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Acoustic Echo Cancellation Using
lterative-Maximal-Length Correlation and
Double-Talk Detection

Jang-Chyuan Jenq and Shih-Fu Hsieh

Abstract—The conventional maximal-length-correlation (MLC) Recently, several AEC filter techniques have been proposed
algorithm to estimate room impulse response for adaptive echo [2]. They are typically implemented using a finite impulse re-
cancellation (AEC) is disturbed by both far-end and near-end g,4n56 (FIR) filter for stability reason. The most popular and

speeches. In this paper, a new iterative-maximal-length-cor- . . . .
relation (IMLC) algorithm is proposed to reduce the far-end computationally efficient adaptive algorithms are the LMS al-

speech interference. To avoid the near-end interference, a new gorithms [3]. However, all existing adaptive AEC filters share

double-talk detection (DTD) method is proposed by tracking the serious problems during “double-talk” (DT) when simultaneous

Equafed||009ffi0i'§:n(tjs g‘”tOfSt_ of the AEC filter. ThiS_DTlDt”}Etth% talks occurs for both near-end and far-end speakers. In this situ-
as well-separate etection margins among single-ta T H H H H

double-talk (pDT), and echo path chgnges. Statigsticalganalysisf an)d athn, the m'lcrophone 5!9”5“7?) Inclgdes near-en'd signaln) .

computer simulations confirm that our proposed IMLC-DTD which acts I|ke_alarge d_ls_turblng_ noise tothe r§5|due echo signal

algorithm outperforms conventional methods. £(n) and the filter coefficients will be greatly disturbed. There-

Index Terms—Acoustic echo cancellation, adaptive filters, fore, the echo cannot be canceled any more and will become
double talk detection, echo suppression, maximal length sequence.intolerable echo.

To overcome the DT problem, almost all of current techniques
attempt to effectively turn off adaptation during DT [6], [9],
[10], [14]. However, a critical question is that merely measuring

ANDS-FREE conversation is popular in various fields othe residue echo cannot discriminate between DT and echo path
communication such as teleconferencing, video confethanges. Furthermore, the detection and discrimination algo-
encing and mobile radio telephone. However, in those applithm must be fast in order to prevent the adaptive filter from
cations the presence of coupling from the loudspeakers to t#hgng misadjusted.
microphone would result in undesired acoustic echo and sig-Another technique which is more robust to estimate RIR
nificantly degrade the speech quality. Therefore, an effectibén), during DT situation, is the maximal length correlation
adaptive echo canceler (AEC) is required [1]. A typical AEGQMLC) algorithm [7], [8]. The basic MLC method is done
is shown in Fig. 1: where the coeﬁicierftsn) of the AEC filter by sending a periodic maximal-length sequence (MkS))
are used to model the room impulse response (RR) be- with period L to the loudspeakers{n) is set to zero] and
tween the microphone and the loudspeaker. If a far-end speeopss-correlate the microphone sigpéh) with p(n). We can
s(n) is sent into the near-end room, a synthesized echo replistimate RIR:(n) as follows:
speechij,(n) = s(n) % h(n) is generated by the AEC filterx (

|I. INTRODUCTION

denotes linear convolution) and subtracted from the microphone . 1
signaly(n). The residue echo signafx) in the return path is h(n) = T+1) p(n)©y(n), 1<n<M (2
given by

where®© denotesorrelation p(n)©y(n) = Ef;é p(k)y(k—

R n); M is the order of the AEC filter and the microphone signal
=s(n) * [h(”) - h(”)} +u(n). (1) canbe expressed &) = p(n) = h(n) +u(n). We can rewrite

: : , . (2) as

Equation (1) shows that if the filter coefficienign) are the
same as that of the RIRn), then the echo will be canceled per-

fectly and there remains only the near-end sigr(al), which ~ h(n) = L p(n)©[p(n) * hin) + u(n)]
includes a near-end speegfr) and a background noisén ), (L Ir 1 1
in the return path. = -
P Ty PR () + s p(n) @),
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s(n) Um(n) = y()|lmiti<n<mtyr- The mth MLC estimate
P LOUDSPEAKER hm(n) can be written as
/
. - 1
n hm(n) = === p()Oym(n), 1<n<M. (5
Flﬁgk ;. h(n) Y G(L+1)
y) n
7. " Note that thenth block microphone signai,, (n) can be written
( () .0 | Y
I - MIC
—De -k S Um(n) ={u(n) +[s(n) + Gp(n)] * h(n)}mL+1<n<(ma1)L-
RETURN PATH &(1) yn) u(m)=z(n) +v(n) (6)

