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Fig. 1. The tracking errory(t)�y (t). Curve 1 … our controller; Curve 2 …
Kanellakopoulous’ adaptive controller.

Fig. 2. The controlu. Curve 1…our controller; Curve 2…Kanellakopoulous’
adaptive controller.

that, by choosing�, �1, �2 properly, our robust controller seems to be
more promising than Kanellakopoulous’ adaptive one although it can
no longer achieve asymptotic tracking.

VI. CONCLUSION

We have designed a robust output-feedback controller with a very
simple structure for a class of nonlinear uncertain systems. The global
boundness of all closed-loop signals can be guaranteed and the output
tracking error can be made arbitrarily small if the controller constants
are chosen large enough. We find in our simulations, for a second order
system, besides its simplicity, our robust controller is also superior
to Kanellakopoulous’ adaptive one in a sense that it achieves similar
tracking performance with much less effort in the transient period. We
have also found in our simulations that we can achieve similar perfor-
mance with much less control effort if we choose a better choice of the
positive design functions. Therefore, it is very important to find a suit-
able choice of the positive design functions we introduced. More effort
will be made in this direction in our future work.
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Optimal Minimal-Order Least-Squares Estimators Via the
General Two-Stage Kalman Filter

Chien-Shu Hsieh and Fu-Chuang Chen

Abstract—A direct derivation of the optimal minimal-order least-
squares estimator (OMOLSE) is presented using the recently developed
general two-stage Kalman filter (GTSKF). Using this new result, the
reduced-order estimators of O’Reilly and Fairman are readily shown to
be equivalent. A practical implementation issue to consider these two
estimators is also addressed.

Index Terms—Least-squares estimator, minimal-order estimator,
reduced-order estimator, two-stage Kalman filter.

I. INTRODUCTION

The problem of estimating the system state in a discrete-time
linear stochastic system having partially noise free measurements
is considered. It is solved by the well-known Kalman filter (KF).
However, to reduce the computational burden of the KF, researchers
have tried to incorporate Luenberger observers (LO) [1]. Aoki and
Huddle [2] and Brammer [3] first suggested the use of a LO to solve
this problem. Other researchers have also contributed to this area,
e.g., Tse and Athans [4], Tse [5], Yoshikawa [6], Leondes and Novak
[7], Fairman [8], [9], Fogel and Huang [10], and O’Reilly [11].
Among these, two approaches are considered in this note. Fairman
[8], [9] proposed to solve this problem by way of a so-called “hybrid
estimator” consists of first introducing the LO, and then using the KF
to estimate the states of the observer. It was claimed suboptimal by
O’Reilly [11], [12]. Although this misleading result has been clarified
by Fairman [13], however the derivation is somewhat complex. On the
other hand, Yoshikawa [6] and O’Reilly [11] presented a structurally
simple minimal-order estimator. This approach as noted in [13] is to
introduce the KF first and then modify it by using a LO. However, the
result did not conform to standard KF forms. Furthermore, the gain
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computation involves the inversion of anm �m matrix, wherem is
the measurement dimension.

The main goal of this note is to derive a new optimal minimal-order
least-squares estimator (OMOLSE) directly via the recently developed
general two-stage Kalman filter (GTSKF) [16]. The GTSKF consists
of two reduced-order filters and is equivalent to the KF. By a suit-
able preprocessing of the measurement matrix, it is shown that one
reduced-order filter of the GTSKF generates the noise-free measure-
ments, which represents part of the filtered state, and the other filter
generates the remaining state. Unlike the derivations in [8] and [11],
the GTSKF is obtained by directly applying a two-stageU–V transfor-
mation to the KF. Since this two-stage transformation is nonsingular,
the optimality of the proposed OMOLSE is self-evident. Furthermore,
it is shown that the above-mentioned two minimal-order estimators are
equivalent under the suitable preprocessing of the measurement ma-
trix. Thus, a second goal is to show that the Fairman’s hybrid estimator
[13] is equivalent to the minimal-order estimator of O’Reilly [11]. To
this end, the classical sequential measurement update equations [14] is
used to establish this connection.

