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|ISI-Free FIR Filterbank Transceivers for
Frequency-Selective Channels

Yuan-Pei Lin Member, IEEEand See-May Phoondlember, IEEE

Abstract—Discrete multitone modulation transceivers (DMTs) ited frequency selectivity (stopband attenuation around 13 dB).
have been shown to be very useful for data transmission over Narrowband noise could induce serious impairment due to poor
frequency selective channels. The DMT scheme is realized by agyonhand [6]. The DFT-based systems fall into the category of
transceiver that divides the channel into subbands. The efficiency block-based DMT t . h the t itt d
of the scheme depends on the frequency selectivity of the transmit- QC : ase_ ranscelvers., where . e transmi gr ana re-
ting and receiving filters. The receiving filters with good stopband ~ C€iver consist of constant matrices. In this case, the filters have
attenuation are also desired for combating narrowband noise. length< the interpolation ratiaV. The filter-length constraint

The filterbank transceiver or discrete wavelet multitone (DWMT)  imposes limits on the stopband attenuation of the filter in the
system has been proposed as an implementation of the DMT block-based DMT transceivers

transceiver that has better frequency band separation, but usually, )
inrtersymbol interference (ISI) cannot be completely canceled ~ FOr better band separation, Sandberg and Tzannes [7]
in these filterbank transceivers, and additional equalization is proposed the so-called discrete wavelet multitone (DWMT)

required. In this paper, we show how to use over interpolated system, in which perfect reconstruction filter banks are used
filterbanks to design ISI-free FIR transceivers. A finite impulse g the transceiver. The transmitting and receiving filters have
response (FIR) transceiver with good frequency selectivity can be excellent frequency separation property inherited from good fil-
designed, as will be demonstrated by design examples. A ) )
terbank designs. Connection betweerérband filterbank and
an M-band transmultiplexer (ai/ -band filterbank transceiver
or DWMT system) was first observed by Vetterli in [9]. When
D ISCRETE multitone modulation (DMT) is now a widelythe analysis and synthesis bank banks of a perfect reconstruc-
used technique for high-speed transmission over channgd, filterbank are interchanged, the new structure becomes a
such as digital subscriber loops [1]-[5]. In the DMT schemgsansmultiplexer or a filterbank transceiver (see Fig. 1). The
the channel is divided into subbands, each with a different freppwr system in this case has interpolation rafio = M,
quency band. The transmission power and bits are judiciougld it is calledminimally interpolatedWhen the transmission
allocated according to the signal-to-noise ratio (SNR) in eaghannel is ideal, the minimally interpolatéd-subband filter-
band [4]. This is similar to the water pouring scheme for digsank transceiver is S| free if the corresponding filterbank has
crete transmission channels. The realization of the DMT scheg@rfect reconstruction [8]. The ISI-free property means there
relies on the design of a transceiver that effectively divides the no intra-subband and inter-subband ISI. However, when
channel into subbands. Band separation is of particular impgke channel is not ideal, the perfect reconstruction property
tance when the SNR's of different bands exhibit large diffegf the filterbank no longer translates to an ISI-free property
ences. This can happen when the channel or the channel ngis@iterbank transceivers. Performance evaluation conducted
is highly frequency selective or nonflat. in [9] and [10] shows that the resulting ISI can seriously
The DFT-based DMT system has been proposed as a pr@ggrade the system performance. To reduce the amount of ISI,
tical implementation of DMT system [2], [5]. A certain redun-nter-subband and intra-subband equalization are performed on
dancy known as cyclic prefix is added to allow complete rghe receiver outputs in [7]—[11].
moval of intersymbol interference (ISI). Very good transmission \yhen the interpolation rati& > M, the filterbank trans-

rate can be accomplished using DFT-based DMT systems {aliyer is calledover interpolatedin average everyV output
channels such as the asymmetric digital subscriber line (AD mples of the transmitter contaifis= N — M redundant sam-
and the high bit rate digital subscriber line (HDSL). In the DF T a5 The cyclic prefix in DFT based DMT system is an example
based systems, the transmitting filtdrs(z) and receiving fil- - ¢ 5,ch redundant samples. Advances to the non block-based
ters H;(z) in Fig. 1 are DFT filters. The DFT filters have lim- £r over interpolated system has been made in [12] and [13]
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Fig. 1. M-subband filterbank transceiver over a fading charitel).
time-varying transmitter such that FIR time-varying receivel *olm_| L »aln)
exist. In particular, redundancy of one can be used as long #)_,| DMT ve DMT | %,
N—1 > L and the time-varying receiving filters are sufficiently® g | eming HE) Tc) > receiving |,
long. o o ) original St
In many cases, the statistics of the channel noise is incory 7 channel model —
rated in the design. For example, in [15], Kastweial. extend
the DFT-based transceiver to a more general vector codi )
system. The transmitting filters or transmitting vectors ai o)y s o)
. . . . en
eigenvectors of an appropriately defined channel matrix. Why,) x(m_,| DMT pMT | Lt
the channel noise is AWGN, the vector coding is shown to t g | e 72 et | e
optimal in terms of bit rate maximization subject to a trans Xypet() cqualized i)
mission power budget. Optimal DMT transceivers maximizing ™ channel model g

