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|. INTRODUCTION
that, by choosing, 31, 3 properly, our robust controller seems to be

more promising than Kanellakopoulous’ adaptive one although it C?nThe problem of estimating the system state in a discrete-time
no longer achieve asymptotic tracking. Inear stochastic system having partially noise free measurements

is considered. It is solved by the well-known Kalman filter (KF).
However, to reduce the computational burden of the KF, researchers
have tried to incorporate Luenberger observers (LO) [1]. Aoki and
We have designed a robust output-feedback controller with a veryddle [2] and Brammer [3] first suggested the use of a LO to solve
simple structure for a class of nonlinear uncertain systems. The gloB$ problem. Other researchers have also contributed to this area,
boundness of all closed-loop signals can be guaranteed and the ougs@it Tse and Athans [4], Tse [5], Yoshikawa [6], Leondes and Novak
tracking error can be made arbitrarily small if the controller constang], Fairman [8], [9], Fogel and Huang [10], and O'Reilly [11].
are chosen large enough. We find in our simulations, for a second ord@ong these, two approaches are considered in this note. Fairman
system, besides its simplicity, our robust controller is also superit§fl, [9] proposed to solve this problem by way of a so-called “hybrid
to Kanellakopoulous’ adaptive one in a sense that it achieves simiggtimator” consists of first introducing the LO, and then using the KF
tracking performance with much less effort in the transient period. e estimate the states of the observer. It was claimed suboptimal by
have also found in our simulations that we can achieve similar perféReilly [11], [12]. Although this misleading result has been clarified
mance with much less control effort if we choose a better choice of thg Fairman [13], however the derivation is somewhat complex. On the
positive design functions. Therefore, it is very important to find a suiether hand, Yoshikawa [6] and O'Reilly [11] presented a structurally

able choice of the positive design functions we introduced. More eff@iimple minimal-order estimator. This approach as noted in [13] is to
will be made in this direction in our future work. introduce the KF first and then modify it by using a LO. However, the
result did not conform to standard KF forms. Furthermore, the gain

VI. CONCLUSION
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computation involves the inversion of am x m matrix, wherem is Ky =T(-Vi) Ky (7)
the measurement dimension. _ i L

The main goal of this note is to derive a new optimal minimal-order Prpe =T (=Vi) P (= Vi) (8)
least-squares estimator (OMOLSE) directly via the recently developgflarez — () @), K = [(F1 ) (FQ)’]’, andP =
general two-stage Kalman filter (GTSKF) [16]. The GTSKF consist(%ag{pl_/ ﬁz}. The blending matriced’s and Vi are left to be

of two reduced-prder filters and is equivalent_to _th_e KF. By a SUiHetermined to make the predicted and the filtered covariances block
able preprocessing of the measurement matrix, it is shown that Qﬂﬁgonal respectively.

reduced-order filter of the GTSKF generates the noise-free measuregayt pased on thisvo-step iterative substitutiamethod of [15] and
ments, which represents part of the filtered state, and the other ﬁl{ﬁ[a foII(l)wing notations:
generates the remaining state. Unlike the derivations in [8] and [11],

the GTSKF is obtained by directly applying a two-st&gel” transfor- [T Ec]=TU), [Tr E.]=T(Vi)

mation to the KF. Since this two-stage transformation is nonsingular, . N,

the optimality of the proposed OMOLSE is self-evident. Furthermore, { .M } = A T(Vi) 9)
'k 493

it is shown that the above-mentioned two minimal-order estimators are
equivalent under the suitable preprocessing of the measurement tha-transformed filter expressed by (4)—(8) can be recursively calcu-
trix. Thus, a second goal is to show that the Fairman’s hybrid estimatated by the followingwo-stage decoupled subfilter oESDSO):
[13] is equivalent to the minimal-order estimator of O'Reilly [11]. To _i _
this end, the classical sequential measurement update equations [14]1i§'k’1 -
used to establish this connection. + Bi_yuk—1 — UrTh 1 (10)
This note is organized as follows. The problem and the previous pro- _; 4 — 4
posed GTSKF are stated in Section II. In Section Ill, we derive the Tklk = Thji—1 + K (9 = ChTiiypn ) (11)
OMOLSE Qirectly from the GTSKF. In Section IV, itis shown that the Phot = Hoei Ph_y o Hiey + Nt Pr_ oy Mo
OMOLSE is equivalent to the Yoshikawa—O'Reilly estimator [11]. In , ,
Section V, the Fairman’s hybrid estimator [13] is derived directly from + Qi1 — Uk (Pefin) (12)
the OMOLSE by using the classical sequential measurement update __, , , —1 / -1
equations [14]. Section VI is the conclusion. Kt = Prp—1 (ChT0) {ChTiPrje—a (ChTh) + R} (13)

