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A numerical study of effects of the swinging amplitude of fins

on heat transfer characteristics in a flow

W.-S. Fu, S.-J. Yang

Abstract A new method for enhancing heat transfer of a
finned heat sink is proposed in this study. In this method,
extremely thin fins are installed in the finned heat sink,
and these fins may swing back and forth in a flow because
of the fluid flowing pass them. As a result, the velocity and
thermal boundary layers attached on the fins are then
contracted and disturbed, and the heat transfer rate of the
fins can be enhanced. The variations between the fluid and
fins are dynamic and belong to a kind of the moving
boundary problems. The arbitrary Lagrangian-Eulerian
(ALE) kinematic description method is available and
adopted to describe the flow and thermal fields, and the
governing equations are solved using the Galerkin finite
element method with moving meshes. The effects of
variations in the Reynolds number, swinging speed and
amplitude of the fins on the heat transfer of the fins are
investigated. The results show that the velocity and ther-
mal boundary layers may be contracted and disturbed as
the fins swing with a large speed, and the heat transfer
rates are remarkably affected by the swinging speed and
amplitude of the fins.

List of symbols

a dimensional amplitude of the fins, m

A dimensionless amplitude of the fins (A = a/w,)

d dimensional thickness of the fins, m

D  dimensionless thickness of the fins (D = d/w,)

h dimensional width of the channel, m

H  dimensionless width of the channel (H = h/w;,)

h; dimensional distance from the wall of the channel to

the fin, m

H; dimensionless distance from the wall of the channel
to the fin (H; = hy/ws)

h, dimensional pitch of the fins, m

H, dimensionless pitch of the fins (H, = hy/w;)

Nu overall average Nusselt number of the fin

Nu time-average overall Nusselt number of the fin
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local Nusselt number on the top or bottom surface
of the fin

average Nusselt number on the top or bottom sur-
face of the fin

dimensional pressure, N-m~
referential pressure, N - m~—2
dimensionless pressure (P = (p — po)/pud)
Prandtl number (Pr = o/v)

Reynolds number (Re = uyw,/v)

Reynolds number for the Blasius solution
(Re, = ug1/v)

dimensional swinging speed of the fins, m - s~
dimensionless swinging speed of the fins

(S = s¢/u0)

dimensional time, s

dimensional temperature, °C

dimensional temperature of the fin, °C
dimensional temperature of the inlet fluids, °C
dimensional velocities in x and y directions, m - s
dimensionless velocities in X and Y directions
(U=u/uy, V=1v/ug)

dimensional velocity of the inlet fluids, m - s~
dimensional swinging velocity of the fin in y-direc-
tion, m - s~ !

dimensionless swinging velocity of the fin in
Y-direction (V¢ = v¢/uy)

dimensional mesh velocity in y-direction, m - s~
dimensionless mesh velocity in Y-direction,

(V' =v/uo)

dimensional length of the channel, m
dimensionless length of the channel (W = w/w,)
dimensional distance from the inlet to the front side
of the fin, m

dimensionless distance from the inlet to the front
side of the fin (W) = wi/w,)

dimensional length of the fin, m

dimensionless length of the fin (W, = w,/w;)
dimensional Cartesian coordinates, m
dimensionless Cartesian coordinates (X = x/w;,

Y=y/w)
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1

1
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Greek symbols

T = v~ R

thermal diffusivity, m? - s~}

computational variables

the length of a flat plate for the Blasius solution, m
penalty parameter
kinematic viscosity, m? - s
dimensionless temperature (0 = (T — Ty)/(Tf — To))
density, kg - m™>
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T dimensionless time (1 = tuy/w>)
7,  dimensionless time of one cycle
At dimensionless time increment

Other
||  absolute value

1

Introduction

Due to the progress of the semiconductor technology, a
trend of development of a new electronic device is focused
on the miniaturization of components and compact pack-
aging, which results in the larger heat being generated by
the device and the junction temperature of the device being
higher. The failure rate of an electron device had been
statistically corrected to be proportional to the exponential
of the device junction temperature. Thus the thermal
problem has become an important issue for the perfor-
mance and reliability of the electronic device. How to im-
prove the thermal design and enhance the heat transfer rate
for the electronic device becomes a very important subject.

The techniques for enhancing the heat transfer of elec-
tronic systems and devices have received much attention.
Several models for the cooling of electronic components
have been widely studied both numerically and experi-
mentally. Incropera [1] reported the convection heat
transfer methods in electronic equipment cooling. Yeh [2]
summarized and reviewed the results of recent develop-
ments and researches of the heat transfer technologies in
electronic devices, such as air cooling, liquid cooling, jet
impingement, heat pipe, and micro-channel cooling. Sathe
and Sammakia [3] made a survey of recent developments in
detail for air cooling method in electronic equipment.