Substituting (6) into (5), we get
Fig. 1. Echo canceler. g( ) ( ) g

N 1 1
is a pseudo random noise with magnitudlg, and its auto-cor- fim(n) =h(n) + G(L+1) p(n)©u(n) - (L+1) kz hk)

relation is nearly a delta function [8], we hayén)©p(n) = 1
(L +1)6(n) — 1. Equation (3) can be rewritten as + ) [p(n)©s(n)] * h(n)
=h(n)+In m(n) + Ip m(n) x h(n) @)
1 where the near-end interferente ,,(n) and far-end interfer-
h(n) = ) [(L 4+ 1)6(n) — 1] % h(n) encelr ,(n) are defined as
+ o POun) ! Ly
(L+1) i In(n) = ml’(”)@“(”) BRUESY kz_:_l h(k)
1 1
=hn) = T 223 W) + gy P ©u(n) Ie(n) = ﬁ p(n)©s(n)
~ h(?’L) (4) IN, rn(n) = IN (ﬂ) |rnL+1§n§(rn+l)L
Ip,m(n) =Ip(N)|mry1<n<imin) - (8)

In (4), the second terr(ll /(L + 1)) i”:l h(k) is the average
of RIR 2(n) which can be neglected i(n) has no DC term, Notice that in (7) the near-end and far-end interferences are
and the third term can be very small whérnis large and(n)  equivalent to the estimation errors. We can define the MLC co-
andu(n) are uncorrelated. Thus we can find that during Defficient error as

the MLC method with largd. is robust to estimatg(» ). In ad- .

dition, because(n) € {1, —1}, we find the correlation in (2) em(n) =hm(n) — h(n)

only needs additions without multiplications. However, the con- =1In m(n) + I m(n) % h(n). (9)
ventional MLC method [7], [8] requires injecting the training

sequence(n) to the near-end room before talking. This is too In (8), we find that better speech suppression can be achieved
noisy for human hearing. by increasing the magnitudé or the lengthL of the MLS;

To overcome the noisy problem in MLC and maintain a rdaowever, large is too noisy for hearing and longer length of
bust estimation for RIRk(n) during DT, Dohertyet al. [11] MLS needs longer time to converge and compute. Moreover,
suggest adding a low level MLS to the far-end speg@h) be- although the conventional MLC method [9] may suppress the
fore sending to the loudspeaker and then estimdiing by the DT effect, it still includes the far-end and near-end speeches
MLC method. According to the auditory masking effect [12]disturbances that cannot be defeated and the echo cancellation
the MLS could be masked to the user if the power ratio of thgerformance is poor.
far-end speech signal to the MLS is above 15 dB. This maskedThe main purpose in this paper is to find a way to overcome
MLC structure is shown in Fig. 2. Notice that in the left toghe MLC problem, i.e., to reduce the disturbances caused by the
corner, MLSp(n) with period L and magnitude controlled by far-end and near-end speeches. In Section Il, we propose an it-
gaind, is added to the far-end speech and the far-end signal legative MLC (IMLC) method [13] to reduce the far-end speech
comesz(n) = s(n) + Gp(n). Now the far-end speecf{n) is interference. This basic idea is similar in [17]. Moreover, be-
equivalent to a disturbance noise when the MLC method is usealise the near-end speech, in case of DT, cannot be removed, we
to estimate RIR:(n). Next, we want to find the estimation filter will propose a new DT detection mechanism in Section ll, to ef-
error of the MLC algorithm. fectly distinguish between DT and echo path changes to prevent

Since the MLC method estimatégn) from each period the AEC filter from misadjustment. This detection is based on
(length= L) of the input MLSp(n), we can represent thecomparison of the squared-coefficient error between two con-
microphone signal by sums of shifted finite-length blocks afecutive IMLC estimates. In Section IV, computer simulation
length L respectively:y(n) = > °_;ym(n — mL), where and comparisons will be presented to support our analysis.
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Fig. 2. AEC block digram with the masked MLC algorithm.
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SET (=0, m=1
l AEC
4 BW FILTER FILTER
L~
AEC PART
Yonln) = s(n) *2.-.(n)/ A
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ha(n)= p(m)® 3, ()

Fig. 3. Flowchart of the IMLC algorithm.