the total SNR are deSIQDed n [,14]' Blt_ rate maximization fol£| . 2. (a) Block diagram of the filterbank transceiver, including a discrete
general noise sources is considered in [16] and [17]. Blinghe channel model and an equaliZé=). (b) Block diagram of the filterbank
equalization for block-based DMT transceivers are developtsehsceiver with an equalized channel model.
in [18].

In this paper, we will develop design methods for ISI-free FIR. Notations and Preliminaries
filterbank transceivers with effective band separation. We will
use overinterpolated filterbanks to introduce redundancy. The
introduced redundancy enables us to cancett®ipletely Two
methods will be proposed for designing FIR transceivers with
zero ISI. They are based on two classes of FIR systems with FIR ,
inverses: the orthogonal matrices and unimodular matrices. For
a given channel, the filters are optimized subject to the condi- ,
tion that ISI be canceled. The noise statistics are not considered;
there is no need to estimate the noise spectrum. However, the IS,
cancellation property and the band separation property provided
by the transceivers facilitate the realization of the DMT scheme.
Examples will be given to demonstrate that the performance of
FIR filterbank transceivers is comparable to or better than that
of DFT-based DMT systems. The FIR filterbank transceivers
perform significantly better than the DFT-based system when 0 0 1
the noise is narrowband. Js=[0 1 0

The sections are organized as follows. In Section II, a 1 00
polyphase framework of the filterbank transceiver is presented.
Using the framework, we show that the transmitting and re- * Unimodular MatricesAn N x N matrix A(z) is called
ceiving filters can be interchanged, and the IS free property is  Unimodular ifdet A(z) = ¢, which is a constant [20]. A
preserved. A class of FIR transceivers with an ISI-free property ~ causal unimodular FIR matriA (z) has the property that
is developed in Section IIl using the polyphase approach. The A~'() is also causal and FIR.
development is based on FIR systems with FIR inverses. This
class will be used in Section IV for designing FIR transceiverS: Channel Models
Two types of FIR systems with FIR inverses are used: or- Fig. 2(a) shows the block diagram of a filterbank transceiver.
thogonal matrices (Section IV-A) and unimodular matriceShe discrete time channel is modeled as an LTI filtet) with
(Section IV-B). Receivers with minimum mean squared erradditive noise/(n), as shown in Fig. 2(a). A time domain equal-
for orthogonal transmitters are given in Section V. izer (TEQ)T(z) precedes the filterbank receiver. Typically, the

« Boldfaced lower-case letters are used to represent vectors,
and boldfaced upper case letters are reserved for matrices.
The notationsA? and A" represent the transpose Af

and transpose-conjugate Af

The notationA(z) denotesAt(1/z*). For matrices with

real coefficientsA(z) = AT(z71).

The function £[y] denotes the expected value of the
random variabley.

The notationly is used to represent th€ x N identity
matrix. The subscript is omitted whenever the size is clear
from the context. The notatiody denotes theV x N
reversal matrix. For example, a3 3 reversal matrix is
given by
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Fig. 3. Polyphase representation of the transmitter and receiver in a filterbank transceiver.

filter H (=) can be further modeled as a rational transfer functidhe N x M matrix G(z) is the polyphase matrix of the trans-

H(z) = P(2)/B(z). The equalizefl(z) is usually designed to mitter. Using the noble identity [20], we can interchange the ex-
cancel the poles dff (), and the resulting overall transfer funcpander andz(z""). The transmitter can be implemented using
tion becomes the FIR filteP( z), as shown in Fig. 2(b). Supposeits polyphase matrix, as shown in Fig. 3. In a similar manner,

P(z) is of orderL and that we can decompose the receiving filters as
= _1 ... _L ]\r_l .
P(z) =po+piz~ +---+prLz” " Hy(2) = Z Sk,n(zj\ )2" ©)
n=0