This note is organized as follows. The problem and the previous pro-
posed GTSKF are stated in Section II. In Section III, we derive the
OMOLSE directly from the GTSKF. In Section IV, it is shown that the
OMOLSE is equivalent to the Yoshikawa–O’Reilly estimator [11]. In
Section V, the Fairman’s hybrid estimator [13] is derived directly from
the OMOLSE by using the classical sequential measurement update
equations [14]. Section VI is the conclusion.

II. THE GENERAL TWO-STAGE KALMAN FILTER

Consider the following discrete-time system:

xk+1 =Akxk +Bkuk + wk (1)

yk =
y1k
y2k

= Ckxk +
0

�k
(2)

where
xk 2 Rn system state;
uk 2 Rq control input;
yk 2 R

m, y1k 2 Rm , andy2k 2 R
m measurement vectors.

MatricesAk,Bk, andCk have the appropriate dimensions (rank ofCk

is m < n). The process noisewk and the measurement noise�k are
zero-mean white Gaussian sequences with the following covariances:
E[wk(wl)

0] = Qk �kl, E[�k(�l)
0] = R22

k �kl, andE[wk(�l)
0] = 0,

where0 denotes transpose and�kl denotes the Kronecker delta function.
The initial statex0 is assumed to be uncorrelated with the white noise
sequenceswk and�k, and is assumed to be Gaussian random variables
with Efx0g = x0 andCovfx0g = P 0.

It is well-known that the KF can be used to produce the optimal state
estimate. However, the computational cost and the numerical errors of
the KF increase drastically with the state dimension. Hence, the KF
may be impractical to implement. In such cases, reduced-order filters
are preferable since there is no need to estimate those states which are
knownexactly. In thispaper,we show that the recentlyproposedGTSKF
[16] may serve as an alternative to solve this problem. The GTSKF is
obtained by applying the following two-stage transformation:

T (M) =
Ip M

0 In�p
(3)

wherep is chosen appropriately, to a standard KF. Then, the trans-
formed filter becomes

xkjk�1 =T (�Uk)xkjk�1 (4)

xkjk =T (�Vk)xkjk (5)

P kjk�1 =T (�Uk)Pkjk�1T
0(�Uk) (6)

Kk =T (�Vk)Kk (7)

P kjk =T (�Vk)PkjkT
0(�Vk) (8)

wherex = [(x1)0 (x2)0]0, K = [(K
1
)0 (K

2
)0]0, andP =

diagfP
1
; P

2
g. The blending matricesUk and Vk are left to be

determined to make the predicted and the filtered covariances block
diagonal, respectively.

Next, based on thetwo-step iterative substitutionmethod of [15] and
the following notations:

[Tk Ek ] =T (Uk); [Tk Ek ] = T (Vk)

Hk Nk

Lk Mk

=AkT (Vk) (9)

the transformed filter expressed by (4)–(8) can be recursively calcu-
lated by the followingtwo-stage decoupled subfilter one(TSDSO):

x
1

kjk�1 =Hk�1x
1

k�1jk�1 +Nk�1x
2

k�1jk�1

+B
1

k�1uk�1 � Ukx
2

kjk�1 (10)

x
1

kjk =x
1

kjk�1 +K
1

k yk � CkTkx
1

kjk�1 (11)

P
1

kjk�1 =Hk�1P
1

k�1jk�1H
0
k�1 +Nk�1P

2

k�1jk�1N
0
k�1

+Q
11

k�1 � Uk P
12

kjk�1
0

(12)

K
1

k =P
1

kjk�1(CkTk)
0
CkTkP

1

kjk�1(CkTk)
0 +Rk

�1
(13)

P
1

kjk =(I �K
1

kCkTk)P
1

kjk�1 (14)

and the followingtwo-stage decoupled subfilter two(TSDST):

x
2

kjk�1 =Mk�1x
2

k�1jk�1 + Lk�1x
1

k�1jk�1 +B
2

k�1uk�1 (15)

x
2

kjk =x
2

kjk�1 +K
2

k yk � CkTkx
1

kjk�1 � CkEkx
2

kjk�1 (16)

P
2

kjk�1 =Mk�1P
2

k�1jk�1M
0
k�1 + Lk�1

� P 1

k�1jk�1L
0
k�1 +Q

22

k�1 (17)