Il. IMLC AEC STRUCTURE (1/(G(L + 1)p(n)Oyi(n), where yi(n) is the
. first block data of microphone output;
A. IMLC Algorithm 2) estimate the response of the (second block of) far-end
In this section, we attempt to remove the MLC disturbance  speech by the BW filterg, o(n) = s(n) * ﬁl(n);
caused by the far-end speech to obtain a better estimate for th@) cancel thej, »(n) signal from the second block data of
RIR i (n). We propose an IMLC algorithm by inserting a back- the microphone outpus(n), thusja(n) = ya(n) —

ward (BW) filter hew (n) to estimate the far-end speech re- Gs,2(n);
sponsej,(n) = hpw(n)+s(n) and cancel its disturbance. This  4) estimatei,(n) = (1/(G(L +1)))p(n)©ii(n) and copy
algorithm includes five steps: it to BW and AEC filter:
1) set both BW and AEC filters coefficienfgo(n)} = {0} 5) the last step goes to the first step and recursively
and use the conventional MLC algorithm to ob- compute i, (n) = (1/(G(L + D)p(n)Oim(n),

tain an initial estimate of the RIRA;(n) = m=234....
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Fig. 4. IMLC AEC block diagram.

These steps are expressed by the flow chart shown in Fig. 3. \We(12), from the convolution property we have
extend this algorithm to develop an IMLC AEC structure shown
in Fig. 4. em—1(1)

The new AEC structure has two identical filters: backward _ In,m(1) = [Lp,m(0)em—1(1) + Ip, m(—1)em—1(2)
(BW) and AEC filters. Because the far-end speech is readily eI (1= M)e (M)
available, we can subtract the BW filter outgit,,(n) from Fom m-1
ym(n) before using the MLC algorithm to estimai¢n). The  em—1(2)

mth estimated coefficients,,,(n) by the IMLC method is ex- =In m(2) = [rm(Dem—1(1) + Ir (2 — 2)em—1(2)
pressed as +oIp (2 — M)epm_1(M)

. 1 .

hun(n) = p(n)OLym(n) = Gs,m(n)]- (10)

G(L + 1) .ernfl(M)

Comparing (5) and (10), because the far-end speech disturbance = Iy, m(M) = [Ip,m(M = 1)em—1(1)
§-(n) = hpw(n) * s(n) is estimated by the BW filter and can- +1pm(M —2)em-1(2)
celed fromy,,,(n), we can obtain a better estimate for the RIR 4 Ir o (0)em_1(M). (13)
h(n). Next we give convergence analysis for squared coefficient
error of IMLC algorithm. By definition, in (8) we havelr ,,(0) = Ip, 1(L)---
. _ Ip n(—k) = Ip ,m—1(L — k). For simplicity, (13) is written
B. Estimation Error in a vector form as
Now we will show that the IMLC estimation coefficient error
can be reduced by further iterations. Follow the same process of em =Inm—¥men_1 (14)
MLC method in (6)—(8)
where the coefficients error and the near-end interference vector

hon (1) = h(n) + Iy, (1) = Ip, (1) % [ (n) — h(n)]. @' defined as

(11) ern(]-) IN, rn,(]-)
. . . em(2) Iy,m(2)
In (11), the third term is the disturbance due to the far-end em = . Invm = )
speech. So long as the BW filter’s coefficierits,_1(n) are : :
close tok(n), the far-end speech will be canceled more perfectly em(M) Iy, m(M)

and further iterations can improve estimation even better. B¥1d he f dinterf i is defined
definition in (9), the IMLC coefficient error becomes and the far-end interference matrix is defined as

‘I’rn =
enl(n) - IN7 rn,(n) - IF7 rn,(n) ¥ Crn,—l(n) (12) IF rn,—l(L) IF rn,—l(L_]-) e IF nl—l(L_M+1)

and we have the initial state,(n) = ho(n) — h(n) where Ir,m(1) Ipm(L) oo Ipmoa(L=M+2) )

{ho(n)} = {0}. Now, we are interested in the convergence : : :
issue of squared coefficient errdr' ™ ¢2,(n) = |le, | Ip (M —1) Ip(M—2) - I m_1(L)
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Now, by recursive substitution, in (14) and proper expansio®! ¥,, has the factot /(G?(L+1)?). WhenG(L+1) is large,

"m

we may express (14) as follows: we may well have\,,.x < 1 and (19) becomes
em :IN,rn + (_1)1‘1’771:[]\7, m—1t """ ||ern||2 ~ ||IN,rn||2- (20)
+ (_1)77171(‘:0771‘1’771—1 Tt ‘IlQ)I]\T, 1

In (20), we find that the estimation coefficient error of the IMLC
method is merely caused by the near-end signal. In (8), because
the near-end signal(») includes the near-end speegh) and

the background noise(n), we haveu(n) = z(n) + v(n).

