DT, Doherty,et al. [11]
suggest adding a low level MLS to the far-end speech be-
fore sending to the loudspeaker and then estimating by the
MLC method. According to the auditory masking effect [12],
the MLS could be masked to the user if the power ratio of the
far-end speech signal to the MLS is above 15 dB. This masked
MLC structure is shown in Fig. 2. Notice that in the left top
corner, MLS with period and magnitude controlled by
gain , is added to the far-end speech and the far-end signal be-
comes . Now the far-end speech is
equivalent to a disturbance noise when the MLC method is used
to estimate RIR . Next, we want to find the estimation filter
error of the MLC algorithm.

Since the MLC method estimates from each period
(length ) of the input MLS , we can represent the
microphone signal by sums of shifted finite-length blocks of
length respectively: , where

. The th MLC estimate
can be written as

c (5)

Note that the th block microphone signal can be written
by

(6)

Substituting (6) into (5), we get

c

c

(7)

where the near-end interference and far-end interfer-
ence are defined as

c

c

(8)

Notice that in (7) the near-end and far-end interferences are
equivalent to the estimation errors. We can define the MLC co-
efficient error as

(9)

In (8), we find that better speech suppression can be achieved
by increasing the magnitude or the length of the MLS;
however, large is too noisy for hearing and longer length of
MLS needs longer time to converge and compute. Moreover,
although the conventional MLC method [9] may suppress the
DT effect, it still includes the far-end and near-end speeches
disturbances that cannot be defeated and the echo cancellation
performance is poor.

The main purpose in this paper is to find a way to overcome
the MLC problem, i.e., to reduce the disturbances caused by the
far-end and near-end speeches. In Section II, we propose an it-
erative MLC (IMLC) method [13] to reduce the far-end speech
interference. This basic idea is similar in [17]. Moreover, be-
cause the near-end speech, in case of DT, cannot be removed, we
will propose a new DT detection mechanism in Section III, to ef-
fectly distinguish between DT and echo path changes to prevent
the AEC filter from misadjustment. This detection is based on
comparison of the squared-coefficient error between two con-
secutive IMLC estimates. In Section IV, computer simulation
and comparisons will be presented to support our analysis.
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Fig. 2. AEC block digram with the masked MLC algorithm.

Fig. 3. Flowchart of the IMLC algorithm.

II. IMLC AEC STRUCTURE

A. IMLC Algorithm

In this section, we attempt to remove the MLC disturbance
caused by the far-end speech to obtain a better estimate for the
RIR . We propose an IMLC algorithm by inserting a back-
ward (BW) filter to estimate the far-end speech re-
sponse and cancel its disturbance. This
algorithm includes five steps:

1) set both BW and AEC filters coefficients
and use the conventional MLC algorithm to ob-
tain an initial estimate of the RIR

c , where is the
first block data of microphone output;

2) estimate the response of the (second block of) far-end
speech by the BW filter: ;

3) cancel the signal from the second block data of
the microphone output , thus

;
4) estimate c and copy

it to BW and AEC filter;
5) the last step goes to the first step and recursively

compute c ,
.
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Fig. 4. IMLC AEC block diagram.

These steps are expressed by the flow chart shown in Fig. 3. We
extend this algorithm to develop an IMLC AEC structure shown
in Fig. 4.

The new AEC structure has two identical filters: backward
(BW) and AEC filters. Because the far-end speech is readily
available, we can subtract the BW filter output from

before using the MLC algorithm to estimate . The
th estimated coefficients by the IMLC method is ex-

pressed as

c (10)

Comparing (5) and (10), because the far-end speech disturbance
is estimated by the BW filter and can-

celed from , we can obtain a better estimate for the RIR
. Next we give convergence analysis for squared coefficient

error of IMLC algorithm.

B. Estimation Error

Now we will show that the IMLC estimation coefficient error
can be reduced by further iterations. Follow the same process of
MLC method in (6)–(8)

(11)

In (11), the third term is the disturbance due to the far-end
speech. So long as the BW filter’s coefficients are
close to , the far-end speech will be canceled more perfectly
and further iterations can improve estimation even better. By
definition in (9), the IMLC coefficient error becomes

(12)

and we have the initial state where
. Now, we are interested in the convergence

issue of squared coefficient error .

In (12), from the convolution property we have

...

(13)

By definition, in (8) we have
. For simplicity, (13) is written

in a vector form as

(14)

where the coefficients error and the near-end interference vector
are defined as

...
...

and the far-end interference matrix is defined as

...
...

...
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Now, by recursive substitution, in (14) and proper expansion,
we may express (14) as follows:

(15)

and can be expressed as

(16)

In (16), we have assumed that different block of near-end in-
terference vectors satisfy where is a
square matrix obtained by the product of the far-end interference
matrices . This is because (or

) is regarded as the vector of the near-end signal [or
the matrix of the far-end signal ] spread by the MLS .
Note that in (16), is a symmetric matrix and assume the
smallest eigenvalue and largest eigen-
value . From the quadratic form prop-
erty we have

...