K
2

k =P
2

kjk�1(CkEk)
0
CkEkP

2

kjk�1(CkEk)
0 + CkTk

� P 1

kjk�1(CkTk)
0 +Rk

�1
(18)

P
2

kjk =(I �K
2

kCkEk)P
2

kjk�1 (19)

where

P
12

kjk�1 =Hk�1P
1

k�1jk�1L
0
k�1 +Nk�1

� P 2

k�1jk�1M
0
k�1 +Q

12

k�1 (20)

Rk =
0 0

0 R22
k

: (21)

The blending matrices are then given by

Uk =P
12

kjk�1 P
2

kjk�1
�1

(22)

Vk =Uk �K
1

kCkEk: (23)

Based on the above two-stage covariance-decoupled subfilters, i.e.,
(10)–(19), it can be shown (see [16]) that the Kalman estimates can be
reconstructed by the following GTSKF:

x̂kjk =Tkx
1

kjk +Ekx
2

kjk (24)

P̂kjk =TkP
1

kjkT
0
k +EkP

2

kjkE
0
k: (25)

The initial condition and the efficiency of the GTSKF are given in [16].
The implication of the above result is that a standard KF can be de-

composed into two covariance-decoupled reduced-order KFs by the
two-stage decoupling technique. The advantage of using this new result
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is that the optimality of the obtained filter is guaranteed. One applica-
tion of applying the GTSKF is to obtain the optimal modified stochastic
Luenberger observer (OMSLO) [17], which can be used to derive the
optimal minimal-order observer of Leondes and Novak [18]. In the fol-
lowing section, we show another application to apply the GTSKF to
derive a new optimal minimal-order least-squares estimator, which is
shown later to be equivalent to the Yoshikawa–O’Reilly estimator [11]
and the Fairman’s hybrid estimator [13].

III. T HE OPTIMAL MINIMAL -ORDERLEAST-SQUARESESTIMATOR

It is well-known that the reduced-order filter is obtained by replacing
part of state estimates directly by noise-free measurements. Thus, the
reduced-order filter is readily obtained from the TSDST filter presented
in the preceding section if we can verify that the output of the TSDSO
filter generates the following:

x
1

kjk = y
1

k P
1

kjk = 0: (26)

This is achieved ifCk andp of the GTSKF are chosen by

Ck =
Im 0

C21

k C22

k

p = m1: (27)

The first equation of (27) is always promised (see [11]). Then, one has

CkTk =
Im

C21

k

; CkEk =
Uk

C21

k Uk + C22

k

: (28)

Using (22) and the first equation of (28), the TSDSO filter, i.e.,
(10)–(14), becomes

x
1

kjk�1 =Hk�1y
1

k�1 +Nk�1x
2

k�1jk�1

+B
1

k�1uk�1 � Ukx
2

kjk�1 (29)

x
1

kjk = y
1

k (30)

P
1

kjk�1 =Nk�1P
2

k�1jk�1N
0
k�1 +Q

11

k�1 � UkP
2

kjk�1U
0
k (31)

K
1

k = [ Im 0 ] (32)

P
1

kjk =0: (33)

The blending matrixVk in (23) is given, by using the second equation
of (28) and (32), as

Vk = 0: (34)

Using (34) in (9) yields

Hk Nk

Lk Mk

= Ak =
A11

k A12

k

A21

k A22

k

: (35)

Using the above results (28)–(35), the following notations:

Fk =
Im1

0
; Dk =

0

In�m1

�Sk =CkEk; z = x
2

P
z = P

2 �Kz = K
2

the TSDST filter, i.e., (15)–(19), and (24)–(25), we propose the fol-
lowing optimal minimal-order least-squares estimator (OMOLSE):

x̂kjk =Fky
1

k +Dkzkjk (36)

P̂
x

kjk =DkP
z

kjkD
0
k (37)

where

zkjk�1 =A
22

k�1zk�1jk�1 + A
21

k�1y
1

k�1 +B
2

k�1uk�1 (38)

zkjk = zkjk�1 + �Kz

k �yzk � �Skzkjk�1 (39)

P
z

kjk�1 =A
22

k�1P
z

k�1jk�1(A
22

k�1)
0 +Q

22

k�1 (40)