Adding a finned heat sink to a hot electronic device for
enlarging the heat transfer area to enhance thermal per-
formance is commonly employed in the electronic device.
Several papers [4-6] were available in this area. Moreover,
vibrating a heated body surface had been conducted ex-
perimentally and theoretically [7-10], that could increase
the heat transfer rate remarkably.

However, at present, it appears that the efficiency of the
heat transfer of adding the finned heat sink to the hot
electronic device may fail to catch up with the large heat
generation rate of the new electronic device. As for the
vibration of the heated body surface, it will seriously
reduce the reliability and life of the electronic device.

In this work, a new cooling model, which combines the
finned heat sink and the vibration of heated body surface
methods, is presented to enhance the heat transfer of the
electronic device effectively and reliably. In this method,
the finned heat sink is mounted on the surface of the
electronic device. The fins of the finned heat sink may
swing back and forth in a flow, but the device is stationary.
To realize this concept, the fins are needed to be made of
extremely thin metal, then these thin fins could easily
swing back and forth in the flowing fluid, or these fins are
forced to be oscillated by an artificial method, such as an
oscillation exciter installed at a proper place. As this
apparatus is executed, the boundary layers of the velocity
and temperature attached on the fins may be disturbed

and contracted due to the swinging of the fins, which can
enhance the heat transfer rate.

Since the swinging fins interact with the flow, the
variations of the flow and thermal fields become time-
dependent and belong to a class of the moving boundary
problems. To analyze this problem, the moving interfaces
between the fluid and fins have to be considered. Thus,
this problem is hardly analyzed by either the Lagrangian
or Eulerian kinematic description method solely. An ar-
bitrary Lagrangian-Eulerian (ALE) kinematic description
method [11-14], which combine the characteristics of the
Lagrangian and Eulerian kinematic description methods,
is an appropriate method to describe this problem. In the
ALE method, the computational meshes may move with
the fluid (Lagrangian), be held fixed (Eulerian), or be
moved in any other prescribed way. The detail of the ki-
nematic theory of the ALE kinematic description method
is delineated in [11, 12].

Therefore, the ALE description method is adopted to
describe the variations of the flow and thermal fields in-
duced by the interaction between the swinging fins and
flowing fluid numerically. A Galerkin finite element
method with moving meshes and a backward difference
scheme, dealing with the time terms, are applied to solve
the governing equations. The effects of variations in the
Reynolds number, swinging speed and amplitude of the
fins on the heat transfer of the fins are investigated.

2

Physical model

The physical model is shown in Fig. 1. There is a two-
dimensional horizontal channel with width h and length w.
A finned heat sink with three thin fins is set in the channel.
The fins with thickness h; and length w, are arranged with
a pitch of h,. The ratio of h; to w, is 0.01. The distances
from the inlet and wall of the channel to the fins are w; and
hy, respectively. The inlet velocity u, and temperature T
of the fluid are uniform. These fins are made of high
conductivity material and maintained at a constant tem-
perature Ty, which is higher than T. Initially (¢ = 0), these
thin fins are assumed to be stationary and the fluid flows
steadily. As the time ¢ > 0, these thin fins are swung back
and forth induced by the flow (the photographs of the
swinging fin are given in the Appendix). Then, the varia-
tions of the flow and thermal fields become time-depen-
dent and are classified into a kind of the moving boundary
problems. As a result, the ALE method is properly utilized
to analyze this problem.

u=v=0,dT/dy=0
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Fig. 1. Physical model
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For facilitating the analysis, the following assumptions
are made:

1. The fluid is air and the flow field is two-dimensional,
incompressible and laminar.

2. The fluid properties are constant and the effect of the
gravity is neglected.

3. The moving direction of the fins is in the y-direction
only, and the fins swing with a constant swinging
speed s¢.

4. The no-slip condition is held on the interfaces between
the fluid and fins.

Based upon the characteristic scales of w,, ug, pu and T,
the dimensionless variables are defined as follows:

x y u %
X:_7 Y:_v = =
W, L) Uo Uo
L~V v St P — P
V=—, Vi=—, Sf:_v P = 2
U [ZN) U PUg
tugy T—To UgWy vV
t=—2 0= , Re="2 Ppr——
W, T — Ty \J o

(1)
where v is the mesh velocity, vs and s¢ (= |v¢|) are the
swinging velocity and speed of the fins, respectively.