The equalized impulse response of the channel is thus shortened

to L. Each input sample will be spread to a duration of lengthhen, by invoking the noble identity, the receiver can be redrawn
L + 1 as aresult. The noisén) shown in Fig. 2(b) is obtained as Fig. 3. The receiving filterd;(») are related to thé/ x N

by feeding the original noise(n) to the equalizefl’(z). The polyphase matri¥8(z) of the receiver as

equalized channel model in Fig. 2(b) will be used throughou Hol(2)

this paper; the channel refers to the equalized chaRe), and

the channel noise refers to the noige ) at the equalizer output ()
in this paper. :
Hy1(2)
[l. POLYPHASE REPRESENTATION OFFILTERBANK So. 0(2™) So.1 (=) oo So no1(2Y)
TRANSCEIVERS S1o(z

VN) 5171(ZN) e Sl,N—l(zN)

Consider Fig. 1, where al/-subband filterbank transceiver : : . :
is shown. The channel is represented by an FIR filtér) Spi—1,002™) Syv—1,1(ZN) oo Syer, v—1(ZY)

with additive noisex(n), as explained in Section I-B. The filters S
L. (z) and Hy(z) are called transmitting and receiving filters, 1
respectively. Whev > M, we say the system is over interpo-
lated and redundandy = N — M. <« 7 | 4)
Using polyphase decomposition, we can decomposétthe :
transmitting filter /(=) with respect to the intege¥ [20] 2N
Fu(z) = ]\z_:l Gn,k(zN)z_". ) A. Decomposition of the Channel
n=0 Using polyphase representation, we can decompose the
channel as

Writing the polyphase representation for all thetransmitting
filters, we have (2), shown at the bottom of the page, wher@(z) = Po(z™) +Pi(z™)z 14+ -+ Py_1(zN)2"NTL (5)

Go,o(zf) G, 1(75?) - G, M—1(Zf)
. Gl,o(z T) Gl,l(z T) Gl,M—l(Z T)
[Fo(z) Fi(z) - Fuax]=0 2% o 27V ; : 3 : @
Gno1,0(zY) Gnog1(ZN) - Gyog mo1(2Y)

G(:N)
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Fig. 4. Polyphase identity. G(Z) C(zl > S(Z) >

In order to further simplify Fig. 3, we need to apply an identity
from the multirate theory. It is shown in [20] that the multirate < >
system in Fig. 4 is, in fact, equivalent to an LTI system witl, T
transfer functlonA(z) given by Fig. 5. Polyphase representation of a filterbank transceiver.

_ [ Pi_j(2), fori > j : y

Alz) = {Z_IPN—I—i—j(Z)a fori < j matrix C(z) can be partitioned as aN x (N — L) constant

matrix Po and anN x L FIR causal matrixP; (=) that is of

whereP,(z) is defined in (5). We see that thé x N system order 1
fromy(n)tog(n)in Fig. 3isinfact an LTI system with transfer

matrix C(z) given by (6), shown at the bottom of the page. :
Matrices in the above form are known as pseudocirculant ma- C(x) = 3,0, '\Pl(z), | ®)
trices [20]. A first detailed study of pseudocirculant matrices Nx(N—-L) NxL

was made in [21]. Many useful properties, as well as applica-

tions of pseudocirculant matrices in QMF banks and block fiI-,USing the chapnel matriC(z), we can redraw Fig. 3_as .
tering, are given therein. Fig. 5. As we will see later, the polyphase representation in

Usually, the interpolation ratiev is chosen to be larger thanFi9- 5 will facilitate a systematic study of filterbank transceivers.

the orderL of P(z). In this case, the¥ polyphases?; (=) in (5) Zero ISI Condition: From the polyphase decomposition in
are constants, and the last— L — 1 polyphases are zero TheFig. 5, we see that even though multirate building blocks are
matrix C(>) is,causal and of order one ' used in afilterbank transceiver, itis infact an LTI system with

inputs andM outputs. The transfer matriX(z) of the overall

C(z) = Cy + 21y @) system can be expressed as
where T(z) = S(2)C(2)G(x). 9)
Do 0 -0 --- 0 The overall system is free from inter-subband ISTifz) is a
P Do 0 diagonal matrix. It is free from intra-subband ISI when the di-
. ) ) agonal elements dI'(z) are merely delays. If it is free from
: both inter-subband and intra-subband ISI, we say that the filter-
Co=|pr pr and bank transceiver is IS free; in the absence of channel noise, the
0 pr outputs of an ISI-free filterbank transceiver are identical to the
: : . U inputs except delays and scalars. Without much loss of gener-
0 0 Do ality, we can use the ISI-free condition
0 -~ 0 pr po—1 -+ D
0 0 0 prL - P2 S(2)C(2)G(z) =L (10)
C, = p.L B. Interchange of the Transmitting and Receiving Filters
0 Using the polyphase framework, we can immediately show
: Do : : that the transmitting and receiving filters can be exchanged, and
0 --- 0 0 0 e 0 ISI-free property is preserved. To see this, observe that the ma-

trix C(z) is Toeplitz, and it satisfies
The matrice€Cy andC; are bothV x N and Toeplitz;Cy is

lower triangular, andC; is upper triangular. Equivalently, the CT(2) =INC(2)In (11)
Po(z)  27'Py_1(2) 27'Py 2(2) -+ 271Pi(2)
P (z) Fy(z) 2IPn_1(2) - 27IPy(2)