To compare the coefficient error between MLC in (7), and the
IMLC method in (20), letd,; andH 4, represent the hypotheses

+ (_1)nl(‘1’nl‘1lnl—l e ‘I’l)eO (15)
and|le,,||* can be expressed as

||e77l||2 = I?\", rn,I]\‘ry m T+ I?\", m—1 (‘Il:n ‘Il"l):[]\‘r: m—1

Rl SO (SRR A A SUEED) IR of single-talk (ST) ¢(n) = 0) and DT, respectively, we have
+1; , 1(‘I’t2 Tt ‘Il:n—l‘:[l:n‘ll"l‘l’"l—l Tt ‘1’2)11\’, 1 1
+ ef)(‘I’i e ‘I’:n_l‘:[’:n‘llrn‘l’rn—l ot ‘I’l)eO- (16) CMLC, "l(n) = m p(n)@[z(n)—l—v(n)]
M
In (16), we have assumed that different block of near-end in- 1 Wk 1
— +———<p(n)©Os(n) * hin
terference vectors satisl, ,DIy,; =0, i # j whereD is a (L+1) kz::l ) G(L+1) p(n)©@s(n) * h(n)
square matrix obtained by the product of the far-end interferendddt’ _ 1
matrices{--- ¥¢_ W} ¥, ¥, ...} This is becausgy ; (or crmre,m(n) = G(L+1) p(n)@L(n) +v(n)]
D) is regarded as the vector of the near-end sigial) [or 1 M
the matrix of the far-end signaln)] spread by the ML$(n). I h(k)
Note that in (16)®} ¥ is a symmetric matrix and assume the \ (L+1) k=1
smallest eigenvalug,,;, = min; \(¥%¥,) and largest eigen- . (21)
valueAax = maxy A(P4®;). From the quadratic form prop- enLe,m(n) = aT p(n)©uv(n)
erty we have § (L+1)
1 1
)\minHIN,i |2 S I?\Qiq’:nq’rnIN,i S )\maXHIN,i |2 I B (L—|—1) ; h(k)+ G(L+1) p(n)©8(n) ¥ h(n)
2 112 t t t ] st 1
Ain [T, SI’;’:i‘I’m—l‘I;m‘I’""I’"’—lI’W ermrc, m(n) = m?(”)@v(”)
S )‘maXHIN, % | 1 M
- h(k).
) 1 \ (L+1) k=1
MmN l® STy ;@5 -, 0 O, By o By (22)
< A [Ty, I 17)

From (21) and (22), we find that when the number of it-
wherel y ; defined in (8) is regarded as the near-end sigia) ~ erationsm is large enough, (normally > 5), the IMLC
spread byp(n) and suppressed by the factof(G(L + 1)). method is no longer disturbed by the far-end speech. In another
WhenG(L + 1) is large, difference ofiLy ;||* in consecutive word, during DT situation, the MLC coefficients errors are dis-
blocks is reduced, too. In our analysis we assume it is the satuebed by both near-end and far-end interferences. However, the

for all ¢. From (16) in (17) we have IMLC method only has near-end interferences. Ina ST situation,
the MLC method still has far-end interference, but the IMLC
e X o um ) method could estimate coefficients more perfectly. This is the
> Al Tnmll* + Alialleol] main reason why we propose this IMLC method.
k=0

Although IMLC outperforms MLC during ST by effectively
removing the far-end interference, the near-end sigial)
during DT is still troublesome. In next section, based on
the IMLC structure, we propose a DT detection mechanism,
When (18) satisfies the convergence conditiom,..| < 1, we Which compares the squared errors of the filter coefficients to
may express it as effectively distinguish between DT and echo path changes and

control AEC filter updates properly.

m—1

< llemll® < > ATy, mll® + Anclleoll>. (18)
k=0

1- )‘g;in 2 2 1-An 2
; < < max ;
1 — Amin Iy mll™ < llemll™ < 1 — Anax T ll™ - (19) Ill. AEC STRUCTUREWITH DOUBTALK DETECTION

and we find that the erroe, due to the first iteration decays”: Conventional DTD AEC Structure