�Kz

k =P
z

kjk�1
�S0
k

�SkP
z

kjk�1
�S0
k + �Rzk

�1

(41)

P
z

kjk =(I � �Kz

k
�Sk)P

z

kjk�1 (42)

in which

�yzk = yk � CkTkx
1

kjk�1 (43)

�Rzk =CkTkP
1

kjk�1(CkTk)
0 +Rk: (44)

To facilitate the following derivation, we show that the above
OMOLSE can be further simplified. First, we rewrite the gain equation
of the OMOLSE, i.e., (41), by using (42) as follows:

�Kz

k = P
z

kjk
�S0
k( �R

z

k)
�1
: (45)

Next, let the LDU decomposition of the measurement noise covariance
�Rzk be given as

�Rzk =
I 0

C21

k I

P 1

kjk�1
0

0 R22

k

I (C21

k )0

0 I
: (46)

Substituting (46) into (45), we obtain

�Kz

k = K
z

k

I 0

�C21

k I
(47)

where

K
z

k =P
z

kjkS
0
k � diag P

1

kjk�1

�1

; (R22

k )�1 (48)

Sk = [U 0
k (C22

k )0 ]0 (49)

Uk = A
12

k�1P
z

k�1jk�1(A
22

k�1)
0 +Q

12

k�1 P
z

kjk�1

�1

: (50)

Substituting (47) into (39) and (42) yields

zkjk = zkjk�1 +K
z

k y
z

k � Skzkjk�1 (51)

P
z

kjk =(I �K
z

kSk)P
z

kjk�1 (52)

where

y
z

k = yk +
Ukzkjk�1 � A12

k�1zk�1jk�1

0

�

A11

k�1y
1

k�1 +B1

k�1uk�1

0
: (53)

Using (52), (48) can be rewritten as follows:

K
z

k = P
z

kjk�1S
0
k SkP

z

kjk�1S
0
k +R

z

k

�1

(54)

where

R
z

k = diag A
12

k�1P
z

k�1jk�1(A
12

k�1)
0 +Q

11

k�1

� UkP
z

kjk�1U
0
k; R

22

k : (55)

At last, through (51), (52), and (54), we can obtain the following com-
pact OMOLSE:

x̂kjk =Fky
1

k +Dkzkjk (56)

P̂
x

kjk =DkP
z

kjkD
0
k (57)

where

zkjk�1 =A
22

k�1zk�1jk�1 + A
21

k�1y
1

k�1 +B
2

k�1uk�1 (58)
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zkjk = zkjk�1 +K
z
k y

z
k � Skzkjk�1 (59)

P
z
kjk�1 =A

22

k�1P
z
k�1jk�1 A

22

k�1
0
+Q

22

k�1 (60)

K
z
k =P

z
kjk�1S

0
k SkP

z
kjk�1S

0
k +R

z
k

�1
(61)

P
z
kjk =(I �K

z
kSk)P

z
kjk�1: (62)

Remark: The reduced-order filter, i.e., (58)–(62), is a standard KF
corresponding to the following reduced-order system:

zk+1 =A
22

k zk + [A21
k B2

k ] [ (y
1
k)

0 (uk)
0 ]0 + w

z
k

y
z
k =Skzk + w

y

k

where zk 2 Rn�m is the reduced-order system state,[(y1k)
0

(uk)
0]0 2 Rm +q is the new control input, andyzk 2 Rm is

the new measurement vector. The new process noisewz
k and the

new measurement noisewy

k are zero-mean white Gaussian se-
quences with the following covariances:E[wz

k(w
z
l )

0] = Q22
k �kl,

E[wy

k(w
y

l )
0] = Rz

k �kl, andE[wz
k(w

y

l )
0] = 0.