(17)

where defined in (8) is regarded as the near-end signal
spread by and suppressed by the factor .
When is large, difference of in consecutive
blocks is reduced, too. In our analysis we assume it is the same
for all . From (16) in (17) we have

(18)

When (18) satisfies the convergence condition, , we
may express it as

(19)

and we find that the error due to the first iteration decays
after few iterations. Thus, the error propagation is not a serious
problem and will be confirmed by our simulations. Because el-
ements of the near-end interference matrix are

c , the maximum eigenvalue of

has the factor . When is large,
we may well have and (19) becomes

(20)

In (20), we find that the estimation coefficient error of the IMLC
method is merely caused by the near-end signal. In (8), because
the near-end signal includes the near-end speech and
the background noise , we have .
To compare the coefficient error between MLC in (7), and the
IMLC method in (20), let and represent the hypotheses
of single-talk (ST) ( ) and DT, respectively, we have

c

c

c

(21)

c

c

c

(22)

From (21) and (22), we find that when the number of it-
erations is large enough, (normally, ), the IMLC
method is no longer disturbed by the far-end speech. In another
word, during DT situation, the MLC coefficients errors are dis-
turbed by both near-end and far-end interferences. However, the
IMLC method only has near-end interferences. In a ST situation,
the MLC method still has far-end interference, but the IMLC
method could estimate coefficients more perfectly. This is the
main reason why we propose this IMLC method.

Although IMLC outperforms MLC during ST by effectively
removing the far-end interference, the near-end signal
during DT is still troublesome. In next section, based on
the IMLC structure, we propose a DT detection mechanism,
which compares the squared errors of the filter coefficients to
effectively distinguish between DT and echo path changes and
control AEC filter updates properly.

III. AEC STRUCTUREWITH DOUBTALK DETECTION

A. Conventional DTD AEC Structure

There are a number of DT detectors. One is the cross-cor-
relation method [15], [16]. If the filter has converged to its
optimal solution, the detection is accomplished by observing
whether the input signal is orthogonal to the residue error
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Fig. 5. Conventional DTD AEC structure.

or not. By the orthogonal principle they will be orthogonal
to each other in case of ST. However, in case of DT, the residue
error gets larger abruptly and they are not orthogonal. But
if the echo path changes, they are also neither orthogonal and
detection error may arise. Another one is the level-comparison
method [4]–[7], [14] by observing the power levels of the
far-end signal , the microphone signal , and the
residue error . One of the popular structures of AEC, with
level-comparison DT detection, is depicted in Fig. 5.

The structure has two separate FIR filters, one (forward
FW) for adaptively identifying RIR and the other (AEC)
for synthesizing the echo replica to cancel out the echo. The
coefficients of the AEC filter are refreshed by the adaptive
FW filter, only when the latter gives a better estimation of
RIR than the former. This is done by the following
procedures. First, we observe the input data block by
block, with denoting the th
block of , and calculate the echo return loss (ERL) [6] as

and
where and denote the residue error signals from FW and
AEC filters, respectively. Second, if ,
which is the converging situation during ST, then
is much closer to RIR , and the AEC filter coefficients

are replaced by . Thus, the AEC filter
coefficients will be always close to .

If which can be the case of DT, echo
path changes, or converged ST, the DTD method compares the
power levels of the input signal and microphone output
signal . If the difference between them is small,
are updated and replaced by , because the power
level of the microphone signal seldom changes in case of RIR
changes. On the other hand, if the difference is large,
are freezed and will not be replaced, because the power level
tends to increase in case of DT.

Although this conventional DTD method is able to discrimi-
nate between DT and echo path change, its discriminating per-
formance is poor, especially when the far-end speech is
correlated with the near-end speech , which is usually the
case in practice. To clarify and compare the detection perfor-

mance between this conventional and our proposed methods, we
view this problem as a hypothesis test. First, we determine the
conditional probability density function (pdf) of the microphone
signal power in case of ST, DT, and echo
path change. Then, we will pinpoint the detection problem.

Assume that in case of echo path changes, RIR changes from
to and the norm of RIR , for sim-

plicity. In fact, the gains of the loudspeaker and the echo path
can both be normalized. If , we can change the input
signal by . We also assume that the system RIR
input and the output signal or

, have equal power. For convenience of
analysis, assume that , , and are inde-
pendent sequences of Gaussian distribution with zero mean and
variances , and , respectively. Therefore, is
an iid (identical and independent) sequence of Gaussian distri-
bution with zero mean and its variances under three hypotheses
of ST ( ), DT ( ), and echo path change ( ) are

(23)

Thus, is a Gamma distribution with
two parameters denoted by . When is
large enough, by the central limit theorem, the distribution
is approximately a normal distribution with mean and
variance , denoted by .
We have pdfs of as

(24)

where and are the mean and vari-
ance under different hypotheses. Notice that in (24), the pdf
under ST is the same as that of the echo path change. Fig. 6
shows typical pdfs of by assuming and ignoring

. The cross-correlation value of is assumed
to be 0.45, so that the pdfs are partially overlapped.