_1 =2
Hk—1$k71|k71 + Nk—ﬁkaukfl

Pir =T = KyChTi) P (14)
Il. THE GENERAL TWO-STAGE KALMAN FILTER ) ]
] ] ) ) and the followingtwo-stage decoupled subfilter tWf@SDST):
Consider the following discrete-time system:

?ipg_l = A’[kflfi_uk—l + L/c—lf}g_l\k—i + Bi 1wk (15)

Trtt = Apxr + Brug + wy (1)
"l 0 Tifk =Ftpe—r + Kt (Y6 — CuTiThpp—r — CuExTrpi—1)  (16)
Yk = { 2} = Cry + { } @ — ,
Yk M Pije—r =M1 Py o1 My + Ly
where 51 / 22
xy € R" system state; Peosiema Loy + Qo an
ur € RY control input; Ki =Pijp 1 (ChEe) {ChExPip 1 (CrEx) + Ci Tk

yr € R™, y, € R™1, andy; € R™2  measurement vectors. — , 1
MatricesA;., By, andC'. have the appropriate dimensions (rankaf " Prp—1(CrT3) + Rk} (18)
ism < n). Thg process noise. and the measuremenF noige are fi\k =(I- KiCkEk)ﬁZ{mq (19)
zero-mean white Gaussian sequences with the following covariances:
Elwy(w)'] = Qx 1, Elns(qi)'] = RiZ 61, andElwy, ()'] = 0, where
where denotes transpose afl denotes the Kronecker delta function.

e . R X . P1‘2’_ —H._ Ft_ N L/7 N.
The initial stater, is assumed to be uncorrelated with the white noise Flk=t I e e B

D2 12
sequences;. andny., and is assumed to be Gaussian random variables P Mi—i + Q1= (20)
with E{x¢} = Tp and Cov{xo} = Py. 0 0
Itis well-known that the KF can be used to produce the optimal state Ry = {0 R22 } . (21)

estimate. However, the computational cost and the numerical errors of ) ) ]
the KF increase drastically with the state dimension. Hence, the Kib€ blending matrices are then given by

may be impractical to implement. In such cases, reduced-order filters U, =Pl (Fi . )71 22)
are preferable since there is no need to estimate those states which are k=1 k=t
known exactly. Inthis paper, we show that the recently proposed GTSKF Vi =Us — K1CEy. (23)

[16] may serve as an alternative to solve this problem. The GTSKF is

obtained by applying the following two-stage transformation: Based on the above two-stage covariance-decoupled subfilters, i.e.,

(10)—(19), it can be shown (see [16]) that the Kalman estimates can be

T(M) = {Ip M } 3) reconstructed by the following GTSKF:
0 I.,
4 — =1 T ~—72
wherep is chosen appropriately, to a standard KF. Then, the trans- e = Tihpe + Erie (24)
formed filter becomes P =TuPhiTh + EvPi i By (25)
Trk—1 =T (=Uk)zpp (4)  Theinitial condition and the efficiency of the GTSKF are given in [16].
— T The implication of the above result is that a standard KF can be de-
T =1T(=Vi)awn (5)

composed into two covariance-decoupled reduced-order KFs by the
Prig—1 =T(=Up) Prpp—i T' (= Uk) (6) two-stage decoupling technique. The advantage of using this new result
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is that the optimality of the obtained filter is guaranteed. One applica- Py = A72 Pi_ije—i (AF21) + Q721, (40)
tion of applying the GTSKF is to obtain the optimal modified stochastic } o 5 N1