Cz) = ) . ) . (6)

Py i(?)  Pyvoalz)  Py.s(x) - B



2652 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001

whereJ y is the N x N reversal matrix defined in Section l.andS(z). The systems are non block based. Consider the case
Taking transpose of the both sides of (9) and using (11), we ha¥e= M + L; the transmitter is in the form of trailing zeros

_(N— r_ _ GO(Z)
T (2) = 2~ l)vGT(z)JN C(z)InST(2)2N 1. (12) G(z) = <0<LxM)) (13)
S/(z) G/'(z)

whereGy(z) is anM x M matrix. Here, redundancy is in the
From the above equation, we can conclude the following: If tierm of zero padding. Every input block of siz¢ goes through
filterbank transceiver witli(z) andS(z) as the transmitter and an A x M transfer matrix, and. zeros are inserted between
receiver, respectively, is ISl free, then the filterbank transceivevery two blocks before transmission. In this case, the constant
with G’(z) and S’(z) as the transmitter and receiver, respecnatrix Py in (8) is of dimensionV x M and
tively, will also be ISl free, wher&'(z) andS’(z) are as given
in (12). Using the polyphase representation, the new transmit- C(2)G(#) = PoGo(2)-

ting filters can be expressed as
The system is ISI free if

(Io(z) F{(z) - Fy_i(2) S(2)PoGo(2) = L. (14)
(1 Z_l . Z_(N_l))ZN_lJNST(ZN)
N-l\qT/ N Thus, the channel-dependent term becomes a constant matrix
=(1 =z 2 THS8 () . . .
Py. For a given transmitteo(z), the receiverS(z) can be
=(Ho(z) Hi(z) - Huy-1(2)) any left inverse folPyGo(z). The following lemma gives us
o ] the condition for an FIR transceiver.
Therefore, we have new transmitting filtefg (z) = Hk(z)- Lemma 3.1: Suppose the transmitter is given by (13). Then,
Similarly, we can show that the new receiving filtdi (<) =  here exist FIR solutions fo(z) if and only if the inverse of
F(z). We conclude that thiSI-free property is preserved ifWe G, (2) is FIR. In this case, the solution of the receiver is of the
interchange the transmitting and receiving filters m
Theorem 2.1: Suppose the transmitting filtefs,(z) and re-
ceiving filters H.(z) in Fig. 1 form an IS|-free filterbank trans- S(z) = G;'(2)B (15)

ceiver. Then, usind;(z) as the transmitting filters angl,(z)

as the receiving filters, the resulting filterbank transceiver is stijhere thelM x I. matrix B is any left inverse oP,.

IS free. Proof: Sufficiency. Pre-multiplying Go(z) and
Remarks and Applications of Theorem 2.1: post-multiplying G5 *(») with both sides of (14), we get
1) The stopband attenuation of the receiving filters detefGo(2)S(2))Po = L This means that(2)S(z) is a left

mine the receiver’s ability to reject out-of-band noise. linverse ofP,. Therefore, we have

the receiving filters have poor stopband attnuation, all the

neighboring bands will be affected when there is strong Go(2)S(2) =B

narrowband noise. For example, in the DFT based DMT

system, the stopband attenuation of the receiving filtersiéhereB is a left inverse oP,. Pre-multiplyingGy *(z) of the
around 13 dB; the receiver cannot reject out-of-band no,g@ove equation witlio (), we obtain the received(z) in (15).
effectively. Therefore, in the DFT-based systems, therelfsGo * (2) is FIR, the receive$(z) in (15) is also FIR. Further-
usually a design margin of around 6 dB. When the rénore, the solution 08(z) is not unique a$ is not unique.
ceiving filters have better frequency capability, a smaller NecessityFrom (14), we see tha(z)P is the left inverse
design margin can be used. In view of Theorem 2.1, v Go(z). Therefore, for the FIR transceiver solutions, it is nec-

can always choose the better one [from the two sets of fissary thaGo(z) has an FIR inverse. - AAA
tersFx(z) and Hy(z)] as the receiving filters. . From Lemma 3.1 we know that'as long@s( ) is FIR and.
2) On the other hand, it is desired that the transmitter halidas an FIR inverse, we can obtain an ISI-free FIR transceiver.