after few iterations. Thus, the error propagation is not a seriousThere are a humber of DT detectors. One is the cross-cor-
problem and will be confirmed by our simulations. Because akelation method [15], [16]. If the filter has converged to its
ements of the near-end interference matkiy, arelr ..(n) = optimal solution, the detection is accomplished by observing
(1/(G(L + 1)))p(n)©s(n), the maximum eigenvaluk,,. of whether the input signai(n) is orthogonal to the residue error
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FAR‘ET(D")SIGNAL LOUDSPEAKER|  mance between this conventional and our proposed methods, we
T view this problem as a hypothesis test. First, we determine the
conditional probability density function (pdf) of the microphone
Y be o Ky signal poweiy||2 = >>%_, 42(n) in case of ST, DT, and echo
~~~~~~~~~~~ u path change. Then, we will pinpoint the detection problem.
A haw(n) how (n) Assume that in case of echo path changes, RIR changes from
hw h(n) to f(n) and the norm of RIR|L|| = ||f|| = 1, for sim-
plicity. In fact, the gains of the loudspeaker and the echo path
can both be normalized. |fh]| # 1, we can change the input
L signalz(n) by z(n)/||h||. We also assume that the system RIR
™| bpm er(m) "+ input 2(n) and the output signay,»(n) = z(n) * h(n) or
LA B y=y(n) = x(n) * f(n), have equal power. For convenience of
y<(n) analysis, assume that;, (n), y.;(n), z(n) andv(n) are inde-
RETURN PATH 6 4 MC per]dent sequences of Gaussian dist_ribution with zero mean and
Chy “ variancess2, o2, o2, ando?, respectively. Thereforey(n) is

y(n) u(n)=z(n)+v(n)

an iid (identical and independent) sequence of Gaussian distri-
bution with zero mean and its variances under three hypotheses

Fig. 5. Conventional DTD AEC structure. of ST (Hst)y DT (Hdt), and echo path changH[w) are

£(n) or not. By the orthogonal principle they will be orthogonal Hsy: 0’5 =02 +o0;
to each other in case of ST. However, in case of DT, the residue Hy: 0_5 =02 + 024 02 + Elyan(n)z(n)]
errore(n) gets larger abruptly and they are not orthogonal. But Hyu: O_; —o? 402, 23)

if the echo path changes, they are also neither orthogonal and
detection error may arise. Another one is the Ievel-comparis?ﬂus Iyl2 = ZL 2(n) is a Gamma distribution with
' - n=1

method [4]-[7], [14] by observing the power levels of th?wo 2 :
; . . parameters denoted BY(L/2), (1/(202))). WhenL is
far-end signalz(n), the microphone signa(»), and the large enough, by the central limit theorem, the distribution

residue errog(n). One of th? popular structures of AEC, W'this approximately a normal distribution with medh? and

level-comparison DT detection, is depicted in Fig. 5. variance2L(02)?, denoted by(||y||2) &~ N(Lo2, 2L(2)2).
The structure has two separate FIR filters, one (forwavi‘e have pdféy oﬂ’yng as v Y

FW) for adaptively identifying RIR:(n) and the other (AEC)

for synthesizing the echo replica to cancel out the echo. They . p(l¥l1?) = N(pse, 02,)

coefficients of the AEC filter are refreshed by the adaptive = N(L( 21 2) 2L 2 L 2)2)

FW filter, only when the latter gives a better estimation of o Tz T u) ARG

RIR h(n) than the former. This is done by the following Hy,: p(||y||?) = N(ptat, o %)

procedures. First, we observe the input data) block by N(L(c2 + 6% + 02 4 2E[yor(n)2(n)])

block, With z,,,(n) = (n)|;n1.+1<n<(m+1)r. denoting themth 2L(m ) +“ ) +” 2 25[ ()2(m))?)

block of z:(n), and calculate the echo return loss (ERL) [6] as Oz TO-T Ty Yeh ()%

EHRLF: m :d||x7"d||2/||6F|L2 anngLB:"’ = ||X|""|1!2/||6F).||2 dHh'v: p(||Y||2) :N(I’Lh'va O}QL’IJ)

wheres r ande g denote the residue error signals from FW an = N(L(c2 4 62). 2L(c2 + o2)2 24

AEC filters, respectively. Second, ERLfg ,,, > ERLp p, = N{Lloy +0u), 2L(ey +00)7) (24)

which is the converging situation during ST, thepw ,,(n) Where iy, fiar: fins, 0%, 02, ando?, are the mean and vari-
is much closer to RIRk(n), and the AEC filter coefficients ance under different hypotheses. Notice that in (24), the pdf
hpw,m(n) are replaced by pw, m(n). Thus, the AEC filter ynder ST is the same as that of the echo path change. Fig. 6