Luenberger observer (OMSLO) [17], which can be used to derive the Ki = P{e—1 Sk {S,CP;M_lS}C + Rk} (41)
optimal minimal-order observer of Leondes and Novak [18]. In the fol- oL

lowing section, we show another application to apply the GTSKF to P = (I = KgSk) Pje— (42)

derive a new optimal minimal-order least-squares estimator, which is
shown later to be equivalent to the Yoshikawa—O'Reilly estimator [11] Which
and the Fairman’s hybrid estimator [13]. Vi =y — CkT/ﬁL\k_l (43)

Ill. THE OPTIMAL MINIMAL -ORDER LEAST-SQUARES ESTIMATOR R; = CkaF}»Mq (CvTw)' + Ry (44)

Itis well-known that the reduced-order filter is obtained by replacing To facilitate the following derivation, we show that the above
part of state estimates directly by noise-free measurements. Thus,dfMOL SE can be further simplified. First, we rewrite the gain equation
reduced-order filter is readily obtained from the TSDST filter presentef| the OMOLSE, i.e., (41), by using (42) as follows:
in the preceding section if we can verify that the output of the TSDSO y o
filter generates the following: Ki = PSR~ (45)

Tip =yr P =0 (26)  Next, let the LDU decomposition of the measurement noise covariance

This is achieved if”;. andp of the GTSKF are chosen by Ey be given as

P, [T (CEYY
Cr = g:; C(}; p=mi. (27) Ri = |:O%l ?—} kl(;ﬁl R(;f 0 (CLI ') (46)
The first equation of (27) is always promised (see [11]). Then, one h@sbstituting (46) into (45), we obtain
ar= | } . G- [ ok } L@ ii = K; [ . (47)
cit Ci Uk + Cy -ct I
Using (22) and the first equation of (28), the TSDSO filter, i.eyhere )
(10)—(14), becomes ) ] . B i o
Thipoy = Hiorgh oy + Nea T s Ki =P{iS) ® dlag{(P%,H._1) , (R?) 1} (48)
+ Bi_yup—t — UnT2 oy (29) Sk=1[Up (G2 (49)
The = b (30) Ui = (A2 P (A2 + Qi20) (Pin—r) ™. (50)
Pijor = Neci Pi_y et Nioy + Qi — Uk PR Uy (31)  Substituting (47) into (39) and (42) yields
Ki = [In, 0] (32) Zklk = Ze|e—1 + K7 (UZ - Sl*/:k\kfl) (51)
Pl =0. (33) Por = — K Sk) Pijr—s (52)
The blending matriX¥/;. in (23) is given, by using the second equatiorwhere
of (28) and (32), as . Uszipeos — 412 S
Vi = 0. (34) Yr =Yk + 0 }
Using (34) in (9) yields _[AS v+ i } | 53
{Hk Nk.l 4 [Ail AE} 35) 0
L M Al AP Using (52), (48) can be rewritten as follows:
Using the above results (28)—(35), the following notations: Ki =Py st {Skva_] S+ Rz}_l (54)
B = {Lgl}’ Dy = Ln?ml} where
8. =CvEy, :2=7 P'=P K =K? Rj, =diag{ AL Pi_ i1 (A2 + Qil
the TSDST filter, i.e., (15)~(19), and (24)~(25), we propose the fol- — UnPip— Uk, B} (55)
lowing optimal minimal-order least-squares estimator (OMOLSE): Atlast, through (51), (52), and (54), we can obtain the following com-
Zrpk = Fiyk + Dizipe (36) pact OMOLSE:
P = D.P;,. Dy, (37) Zrpr = Fryi + Dizige (56)
where Pfjw =Dy P D (57)
Zhlkh—1 = A7, Zgp_1lk—1+ AP yior + Bi_juk_ (38)  where

ik = 2zkko1 + K (!/L - Smwk—l) (39) Zhpomt = Abs zimijh—1 + ARl yhos + Bi_jue—1  (58)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 11, NOVEMBER 2001 1775