IV. CONNECTIONWITH THE YOSHIKAWA–O’REILLY ESTIMATOR

To connect the OMOLSE filter with the Yoshikawa–O’Reilly esti-
mator [11], we first introduce four auxiliary variableszkjk, zkjk�1,
�z
kjk�1, andKz

k as follows:

zkjk = ẑ(k); zkjk�1 = D(k)x̂ (kjk � 1)

�z
kjk�1 =D(k)� (kjk � 1) D0(k); K

z
k = G(k) (63)

whereẑ(k), x̂(kjk � 1), �(kjk � 1), andD(k) are defined in [11].
Using (63), one can reformulate the Yoshikawa–O’Reilly estimator,
i.e., [11, eqs. (11)–(13) and (15)–(17)], as follows:

zkjk = zkjk�1 +K
z
k (yk � Ckx̂ (kjk � 1)) (64)

zkjk�1 =A
22

k�1zk�1jk�1+A
21

k�1y
1

k�1 +B
2

k�1uk�1 (65)

x̂ (kjk) =Fky
1

k +Dkzkjk (66)

K
z
k=D(k)�(kjk� 1)C 0

k Ck�(kjk � 1)C 0
k +Rk

�1
(67)

�z
kjk�1 =A

22

k�1�
z
k�1jk�1(A

22

k�1)
0 +Q

22

k�1 (68)

�z
kjk =�z

kjk�1 �K
z
kCk�(kjk � 1) D0(k): (69)

Note that in deriving the above results, [11, (9), (33)] are assumed.
Then, it is easily verifying the following identities:

yk � Ckx̂ (kjk � 1) = y
z
k � Skzkjk�1 (70)

Ck�(kjk � 1) D0(k) =SkP
z
kjk�1 (71)

Ck�(kjk � 1)C 0
k +Rk =SkP

z
kjk�1S

0
k +R

z
k (72)

whereyzk, Sk, P z
kjk�1, andRz

k are given by (53), (49), (40), and (55),
respectively. Using the above identities (70)–(72), the equivalence
of the Yoshikawa–O’Reilly estimator [(64)–(69)] and the proposed
OMOLSE [(56)–(62)] is established.

One advantage of expressing the Yoshikawa–O’Reilly estimator [11]
in the form (56)–(62) is that it conforms to the standard KF form. Thus,
the optimality of the reduced-order estimator is readily obtained. Even
more important than the above is that it provides a simple way to estab-
lish the equivalence of the Yoshikawa–O’Reilly estimator [11] and the
Fairman’s hybrid estimator [13]. This gives an alternative proof other
than [13] to evaluate the optimality, in the minimum-mean-square-error
(MMSE) sense, of the latter; furthermore, we show that the latter is
more efficient and stable than the former in view of computational com-
plexity and numerical accuracy, respectively, since the smaller matrix
inverse is involved.

V. THE FAIRMAN’S HYBRID ESTIMATOR

Although the Yoshikawa–O’Reilly estimator [11] is simple, it in-
volves the inversion of anm �m matrix in the gain equation, where
m represents the measurement dimension. This may cause numerical
problems if the measurement number is large; furthermore, the com-
putational load may be excessive. In fact, these disadvantages can be
avoided if the gain equation involves a smaller matrix inverse. In this
section, we show that this aim can be achieved by applying the clas-
sical sequential measurement update technique [14], and the obtained
simplified estimator is shown to be equivalent to the Fairman’s hybrid
estimator [13].

Owing to that the measurement noise covariance in (55) is in block
diagonal form, the reduced-order filter (58)–(62) can be further simpli-
fied by applying the following two stages measurement update equa-
tions [14]:

Stage 1:

~zkjk =(A22

k�1 � ~Kz
kA

12

k�1)zk�1jk�1+ (A21

k�1 � ~Kz
kA

11

k�1)

� y1k�1 + (B2

k�1 � ~Kz
kB

1

k�1)uk�1 + ~Kz
ky

1

k (73)

~Kz
k =P

z
kjk�1U

0
k A

12

k�1P
z
k�1jk�1(A

12

k�1)
0 +Q

11

k�1
�1

(74)

~P z
kjk =(I � ~Kz

kUk)P
z
kjk�1: (75)

Stage 2:

zkjk = ~zkjk +K
z
k y

2

k � C
22

k ~zkjk (76)

K
z
k = ~P z

kjk(C
22

k )0 C
22

k
~P z
kjk(C

22

k )0 +R
22

k

�1

(77)

P
z
kjk =(I �K

z

kC
22

k ) ~P z
kjk: (78)