coefficientsh gw, .. (n) will be always close ta:(n). shows typical pdfs ofy||2 by assuming. = 4095 and ignoring

If ERLF,.m < ERLp, . Which can be the case of DT, echoy(n). The cross-correlation value @y, (n)z(n)] is assumed
path changes, or converged ST, the DTD method compares ffi®e —0.45, so that the pdfs are partially overlapped.
power levels of the input signal(n) and microphone output |n Fig. 6, to distinguish between DT from echo path change
signaly(n). If the difference between them is smalkw, ..(n)  (or the ST), a thresholg that has the minimum detection error,
are updated and replaced by-w,.,(n), because the powerwill be determined. We use the maximuarposteriori(MAP)
level of the microphone signal seldom changesAin case of Rffdtection rule
changes. On the other hand, if the difference is laigey ,,.(n) .
are freezed and will not be replaced, because the power level (|ly?|Hat) < p(Hu)
tends to increase in case of DT. 5 < (25)

A . . : o pUlyIPHpw) o p(Har)

though this conventional DTD method is able to discrimi-

nate between DT and echo path change, its discriminating peherep(Hy,) and p(Hg4) are the probabilities of echo path
formance is poor, especially when the far-end spegel) is change and DT occurrence. Equation (25) states that we should
correlated with the near-end speegh), which is usually the choose hypothesigf,, if the ratio of the conditional pdfs
case in practice. To clarify and compare the detection perfoid||y||?|Ha:)/p(|[¥]|*| Hr) is greater thamp(Hy,)/p(Ha:);
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Fig. 6. Conditional pdf of|y||?.

otherwise, we should choose hypotheSjs.. Because(||y||?)
under different hypotheses are approximately of Gaussian
distribution, (25) can be written as

A(y) jl%“ - (26) Fig. 7. Flowchart of DT detection based on the MAP rule.
discriminate among the ST, DT, and echo path change. This
where differs significantly from the conventional DTD method by
) ) ) ) tracking||y||?. _
Aly) = (lyll ;lidt) _ (vl ;th) The new detection method can be expressed as follows: If
) loprh T ERLp ., > ERLp ,, the AEC filter coefficientsh gy (n)
are replaced bﬁpw(n). If ERLg ., < ERLg ., we need to
and the threshold inspect the squared coefficients erips,,,||2, at themth IMLC
iteration. We find that the coefficients erray,(n) = iy, (n) —
v =2In [op, p(Hat) ' h(n) can not be measured, in practice. However, in the structure
o2, p(Hpy) of Fig. 8, when the IMLC algorithm begins from ST, after a few
iterations, we havé s (n) = h(n) and because dfpy (n) =
The flowchart of DT detection is depicted in Fig. 7. h.(n), we can estimate,,(n) as
However, there exists a serious problem to determine the R R
thresholdy. Because(||y||?) is a function of E[y, (n)z(n)] em(n) & hpw(n) —hpw(n). (27)

that can not be known exactly, thus, the threshptthn not be ) ) o

determined exactly and a risk of wrong detection is very high. NOW, we are interested in determining pdfs|jef,,|* under
In the next section, we propose an AEC structure which incdfree different hypothesedie|Z,|le|7, and [le||7,. We have

porates the IMLC method and a new DT detection mechanisf@mputed the filter coefficients errors,,(n), of IMLC during

This mechanism monitors the variation of the filter coefficient® T and ST. As before, we assume that the near-end spg¢egh

to offer a well-separated detection margin to effectively discringnd the near-end noisgn) are both of white Gaussian distri-

inate among ST, DT, and echo path change. bution with zero mean. By (21) and (22), the coefficients errors
are modeled as a linear combination of the near-e}\?d signal and
B. IMLC DTD AEC Structure assume thah(n) has no DC term(1/(L + 1)) >>;_, h(k)

The new AEC structure is depicted in Fig. 8 and is basical ?U:sage(ﬁﬁﬁfliio:;ﬁlt;ﬁ;t’mnle(% aid edt’:(o”;nzria?:;cg;
similar to the one in Fig. 5. It also has FW and AEC filters foE_2 = 02/(GX(L + 1)) ando? i (UQNj_t o) J(G2(L + 1))
adaptively identifying echo path transfer characteristics al ()tllowihz; the same proce du;i(ta in 2 4;/) Wervhave the con di'.[ional