Zhik = Zkjk—1 + K7 (Y — Skzrie—1) (59) V. THE FAIRMAN'S HYBRID ESTIMATOR
Pl = ;4?7113;571\/;-71 (‘42271)’ + 02, (60) Although the \_(oshlkawa—o Reilly _es_tlmator [_11] is 5|_mple, it in-
volves the inversion of am x m matrix in the gain equation, where
K; = P,j|,€,15,'C {SL,Pm,lS,’C + R,ﬁ}_1 (61) m represents the measurement dimension. This may cause numerical

problems if the measurement number is large; furthermore, the com-

P‘flk = - Ky S"')P‘flk—" (62) putational load may be excessive. In fact, these disadvantages can be
Remark: The reduced-order filter, i.e., (58)—(62), is a standard Kpvoided if the gain equation involves a smaller matrix inverse. In this
corresponding to the following reduced-order system: section, we show that this aim can be achieved by applying the clas-
99 o ) L Lo sical sequential measurement update technique [14], and the obtained
zeer = Ak ze H A Bill(ye)" ()] 4wy simplified estimator is shown to be equivalent to the Fairman’s hybrid

estimator [13].

Owing to that the measurement noise covariance in (55) is in block
where z;, € R"™™ is the reduced-order system staféy;)’ diagonal form, the reduced-order filter (58)—(62) can be further simpli-
(ur)'] € R™*t¢ is the new control input, ang; € R™ is fied by applying the following two stages measurement update equa-
the new measurement vector. The new process nejseand the tions [14]:
new measurement noise; are zero-mean white Gaussian se-
guences with the following covariance&{w;i (w;)’] = Q%*6y, Stagel:

Elwi(w/)'] = Bi S, and E[wi(wf)'] = 0. Sk = (A2 — Ki 412, Vzk—1jk—1 + (AiZ; — KiAity)

Y = Skzr + wj

1 2 -z pl -z 1
IV. CONNECTIONWITH THE Y OSHIKAWA—O’REILLY ESTIMATOR ®yr_1 + (Broy — Ky Br_y)ue—1 + Ky (73)
To connect the OMOLSE filter with the Yoshikawa-O'Reilly esti- K7 = P,y Uk {AV Pi s (A1) + QL1 VT (74)
mator [11], we first introduce four auxiliary variables,., zx|r—1, . o
i1, andK as follows: Py = = KgUe) Py (75)
ze = 2(k),  zgp—1 = D(k)i (k|k — 1) Stage 2:
Sier =DM (klk—1) D'(k),  Ki=G(k) (63) ik = Zape + K (vh = CFZ) (76)
N R , . . _ ~ 59. 59 =~ ¢ ¢ —1
wh_ere:(k), E(k|k — 1), 2(k|k — 1), andD(_k) are defln_ed in [;1]. K ZPEM(C;Z,)’ {CEZPLﬂk(CﬁZ)’ + Riz} 77)
Using (63), one can reformulate the Yoshikawa—O’Reilly estimator,
i.e., [11, egs. (11)—(13) and (15)—(17)], as follows: Pip=(- FZCEZ)PL?M- (78)
Zilk = Zule—1 + Ki (yr — Cr (k|k — 1)) (64) At last, one has the optimal estimatgs, = Zi, and P, = Pj,
Zklkot :flz?—lzk—l\k—l + A2y 4B un (65) (for the proof, see [14, Th. 1]). Note that in deriving (73), the following

equation is first obtained:
3 (k|k) = Fryi + Dy zipi (66) R
“klk — ~k|k—1 k

Ki=D(k)S(klk — 1) Cy, {CL»E(kU; -1)Cp + RL:}_1 (67) . (y;% _ ‘411;2_131«71%71 — Al b - B;%_yuk_])