In Fig. 6, to distinguish between DT from echo path change
(or the ST), a threshold that has the minimum detection error,
will be determined. We use the maximuma posteriori(MAP)
detection rule

(25)

where and are the probabilities of echo path
change and DT occurrence. Equation (25) states that we should
choose hypothesis if the ratio of the conditional pdfs

is greater than ;
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Fig. 6. Conditional pdf ofkyk .

otherwise, we should choose hypothesis . Because
under different hypotheses are approximately of Gaussian
distribution, (25) can be written as

(26)

where

and the threshold

The flowchart of DT detection is depicted in Fig. 7.
However, there exists a serious problem to determine the

threshold . Because is a function of
that can not be known exactly, thus, the thresholdcan not be
determined exactly and a risk of wrong detection is very high.

In the next section, we propose an AEC structure which incor-
porates the IMLC method and a new DT detection mechanism.
This mechanism monitors the variation of the filter coefficients
to offer a well-separated detection margin to effectively discrim-
inate among ST, DT, and echo path change.

B. IMLC DTD AEC Structure

The new AEC structure is depicted in Fig. 8 and is basically
similar to the one in Fig. 5. It also has FW and AEC filters for
adaptively identifying echo path transfer characteristics and
synthesizing the echo replica. The coefficients of the AEC
filter are refreshed and copied from the FW filter’s
coefficients only when the FW is found to give a better
echo path transfer characteristics than the AEC filter. However,
in the new structure the FW filter coefficients are updated by
the IMLC method described in Section II. Because (21) shows
that the IMLC method is more robust to estimate during
DT, the new DT detection mechanism is to track the variation of
the squared coefficients error to effectively

Fig. 7. Flowchart of DT detection based on the MAP rule.

discriminate among the ST, DT, and echo path change. This
differs significantly from the conventional DTD method by
tracking .

The new detection method can be expressed as follows: If
, the AEC filter coefficients

are replaced by . If , we need to
inspect the squared coefficients error, , at the th IMLC
iteration. We find that the coefficients error

can not be measured, in practice. However, in the structure
of Fig. 8, when the IMLC algorithm begins from ST, after a few
iterations, we have and because of

, we can estimate as

(27)

Now, we are interested in determining pdfs of under
three different hypotheses: and . We have
computed the filter coefficients errors, , of IMLC during
DT and ST. As before, we assume that the near-end speech
and the near-end noise are both of white Gaussian distri-
bution with zero mean. By (21) and (22), the coefficients errors
are modeled as a linear combination of the near-end signal and
assume that has no DC term,
can be neglected. Thus, and are also of
Gaussian distribution with mean and variances

and .
Following the same procedure in (24), we have the conditional
pdfs of in ST and DT as

(28)
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Fig. 8. Proposed IMLC AEC with DTD structure.

Next, we will consider the pdf of , in the hypotheses
of echo path change. Suppose the IMLC algorithm begins

from ST and the echo path changes from to at some
time instant. In this case, according to (27), we have the coef-
ficients of the FW filter , and the estimated
coefficients error will become

(29)

where is the new coefficient error. Assume
that and are uncorrelated, then the squared
coefficients error can be approximately expressed as

(30)

From (11), the newly estimated IMLC coefficients can be
rewritten as

(31)

Because and in the absence of the near-end
speech [ is ignored], the new coefficient error
can be rewritten as

Using (8), we have

c

c (32)

where c . Notice that (32) is sim-
ilar to (22) and assume is an iid sequence of Gaussian dis-
tribution with zero mean, we may derive the pdf of as
previously discussed in (28). The variance of is

where , by the definition
and property of MLS , can be written as:
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and becomes . The pdf
of can be expressed as

(33)

In (30), we have known the relation between and ,
the pdf of now becomes

(34)

Next, we consider in (34). When the relative location
between the microphone and the loudspeaker varies slightly and
the echo path changes fromto , our experiment indicates that

and , therefore, we assume

(35)

In summary, the pdfs of under three different hypotheses
are

(36)

Fig. 9 shows the pdfs of by assuming that ,
, , and the near-end SNR is 10 dB.