smaller gain (for a fixed error probability and bit rate) s¢ased on Lemma 3.1, we will design the FIR transceiver using
that the energy needed in transmission is less. Therefogi@sses of FIR matrices that are known to have FIR inverses.

we can choose the filters with smaller 2-norm between Left Inverses oPo: SupposaB, is a left inverse oP. Let
the two sets off;(z) andF(z) as the transmitter. N be anN x L matrix whose column vectors span the null space

of Py. Any leftinverse ofP{ can be written aBy+ANZ. Two
left inverses ofP?y can be found easily, as follows.
1) Pseudo Inversdt is given byB = (PEPy)~'P{'. This
In an overinterpolated transceiver, there are more samples at was used in the block-based DMT system in [14] to obtain

Ill. OVERINTERPOLATED FILTERBANK TRANSCEIVERS

the output of the transmitter than the input. There Are= ISI-free solutions.

N — M redundant samples in every samples of the trans-  2) It is mentioned in [18] that the matriP, admits a left
mitter output. If we allow the transmitting and receiving fil- inverse in the form of lower triangular Toeplitz. In fact,
ters to be FIR with length longer than the interpolation ré{io such a left inverse can be found in closed form, as we see

then the transmitter and receiver become transfer ma@ices next. Letg(n) = Z71{1/P(»)}, whereZ=1{.} denotes
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inverseZ transform. The filter;(n) can be unstable, de-tained if C;q is nonsingular or has full rank. The case that
pending the zeros dP(z). In particular, if P(z) does not odd can be verified in a similar way. In this ca€g,, has di-
have minimum phase, thejin) is not causal and stable.mension(Af + 1) x M, and the condition is thafo has full

Regardsless of whether the caug@t) is stable or not, rank. AAA
we can use the firsd/ coefficients ofg(n) to form an Remark: In most of our experiments, the mati@ o has full
M x N lower triangular Toeplitz matrilBg rank. The problem of conditioning the chand#{>) such that
4(0) 0 0 0 - 0 C1o has full rank is still open.
By = Q(_l) a(0) 0 0 0 ) IV. DESIGN OFFIR ISI-FREE FILTERBANK TRANSCEIVERS
: - : : In Section Ill, we have seen that there always exist FIR
qM-1) oM=2) - ¢0) 0 - 0 (16) ISI-free transceivers when redundanky = L. In this case,

if zero padding is used at the transmitter, then the top matrix
Go(z) of the transmitter can be any FIR matrix with an FIR
inverse. The design becomes a lot more tractable. It is known

be implemented using the scalar filtefP(z). Note that the that;zny causal FIR matrix with an FIR inverse can be factorized
memory ofl/P(z) should be cleared for every input block of> [22]
length V. H(2)E(2)

Remarks: The use of a zero padding transmitter means that
the lastK polyphases of the transmitting filtefs,(z) are zero, whereH(z) is causal FIR orthogonal, ar¥d(z) is causal FIR
but the receiveS(z) in (15) does not necessarily have somanimodular. The class of FIR orthogonal matrices can be com-
polyphases equal to 0. Using the theorem in Section I, we cpletely factorized into some basic building blocks [20]. There
exchange the transmitting filtefs,(») and the receiving filters are also classes of unimodular matrices that have been shown to
H,(2). Inthis case, the redundancy no longer takes the formoé very useful in filterbank designs [24]. We propose two design
zero padding. The new receiving filters now haveolyphases methods for FIR filterbank transceivers with the 1SI-free prop-
equal to 0. The matri$(z) is of the formS(z) = (0 So(z)), erty: One is based on FIR orthogonal matrices, and the other is
whereSy(z) is anM x M matrix; K samples are discardedbased on unimodular matrices.
from every inputV.samples of the receiver.

Redundancys = [L/2]: Itis shown in [17] that when the A. Design Based on Orthogonal Matrices
system is block based, under some condition, we can use redunn the context of filterbank theory and design, FIR orthogonal
dancyK = [L/2], where the notatiofiy] denotes the smallest matrices have been shown to be a very useful class. In this sec-

integer greater or equal to We will see that the result holdstion, we consider the case wheg (z) is FIR andP(G(z) is
for non block-based systems as well. Suppose the redundapgg orthogonal, i.e.,
is K = [L/2] and the transmitte€x(>) is in the trailing zero