synthesizing the echo replica. The coefficients of the AE dfs of[|e,s||2 in ST and DT as '
filter Apw(n) are refreshed and copied from the FW filter’sD m
coefficientsh gw (n) only when the FW is found to give a better 9 9 2
echo path transfer characteristics than the AEC filter. HoweveH.;: p(||e.||?) :N<M QL, 2M<2L> )
in the new structure the FW filter coefficients are updated by GHL+1) GHL+1)
the IMLC method described in Section Il. Because (21) shows 9 . o 9 9 \2
that the IMLC method is more robust to estimat@) during  Hy,: p(||le.||>) =N | M %7 2M<%) )
DT, the new DT detection mechanism is to track the variation of GH(L+1) GHL+1)
the squared coefficients errfpe||> = ||h — h||? to effectively (28)
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Fig. 8. Proposed IMLC AEC with DTD structure.

Next, we will consider the pdf ofle||?, , in the hypotheses Becauséh,, 1(n) ~ h(n) and in the absence of the near-end
H,,, of echo path change. Suppose the IMLC algorithm begispeech [ ,.(n) is ignored], the new coefficient errers(n)
from ST and the echo path changes fro(w) to f(n) at some can be rewritten as
time instant. In this case, according to (27), we have the coef-
ficients of the FW filterhpw (n) = f(n), and the estimated

coefficients errok;,, (n) will become ef(n) = Ir,m(n) = [f(n) — h(n)].
eh'n(n) = }ALFVV(TL) - iLBVV(TL) ~ f(TL) - h(TL) USing (8)1 we have
=[f(n) = h(n)] +es(n) (29) :
. es(n) = ———pln n) — h(n)] * s(n
wherees(n) = f(n)— f(n)isthe new coefficient error. Assume s) G(L+1) p(n)OLf () = h(m)] * s(n)
that[f(n) — h(n)] ande(n) are uncorrelated, then the squared _ 1 A (n)©s(—n) (32)
coefficients errotle||Z, can be approximately expressed as G(L+1) 7

lelln, = If +e; —h|> =[If = b +lefI>.  (30) whereA,(n) = p(n)©[h(n) — f(n)]. Notice that (32) is sim-
ilar to (22) and assumgn) is an iid sequence of Gaussian dis-
From (11), the newly estimated IMLC coefficients can bé&ibution with zero mean, we may derive the pdfgf(n) as
rewritten as previously discussed in (28). The varianceegfn) is o—J% =
) ) (02 /(GA(L+1)%) ¢ A2(k) whereA2(n), by the definition
fn) = f(n)+1In, m(n)+Ip m(n)*[f(n) —hm_1(n)]. (31) and property of MLS(n), can be written asA?(n) = ||h—f||*
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ando? becomew; = (oZ(||If — h*))/(G*(L + 1)). The pdf

of |le;||? can be expressed as pdlell)

pllell3)
pdlellz)

Fig. 9. Probability density functions dife||> under ST, DT, and path change.

B o2(||If — h|?) s2(|[f — b))
P(||ef||2)—N<M G2(L+1) ’2M[ G?(L+1) } )

(33)

In (30), we have known the relation betwegs}|2, and|e||?,
the pdf of|e||?, now becomes

2(If —h)?)
2. =N f_h2 MOS(H
el Q| 2+ 3 2o

o2(||f - h|?)]?
2M | o~ . 34
[ GQ(L +1) } (34)
Next, we considef|f — h||? in (34). When the relative location
between the microphone and the loudspeaker varies slightly and mf(:;:(ﬁffc(: OF
the echo path changes frdwto f, our experiment indicates that T
f7h ~ 0 and||h|| = ||f]], therefore, we assume y o
caccuLate " I:I,II’
I —h|* = [[f]* + [b]* - 2" h =~ 2[h|%. (35) BT

In summary, the pdfs ofe||? under three different hypotheses
are

Mo? o2

2
p(llellft) :N<G2(L+ 1)’ 2M{G2(L’”—|— 1)} )

M(o? +02) 02402 17
2 =N z v IM z v

2M ||h|*o7 2|]*02 ”
2y — N[ 2|n|? 2 2M 2 .
p(Heth/) < H H + GQ(L+1)’ GQ(L—I-l)

(36) Fig. 10. Flowchart of proposed DT detection.

Fig. 9 shows the pdfs dfe||? by assuming that? = 02 = 1, IV. COMPUTER SIMULATION AND COMPARISONS

[h|* =1, L = 4095, G = 0.15 and the near-end SNRis 10dB.  The performance of the algorithms are verified and compared

Comparing the new DTD in (36) and conventional one iy extensive computer simulation. We uS&LE as the crite-
(24), we find some interesting properties. First, the new methqg, gefined as

can easily distinguish among ST, DT, and echo path change be-

cause the parameters of its pdfs are known and the detection L
margins are well separated, but the conventional method cannot. Z Ym(n)?
Second, because the detection margins are well separated, the ERLE,, (dB) =10log,, =t