Comparing the new DTD in (36) and conventional one in
(24), we find some interesting properties. First, the new method
can easily distinguish among ST, DT, and echo path change be-
cause the parameters of its pdfs are known and the detection
margins are well separated, but the conventional method cannot.
Second, because the detection margins are well separated, the
decision rule can be simply expressed as

(37)

where the threshold can be simply chosen by averaging the
means of and . Similarly, can be chosen by
averaging the means of and . The complete
flow chart of the proposed DTD is depicted in Fig. 10.

Fig. 9. Probability density functions ofkek under ST, DT, and path change.

Fig. 10. Flowchart of proposed DT detection.

IV. COMPUTERSIMULATION AND COMPARISONS

The performance of the algorithms are verified and compared
by extensive computer simulation. We use as the crite-
rion, defined as

(dB)

(38)

Fig. 11 shows RIR which is measured from a real room.
The sampling frequency is 10k, and down sampled by 100. The
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Fig. 11. RIR used for simulations.

Fig. 12. ERLE comparison of MLC and IMLC algorithms in ST.

far-end , near-end speeches and background noise
are white Gaussian with , and .

The MLS period length is 4096.
In Fig. 12, assume the filter length and RIR

also has an order of 100 during ST situation, we compare the
performance between MLC and IMLC methods. In

these simulations, two groups of parameters,and of MLS,
are considered. 1) Fixed and change from 0.075
( 22.5 dB) to 0.6 ( 4.5 dB). It is expected that increasing

will improve the performance. 2) Fixed
( 16 dB) and change from 2048 to 16 384. Likewise,
increasing will improve the performance. We find
that if is fixed as a constant, the performances of

are identical. For example, if ( 10 dB) and
are chosen, the is the same with that of

( 16 dB) and . This result is confirmed
by (21) and (22). To keep the same performance, we
may either choose larger and shorter (more noise but less
computation complexity) or smaller and longer (less noise
but more computation complexity). “” is the result of MLC
and “ ” is the converged results of IMLC. Note that in the
beginning, the AEC filter’s coefficients may diverge
due to the far-end speech, especially when the products
are small. When the coefficients are close to ,
the far-end speech will be canceled more perfectly and further
iterations can improve estimation even better. We find that after
three or four iterations, IMLC improves 40 dB compared to the
conventional MLC method.

Fig. 13 compares the performance of NLMS, MLC,
IMLC, and IMLC&DT (IMLC with DT detection) algorithms
in cases of ST and DT using white Gaussian noise as input.

Fig. 13. ERLE comparisons of MLC, IMLC, and IMLC&DT algorithms in
ST and DT.

Fig. 14. ERLE comparisons using real speech signals.

In this simulation, we select , , filter taps
and RIR orders 100, the of MLC is only

6 dB in either cases of ST and DT. The converged of
IMLC in ST is about 45 dB and degrades to 6 dB in DT. The

of IMLC&DT always maintains about 45 dB.
Fig. 14 compares the performances using speech sig-

nals. In IMLC and MLC simulations, we choose ,
, filter taps and RIR orders 100, the

converged of IMLC in ST is also about 45 dB and de-
grades to 6 dB minimum in DT. The of IMLC&DT al-
ways maintains about 45 dB. In NLMS simulations, we choose
step size 1, filter length 100. The converged of
NLMS in ST is about 27 dB and degrades to5 dB minimum
in DT.

Fig. 15 shows the squared coefficients errors of IMLC,
using white Gaussian noise and real speech signals, in cases
of ST, DT, and echo path change (when positions of the mi-
crophone and the loudspeaker vary slightly). In this simulation,
we choose (the mask level of the far-end speech to
MLS is about 10 dB); the results are close to theoretical values:

9 dB, 48 dB. Notice that the de-
tection margin between ST and DT is about 30 dB and between
DT and echo path change (HV) is about 10 dB. Although there
are more fluctuations for speech signals in case of DT, our de-
tection algorithm still works very well.

Next, we compare the computation complexities of MLC,
IMLC, and NLMS algorithms.

In Table I, we find that the computation complexities of IMLC
are more than MLC but equal or less than NLMS. (Note that
indicates the computation complexities of the NLMS algorithm
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Fig. 15. Squared coefficients errorskek in ST, DT, and echo path change
(HV).

TABLE I
COMPARISON OFCOMPUTATION COMPLEXITIES

can be reduced to approximately due to the fact that the
norm of the input signal is calculated recursively.)

V. CONCLUSION

In this paper, we investigate the known MLC method for
acoustic echo cancellation. By using a BW filter to estimate the
response of the far-end speech, an improved iterative MLC algo-
rithm is proposed to reduce the coefficient estimation error due
to the far-end speech interference. A new DT detection based
on hypothesis test is also proposed to monitor the squared co-
efficient errors so that the near-end speech interference can be
avoided. Theoretical analysis and computer simulation demon-
strates that the IMLC is efficient and effective for acoustic echo
cancellation.
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