It can be verified thaBy is a left inverse oPy.
Due to the Toeplitz nature of the left inverBg in (16), it can

form (POGO(@W))T (PoGo(c)) =1
G(z) = < Go(2) ) . (17) Such a construction has the advantage that the receiver can be
O a) simply chosen a8(») = Go(»)PZ". Furthermore, in the case
We partition theP, matrix in (8) as of AWGN ngise source, the chann_el noise will not be ampli_fied
by the receiver; the average receiver output noise power is the
Po— <Coo> (18) same as the receiver input noise power. Observe that nigrix
0 Cio can be decomposed using singular value decomposition (SVD)

whereCyy is of dimension L — K) x M, andCy, is of dimen- A
sion (N + K — L) x M. PO:U<0>N w
Lemma 3.2: We can use redundandy = [L/2] to obtain e
FIR ISI-free transceivers if the matr(®y in (18) has full rank. WhereU and 'V are, respectivelyV x N and M x M or-
Proof: First, let us consider the case whdrés even and thogonal matrices. The matriA is diagonal andAlJ; ,, for

K = L/2. Suppose the transmitter is as in (17) and that the= 0, 1, ..., M — 1 are the eigenvalues & P, which are
receiver is given by nonzero a®, has full rank. It can be shown thatlifoGo( 2) is

FIR and orthogonal, the matrf%,(z) is necessarily of the form
S(z) = (0 So(2))

Go(z) = VIAT'Q(2) (19)
whereSy(z) is anM x M matrix. Then, the transceiver is ISI
free if whereQ(z) is an arbitraryd x M FIR orthogonal matrix. Par-
tition U as
So(z)CloGo(z) =1
All three matrices in the above equation have dimensidns U=| Uy, Uy |. (20)

M. Therefore, solutions for FIRa(2) andSq(z) can be ob- NxM NxI,
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Then, the producPGy(~) assumes the form 10F
PoGo(z) = UoQ(2). °r
In this case, the ISI-free property can be obtained by choosi 1or
the receivelS(z) as @ _op
S(z) = Q(»)Ug. 30}
However, the above equation only gives one possible ISI-fre -40f
solution. To obtain all possible solutions, we note that th
ISI-free condition only requires th&(z) be a left inverse of -50, o v o3 v o5
PoGo(z). As PoGy(z) is of dimensionNV x M, the receiver " Frequency normalized by 2r. ’

S(z) is not unique. We can incorporate the left null space c .
Up and choose T

(2)U” (21)

wn
~—~
N
~—
l
~—~
o
~—~
N
~—
m

-10

-

"’Q\’f\»”
|

whereZ(z) is an arbitraryM x L FIR transfer matrix. The
flexibility can be exploited to improve the frequency selectivity®  _zop
of the receiving filters. It can also be used to minimize the tote
output noise power, as we will see in Section V.

To maximize band separation, we minimize the stopband e
ergy of the transmitting and receiving filters. The objective func
tion is

»q 4 ‘\W‘Q\ \J

/

0 0.1 0.2 03 0.4 0.5

P =aps+ (1 —a)p, (22) Frequency normalized by 2r.

Fig. 6. Design Example 1. Design Using Orthogonal MatricEse magnitude
responses (in decibels) of (a) the transmitting filters and (b) the receiving filters.
The magnitude response of the chanRét?+ ) is also shown in (b) as a dotted

where

d)g — / |Fk(61m)|2 dw line.
kth stopband
p / Hy () d lower triangular and upper triangular matrices of the following
s — Ll C W. .
kth stopband form:

Design Example 1—Design Using Orthogonal Matric&he B(2)¥(2)

channel to be used in the examplefiéz) = 1+ 0.827". The  yhere the matrice®(~) and ¥ (z) are, respectively, lower tri-
order of P(z) is L = 1. We chooseV = 8 andN = 9. The  angular and upper triangular FIR matrices given by the equation
transmitterGo(z) is as given in (13), and the receiver is agnown at the bottom of the next page, whérgare constants,
given by (21). Using the factorization theorem of orthogonghd e, () and¥; ,(») are FIR filters. It can be immediately
matrices, the orthogonal matri(z) can be parameterizedyerified that such a product matrik(z)®(z) is a unimodular
using degree-one building blocks [20]. We optimi¢z) and  matrix asdet &(z) = 1M1 Dy, anddet ®(z) = 1. Therefore,
E(z) to minimize the stopband energy of the receiving filterss inverse is also FIR.