decision rule can be simply expressed as ’ L

[Ym(n) — Gm(n)]?

Hoe: |le]? < v =
Hap:va < ||e||2 <Y Zym(”)Q
Hy: lell* 2 (37) =10log;o — n=t . (38)
. . [em(n) * s(n)]?
where the threshold,; can be simply chosen by averaging the =

means of(||e||Z,) andp(|le]|3,). Similarly,~;, can be chosen by
averaging the means of||e||%,) andp(||e||3,). The complete Fig. 11 shows RIRk(n) which is measured from a real room.
flow chart of the proposed DTD is depicted in Fig. 10. The sampling frequency is 10k, and down sampled by 100. The
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Fig. 12. ERLE comparison of MLC and IMLC algorithms in ST.
Fig. 14. ERLE comparisons using real speech signals.

far-end s(n), near-endz(n) speeches and background noise
v(n) are white Gaussian with? = o2 = 1, ands? = 0.0001. In this simulation, we select = 0.3, L = 4095, filter taps
The MLS period length. is 4096. M = 100 and RIR orders= 100, theERLE of MLC is only

In Fig. 12, assume the filter lengti¥ = 100 and RIR.(n) 6 dB in either cases of ST and DT. The converdeLE of
also has an order of 100 during ST situation, we compare thdLC in ST is about 45 dB and degrades to 6 dB in DT. The
ERLE performance between MLC and IMLC methods. IlERLE of IMLC&DT always maintains about 45 dB.
these simulations, two groups of parametérandG of MLS, Fig. 14 compares thE RLE performances using speech sig-
are considered. 1) Fixel = 4096 and chang& from 0.075 nals. In IMLC and MLC simulations, we choosg = 0.3,
(—22.5 dB) to 0.6 £4.5 dB). It is expected that increasingl. = 4096, filter tapsM = 100 and RIR orders= 100, the
G will improve the ERLE performance. 2) Fixed? = 0.15 convergedt RLE of IMLC in ST is also about 45 dB and de-
(=16 dB) and changel. from 2048 to 16384. Likewise, gradesto 6 dB minimum in DT. ThERLE of IMLC&DT al-
increasingL will improve the ERLE performance. We find ways maintains about 45 dB. In NLMS simulations, we choose
that if G(L + 1) is fixed as a constant, the performances dftep size= 1, filter length= 100. The converge® RLE of
ERLE are identical. For example, {f = 0.3 (—10 dB) and NLMS in ST is about 27 dB and degrades+t® dB minimum
L = 4095 are chosen, th& RLE is the same with that of in DT.
G = 0.15 (=16 dB) andL = 8192. This result is confirmed  Fig. 15 shows the squared coefficients eri@s§> of IMLC,
by (21) and (22). To keep the sanieRL E performance, we using white Gaussian noise and real speech signals, in cases
may either choose larg€¥ and shorte. (more noise but less of ST, DT, and echo path change (when positions of the mi-
computation complexity) or smalléF and longetL (less noise crophone and the loudspeaker vary slightly). In this simulation,
but more computation complexity)o™ is the result of MLC we chooseG = 0.3 (the mask level of the far-end speech to
and “” is the converged results of IMLC. Note that in theMLS is about 10 dB); the results are close to theoretical values:
beginning, the AEC filter's coefficientd sw-(n) may diverge E(|le||2,) = —9 dB, E(||e||%,) = —48 dB. Notice that the de-
due to the far-end speech, especially when the proddéts tection margin between ST and DT is about 30 dB and between
are small. When the coefficienfszy (n) are close toh(n), DT and echo path change (HV) is about 10 dB. Although there
the far-end speech will be canceled more perfectly and furtheme more fluctuations for speech signals in case of DT, our de-
iterations can improve estimation even better. We find that aftexction algorithm still works very well.
three or four iterations, IMLC improves 40 dB compared to the Next, we compare the computation complexities of MLC,
conventional MLC method. IMLC, and NLMS algorithms.

Fig. 13 compares th& RLE performance of NLMS, MLC,  InTable I, we find that the computation complexities of IMLC
IMLC, and IMLC&DT (IMLC with DT detection) algorithms are more than MLC but equal or less than NLMS. (Note that
in cases of ST and DT using white Gaussian noise as inpundicates the computation complexities of the NLMS algorithm
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