At last, one has the optimal estimateszkjk = zkjk andP z
kjk = P z

kjk

(for the proof, see [14, Th. 1]). Note that in deriving (73), the following
equation is first obtained:

~zkjk = zkjk�1 + ~Kz
k

� y
1

k � A
12

k�1zk�1jk�1� A
11

k�1y
1

k�1 �B
1

k�1uk�1

and then applied (38). Furthermore, the matrixUk in (74) and (75) is
redundant and can be eliminated as follows. Using (50) in (74) and (75)
yields

~Kz
k = A

22

k�1P
z
k�1jk�1(A

12

k�1)
0 +Q

21

k�1

� A
12

k�1P
z
k�1jk�1(A

12

k�1)
0 +Q

11

k�1
�1

(79)

~P z
kjk =(A22

k�1 � ~Kz
kA

12

k�1)P
z
k�1jk�1(A

22

k�1)
0

+Q
22

k�1 � ~Kz
kQ

12

k�1: (80)

Next, using the following notations:


k = ~Kz
k �z

kjk�1 = ~P z
kjk

�z
kjk =P

z
kjk Gk = K

z
k (81)

and introducing auxiliary variableŝzkjk�1 andẑkjk such that

~zkjk = ẑkjk�1 +
ky
1

k (82)

zkjk = ẑkjk +
ky
1

k (83)

one can reformulate the compact OMOLSE filter [(56)–(62)] by using
(73)–(78) as

x̂kjk = ~Fky
1

k +Dkẑkjk (84)

P̂
x
kjk =Dk�

z
kjkD

0
k (85)
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where

ẑkjk�1 =(A22

k�1 � 
kA
12

k�1)ẑk�1jk�1+ (A21

k�1 � 
kA
11

k�1)

� y
1

k�1 + (B2

k�1 � 
kB
1

k�1)uk�1 (86)

ẑkjk = ẑkjk�1 +Gk ~yzk � C
22

k ẑkjk�1 (87)

�zkjk�1 =(A22

k�1 � 
kA
12

k�1)�
z

k�1jk�1(A
22

k�1)
0

+Q
22

k�1 � 
kQ
12

k�1 (88)

Gk =�zkjk�1(C
22

k )0 C
22

k �zkjk�1(C
22

k )0 +R
22

k

�1

(89)

�zkjk =(I �GkC
22

k )�zkjk�1 (90)

~Fk = [ Im 
0
k ]

0 (91)

~yzk = y
2

k � C
22

k 
ky
1

k (92)


k = A
22

k�1�
z

k�1jk�1(A
12

k�1)
0 +Q

21

k�1

� A
12

k�1�
z

k�1jk�1(A
12

k�1)
0 +Q

11

k�1

�1

: (93)

Then, we show that (88) is equivalent to the following one:

�zkjk�1 =(A22

k�1 � 
kA
12

k�1)�
z

k�1jk�1

� (A22

k�1 � 
kA
12

k�1)
0 + �kQk�1�

0
k (94)

where�k = [�
k In�m ]. Expanding (94) yields

�zkjk�1 =(A22

k�1 � 
kA
12

k�1)�
z

k�1jk�1(A
22

k�1)
0

+
k A
12

k�1�
z

k�1jk�1(A
12

k�1)
0 +Q

11

k�1 
0
k

� A
22

k�1�
z

k�1jk�1(A
12

k�1)
0 +Q

21

k�1 
0
k

+Q
22

k�1 � 
kQ
12

k�1: (95)

Using (79) and (81), one obtains that the second and third lines of (95)
equal to zero, and, hence, (94) is verified. Thus, the obtained simplified
filter [(84)–(90)] is equivalent to that proposed by Fairmanet al. [13].

In view of (61), (89), and (93), it is clear that the Fairman estimator
[13] is numerically more efficient than the Yoshikawa–O’Reilly esti-
mator [11] since the smaller matrix inverse is involved. Comparing (56)
and (84), it is clear from the above derivation that the significance of
the coordination used by Fairman, e.g.,P21(k) in [11, (36)] and
k in
this paper, is that it transforms the original measurement equation (2)
into a new one (also see [13, (14)]) which facilitates the further deriva-
tion for reducing the computational complexity of the reduced-order
estimator.