In the optimization,Q(z) contains four degree-one building ~ consider the following choice of receiver and transmitter pair

blocks, andZ(z) has the same order. Fig. 6 shows thghat is based on the above class of unimodular matrices
magnitude responses (in decibels) of the transmitting and

receiving filters. The stopband attenuation of the receiving S(z) =(®(2)¥(z) E(2))U7T, and
filters are around 19 dB. The magnitude respons®@f«) is Go(2) = VIA H(@(2)®(2)) ! (23)
also shown in Fig. 6(b) as a dotted line.

whereZ(z) is an arbitraryM x L FIR transfer matrix. The

B. Design Based on Unimodular Matrices receiving filtersH,,(z) can be represented by
The FIR unimodular matrices, unlike orthogonal matrices, do Ho(z) 1
not allow factorization in general. However, a particular class Hi(z) N 21
of unimodular has been shown to be very useful in designing : =8(c") [ .
M -subband filter banks. Using polyphase matrices that belong I ' () 71\;71
M—1\# ©

to this class, we can design analysis and synthesis filters with
sharp transition bands and good stopband attenuation. The uni- d(=)
modular matrices in this class can be written as a product of = (®:EMPT(Y) ERN))UTd(2)
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)

whered( =) is the delay chain vector, as given above. Using th
partition ofU = (U, Uy) in (20), the above equation can be 201
rewritten as

Ho(z) ot

)

H1(Z) . . o

_ = 3N TEULA(2) + 2(:V)UTd(2). @ - iy

_ (M) (M )UTd(2) + BV UTd(2) ;: I h ﬂi'{«ﬁ%fgﬁw'.{";*!’i'i'ﬂ'
et SR

il

Let

-40
@O(Z) 50
01(2) . B ' ' 05
) = oM Uld(»). o Frequgﬁgy hormalized by 2r. 04 ’
owa(z/) [T .

Then, we haved(z), which is given by

Ho(z) = Do®o(z) + & (™)UT d(2)
Hi(2) = ®1,0(2)80(2) + D101(2) + & (zM)UTd(z)  ®

i

N‘

il

A'Q ikl .tm\‘*' i \‘\

AR e
AL et

Hy1(2) =®p1,0(2)00(2) + Paro1,1(2)01(2) + - - -
+ Dp—1Op—1(2) + 5%14—1 (ZN)U?CI(Z)

I RIRIYRAY i
AT AYA ALY
oo o LU IR VAVAN AN
whereg;, (2) is thekth row of 2(z). We can start the optimiza- 0 ) 0.2 03 0.4 0.5
tion process by designinBy, ©o(z), and the Oth row oE(x) Frequency normalized by 2r.
to obtainHo(z). As Og(z) is already determined in the design_. , _ _ _ _
fH the filter H ( ) is desianed by o timiZing) ( ) Fig. 7 Design Example 2._ Design Using Unlquglar _MatrlceEhe
0 O(Z)v pe 1z e g y op 1,0 %)y magnitude responses (in decibels) of (a) the transmitting filters and (b) the
Dy, ©1(2), and¢; (z). In a similar manner, we can continue Orteceiving filters.
to the optimization 05 (z), Hs(z), - -, andHps_1(2).

Note that in the design based on orthogonal matrices, the reeeiver are as given in (23). The matrice&z) and ¥ (z) are
ceiving filters are optimized simultaneously. In addition, all thef order 3. The resulting magnitude responses (in decibels) of
transmitting filters have the same length, and all the receivitige transmitting and receiving filters are shown in Fig. 7. The
filters have the same length. In the unimodular matrices-basstdpband attenuation of the receiving filters are around 22 dB.
design, the filters are designed one by one. The filters that areSimulation Example:Consider the LTI channel in Design
designed earlier will not be affected by the optimization of othé&xample 2. In this experiment, we will apply the transceiver
filters later. In this case, the filters can have different length. Tliesigned in Example 2 and compare the performance with that
objective function is as in (22). of DFT-based DMT transceivers. The average number of bits

Design Example 2—Design Using Unimodular Matrices: per output sample of the transmitter 839 bits. Two cases
The LTI channel used in this example is the same as in Examplechannel noise will be used: i) white noise with variance
1: P(z) = 1+0.82~1. The values of., M, andN are the same 0.0125 and ii) white noise plus narrowband noise with power
aswell,andl = 1, M = 8, andN = 9. The transmitter and spectrum as shown in Fig. 8. The results for these two cases

Dy 0 0 0
(I>1 0(2) D1 0
B(z)=| P20(z)  P2a(2) D,
Prr_1,0(2) Pum-1,1(2) Par—1,2(2) Dy
1 Wo,1(2) Wo,2(2) Vo, pm—1(2)
0 1 Wy, 2(2) Wy ar-1(2)
w(xn=|0 0 1
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&
) e(n) ey(n)
53“20 ——P Uj
£ -30 L
8 40 () ~ .
(‘/3). ur - A(2) P Q(z) el
6 -50 q 1 v(n) q(n)
n%_ -60
@
.(L) _70 " . . . .
2 0 02 0.4 0.6 08 1 Fig. 10. MMSE receiver for ISI free filterbank transceivers.
Freq. normalized by
Fig. 8. Power spectrum of the channel noise for case ii). White noise plt Ul
narrowband noise.
/
1072 7 AQ) P o) e P —
X(n) = x(n) +q(n)
107
@ E Fig. 11. MMSE Wiener solution of the receiver.
m
10°
where the functionf[y] denotes the expected value of the
107 random variable;. When the filterbank transceiver is IS free,