Thjk—1 :Ai{lngllkfl(flizl)l +Qi% (68) and then applied (38). Furthermore, the matfixin (74) and (75) is
Sik =i — KiC.S(k|k = 1) D'(k). (69) ;(ia;lézdant and can be eliminated as follows. Using (50) in (74) and (75)
Note that in deriving the above results, [11, (9), (33)] are assumed. 5
Then, it is easily verifying the following identities: Ki= (AP (A2 ) + Q3ly)
vk — e (k|k = 1) =y — Skzupes (70) o (A Pl (A + QIS Y (79)
CyE (k|k — 1) D'(k) = Sk Pijh s (71) Pl = (A2 — Ki A O e (477
CvS (k|k — 1) Cl + Ry = S Pijs_ Sk + Ri (72) + Q% — KiQiy. (80)

wherey;, Sk, Pyj,_,, andR; are given by (53), (49), (40), and (55), Next, using the following notations:
respectively. Using the above identities (70)—(72), the equivalence Y fr e e
of the Yoshikawa—O'Reilly estimator [(64)—(69)] and the proposed Qe =Ki Die-1 = P
OMOLSE [(56)—(62)] is established. Sip =Pip Gr=Kj (81)
One advantage of expressing the Yoshikawa—O'Reilly estimator [11] ] - )

in the form (56)—(62) is that it conforms to the standard KF form. Thu&nd introducing auxiliary variables; .. andZy ;. such that
the optimality of the reduced-order estimator is readily obtained. Even s g 1

. . . . - Zille = Zkk—1 + Qe yi (82)
more important than the above is that it provides a simple way to estab-
lish the equivalence of the Yoshikawa—O’Reilly estimator [11] and the Zkike = 2k + Qe m (83)
Fairman’s hybrid estimator [13]. This gives an alternative proof other : )
than [13] to evaluate the optimality, in the minimum-mean-square-er/@p€ €an reformulate the compact OMOLSE filter [(56)(62)] by using
(MMSE) sense, of the latter; furthermore, we show that the Iatter@s)_(m) as
more efficient and stable than the former in view of computational com-
plexity and numerical accuracy, respectively, since the smaller matrix
inverse is involved. P, = DiSiy, Di, (85)

Erik = Foyr + Dicps (84)
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where
[1]
[2]

Zpjk—1 = (Ai2—1 - QA )ik—1|k—1 + (-4?_1 - AL

o yi—i + (Bi_) — UBj_ )up—1 (86)
Zhik = Zrinmr + G (95 — CF Zii—t) (87) 3]
Sippor = (AP = QeAiZ O)Si o (A2
+ QL - Q% 88) M
Gr =Sl (G {CPSiu (G + BEY @)
Sipe = = GeCP)hk (90) -
Fio=[Im QT (91)
Ui =y — Py 92 [
Q= (A2 S0 e (A2 +QFL) -
o (A Si i (AR + Qi T (93)
Then, we show that (88) is equivalent to the following one: (9]
[10]
ik = (AT — Qe DSE ks
(AT = AR )+ TrQra Ty 94 1
wherel', = [-Q In_m,]. Expanding (94) yields [12]
Sipor = (A8 = e DSis s (AR2)
+ Q (AR i (AR ) + Qi) Q4 [13]
- (A,H e (A7) + QR 1) Qe
+ Q7 — UQi. (95) [14]

Using (79) and (81), one obtains that the second and third lines of (95)5]
equal to zero, and, hence, (94) is verified. Thus, the obtained simplified
filter [(84)—(90)] is equivalent to that proposed by Fairneral.[13].

In view of (61), (89), and (93), itis clear that the Fairman estimator
[13] is numerically more efficient than the Yoshikawa—O'Reilly esti- [17
mator [11] since the smaller matrix inverse is involved. Comparing (56)
and (84), it is clear from the above derivation that the significance 0f18]
the coordination used by Fairman, e B; (k) in [11, (36)] and{2, in
this paper, is that it transforms the original measurement equation (2)
into a new one (also see [13, (14)]) which facilitates the further deriva-
tion for reducing the computational complexity of the reduced-order
estimator.

[16]

VI.

This note derives the OMOLSE via the GTSKF. Using this new
filter, the equivalence of the Yoshikawa—O’'Reilly estimator [11] and
the Fairman’s hybrid estimator [13] is established. A practical imple-
mentation issue to consider these two estimators is addressed. It is
shown that the former can be further simplified to the latter by using
the classical sequential measurement update equations [14]. Further-
more, the significance of the coordination used by Fairman’s hybrid
estimator is also addressed.

CONCLUSION
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