VI. CONCLUSION

This note derives the OMOLSE via the GTSKF. Using this new
filter, the equivalence of the Yoshikawa–O’Reilly estimator [11] and
the Fairman’s hybrid estimator [13] is established. A practical imple-
mentation issue to consider these two estimators is addressed. It is
shown that the former can be further simplified to the latter by using
the classical sequential measurement update equations [14]. Further-
more, the significance of the coordination used by Fairman’s hybrid
estimator is also addressed.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for their
insightful comments.

REFERENCES

[1] D. G. Luenberger, “Observing the state of a linear system,”IEEE Trans.
Mil. Electron., vol. MIL-8, pp. 74–80, Apr. 1964.

[2] M. Aoki and J. R. Huddle, “Estimation of the state vector of a linear
stochastic system with a constrained estimator,”IEEE Trans. Automat.
Contr., vol. AC-12, pp. 432–433, Aug. 1967.

[3] K. G. Brammer, “Lower order optimal linear filtering of nonstationary
random sequences,”IEEE Trans. Automat. Contr., vol. AC-13, pp.
198–199, Apr. 1968.

[4] E. Tse and M. Athans, “Optimal minimal-order observer-estimators for
discrete linear time-varying systems,”IEEE Trans. Automat. Contr., vol.
AC-15, pp. 416–426, Aug. 1970.

[5] E. Tse, “Observer-estimators for discrete time systems,”IEEE Trans.
Automat. Contr., vol. AC-18, pp. 10–16, Feb. 1973.

[6] T. Yoshikawa, “Low-order filters for linear discrete-time systems,” in
Memoirs of the Faculty of Engineering. Kyoto, Japan: Kyoto Univer-
sity, 1973, vol. 35, pp. 93–101.

[7] C. T. Leondes and L. M. Novak, “Reduced-order observers for linear
discrete-time systems,”IEEE Trans. Automat. Contr., vol. AC-19, pp.
42–46, Feb. 1974.

[8] F. W. Fairman, “Reduced-order state estimator for discrete-time
stochastic systems,”IEEE Trans. Automat. Contr., vol. AC-22, pp.
673–675, Aug. 1977.

[9] , “Hybrid estimators for discrete-time stochastic systems,”IEEE
Trans. Syst., Man, Cybern., vol. SMC-8, pp. 849–854, Dec. 1978.

[10] E. Fogel and Y. F. Huang, “Reduced-order optimal state estimator for
linear systems with partially noise corrupted measurements,”IEEE
Trans. Automat. Contr., vol. AC-25, pp. 994–996, Oct. 1980.

[11] J. O’Reilly, “On linear least-squares estimators for discrete-time sto-
chastic systems,”IEEE Trans. Syst., Man, Cybern., vol. SMC-10, pp.
276–279, May 1980.

[12] , “Comments on two recent papers on reduced-order optimal state
estimation for linear systems with partially noise corrupted measure-
ment,” IEEE Trans. Automat. Contr., vol. AC-27, pp. 280–282, Feb.
1982.

[13] F. W. Fairman and L. Luk, “On reducing the order of Kalman filters for
discrete-time stochastic systems having singular measurement noise,”
IEEE Trans. Automat. Contr., vol. AC-30, pp. 1150–1152, Nov. 1985.

[14] R. A. Singer and R. G. Sea, “Increasing the computational efficiency of
discrete Kalman filters,”IEEE Trans. Automat. Contr., vol. AC-16, pp.
254–257, June 1971.

[15] C. S. Hsieh and F. C. Chen, “Optimal solution of the two-stage Kalman
estimator,” IEEE Trans. Automat. Contr., vol. 44, pp. 194–199, Jan.
1999.

[16] , “General two-stage Kalman filters,”IEEE Trans. Automat. Contr.,
vol. 45, pp. 819–824, Apr. 2000.

[17] , “Modified stochastic Luenberger observers,”Automatica, vol. 36,
pp. 1847–1854, 2000.

[18] C. T. Leondes and L. M. Novak, “Optimal minimal-order observers
for discrete-time systems—A unified theory,”Automatica, vol. 8, pp.
379–387, 1972.