10 12 14 16 18 20

the output noise comes entirely from the channel noise. Now,
Signal to Noise Ratio (dB)

we use the transmitter as given in (19), and we rewrite the
receiver in (21) as

S(2) = Q)T A()U”. (24)

BER

The receiverS(z) is drawn in Fig. 10 for noise analysis. As
Q(¢’) is orthogonal, the output noise pow&(||q(n)||3] =
\ E[llv(n)||3]- Suppose the order &€(~) is .7 andA () = Ag+

. A Az 1+ 4+ Ay 7. Then
6 8 10 12 14 16 18

Signal to Noise Ratio (dB)

v(n) =ep(n) + Ager(n) + Ajei(n— 1) +---

Fig. 9. Simulation ExampleBit error rate of filterbank transceiver and + AJel(n — J)
DFT-based DMT transceiver for two cases of channel noise. (a) White noise
and (b) white noise plus narrowband noise with spectrum, as shown in Fig. 8. '?1 (”)1)
e \n —

of channel noise are shown, respectively, in Fig. 9(a) and (b). ~ P :
In case i), the performance of the filterbank transceiver is ei(n—J)

. ~—————
comparable with that of the DFT-based DMT system. In case

i), where the noise is of a narrowband nature, the filterbank >

transceiver achieves the same bit error rate with a much lowgfe minimization of€[||v(n)||3] becomes a linear estimation

signal-to-noise ratio. problem: estimation ofey(n) based on the observations
ei(n),ei(n — 1),...,e(n — J). By the orthogonality

V. MINIMUM MEAN SQUARED ERROR RECEIVERS FOR principle, the optimaB that minimizes&[||v(n)||3] is such
ORTHOGONAL TRANSMITTERS that £[v(n)s?(n)] = 0, wheres(n) is as indicated in (25).
A. ISI-Free Transceivers with MMSE Receiver Therefore,B should be chosen so that

_ In the design (_)f FIR tra_nsce_zlvers using zero pad_dlng in Sec- £ [eo(n)ST(n)] — _B¢ [S(n)ST(n)]

tion 111, the receiver solution is not unique for a given trans-

mitter. The flexibility can be used to minimize the output noispS satisfied. Note that when the nois) is white, the vectors

power. Suppose the channel noise) is a zero mean WSS, 1,y ande, (m) are uncorrelated for all andm. In this case,

random process and that it is not correlated with the input. V\W?e haveg[eo(n)s” (n)] = 0, and the optimalB is theO matrix.

define the output noise powdfy as When the ordeA(z) is .7, the order of the receiving filters is
M1 increased by.J. To avoid increasing the order of the receiving

Ex=¢ Z (#1(n) — zx(n))? filters, we can choosé (z) to be a constant matriA,. Then,

o we havev(n) = eg(n)+ Agei(n). The orthogonality principle
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requires that[v(n)ef (n)] = 0. Solving for Ay, we obtain  [7]
optimal solution ofA,
- 8]
Ao = —€ [eo(n)el (n)] (€ [er(m)el(n)]) .
Usingeo(n) = UL e(n) ande; (n) = UTe(n), the above equa- [
tion can be rewritten as
[10]

Ao = -UpR, UT (U;R,. UT) ™"

whereR.. is the N x N autocorrelation matrix of the noise [17)

e(n).

B. Wiener Solution of the Receiver [12]

The output noise power can be further reduced by adding i3
Wiener matrix to the end of the receiver solution in (24). Con-
sider the receiveB(>) of the form

[14]

S(z) =PQ(z)(I A(z))UT. (26)

The receiver can be drawn as in Fig. 11. By the orthogonality
principle, the final output power noise is minimized if [15]

E[(Px(n) —x(n))x"(n)] =0 [16]

(17]
PE [x(n)x"(n)] = € [x(n)x" (n)] .

Assuming thak(n) and the noise vectay(n) are uncorrelated, [18]

which is usually true, we have

£ [X(n)f{T(n)] =R« (19]

& [x(n)x"(n)] =Rxx + Raq- 27)
[20]

Therefore, the optimaP is given by 21]

P = Ry (Rox + Raq) -

Note that the above MMSE receiver solution gives us outpuizz]
identical to the input in the absence of noise although the design
of the receiver itself depends on the noise statistics. The Wienét3]
solution in (26) does not yield an I1SI-free transceiver in the ab-
sence of noise. [24]
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