According to the above assumptions and dimensionless
variables, the dimensionless ALE governing equations [11-
14] are expressed as the following equations:

Continuity equation

w o, o
0X oY ’
Momentum equations
W, Ua—U+(V—V)a—U
0 0X oY
__op 1 (62U 62U> )
0X Re\0X? 0v?)’
ov ov ~ OV
E-ﬁ- U&—l—(V—V)W
_ oo 1 <62V azv) @
dY Re \0X? 0Y2)’
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(5)
As the time 7 > 0, the boundary conditions are as follows:
On the fluid inlet surface AB

uv=1, Vv=0, 6=0, (6)
On the wall surfaces of the channel BC and AD
U=V=0, 00/0Y=0, (7)
On the fluid outlet surface CD
ou 0oV 06

— =0 ®

X X X

On the interfaces between the fluid and fins
U=0, V=V, 0=1. (9)

3
Numerical method
A Galerkin finite element method and a backward scheme
to deal with the time terms are utilized to discretize the
governing equations and boundary conditions. The New-
ton-Raphson iteration algorithm and the penalty function
model [15] are utilized to simplify the nonlinear and
pressure terms, respectively, in the momentum equations.
The velocity and temperature terms are approximated by
quadrilateral and nine-node quadratic isoparametric ele-
ments. The discretization processes of the governing
equations are similar to the one used in [16]. The details of
the numerical method and solution procedures are delin-
eated in [13, 14].

The relative errors of each variable to examine the
convergence criteria are defined as follows:

¢m+l _ ¢m

-3
W < 1.0 x 1077,

T+At

where ¢ = U, V,0 .

(10)
Besides, the conservative residual of the continuity equa-
tion is checked for each element on each time to ensure the
mass conservative law to be satisfied. In the computing
process of this study, the residual of the continuity equa-
tion for element is smaller than 1.0 x 1077,

4

Results and discussion

The dimensionless geometric lengths are listed in Table 1.
The working fluid is air with Pr = 0.71 and Reynolds
numbers are equal to 500 and 1000. Several different
swinging speeds S¢ (S¢ = s¢/uo = |V¢|) and swinging
amplitudes A(= a/w,) of the fins are taken into
consideration.

Since the thickness of the fins H3 = 0.01 is very thin, the
heat transfer from the right and left surfaces of the fins can
be neglected. The local Nusselt numbers on the top and
bottom surfaces of the fin are defined by

20
~37 - (11)

The average Nusselt numbers on the top and bottom
surfaces of the fin are defined as

Nux (X, 1) =

W,

—_ 1

Nux(1) :W/ Nuyx dX ,

2
0

(12)

where W, is the length of the fin. In addition, the overall
average Nusselt number of the fin is defined as

Table 1. The dimensionless geometric parameters

H H H, H, w W, W, W,

7.0 3.085 0.4 0.01 15.0 4.0 1.0 10.0
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W, W,
1
Nu(‘c) = ﬁ X / Nuy | top dx +/ Nuy |b0ttom dx
2 3 surface ; surface
(13)

Integration of the overall average Nusselt number over
time of one cycle of the motion of swinging back and forth
leads to the time-average overall Nusselt number on the

(14)

where 1, is the time of one cycle of the swinging of the fins.

To ensure the accuracy of computational results, a se-
ries of numerical tests for various meshes at the steady
state are carried out. The nonuniform distribution of 3872
elements corresponding to 15,942 nodes is chosen. Since
the pitch of the fins (H, = 0.4) is much larger than the
thickness of the fins (H; = 0.01), the flow and thermal
fields at the steady state are similar to the fluid flowing
over a flat plate. The Blasius solution [17] for the average
Nusselt number with laminar flow over a flat plate with
length 1 is expressed by

Nux = 0.664 Re!/?pr'/® . (15)
The average Nusselt number on the top or bottom surface
of the middle fin at the steady state for different Reynolds
numbers compared with those of the Blasius solutions are
tabulated in Table 2. The largest difference of only 1.8% in
the average Nusselt number was found between the pre-
sent study and Blasius solutions. As for the selection of the
time step A, the time step At = 1.0 x 1072, 5.0 x 1073
and 2.5 x 1073 are chosen for the swinging speed of the
fins S = 0.05, 0.5 and 1.0 cases, respectively.

For clearly indicating the variations of the flow and
thermal fields, the velocity vectors and isothermal lines
around the middle fin are only presented. However, it
should be noted the computational domain included three
swinging fins, and a much larger region was calculated
than what is displayed in the subsequent figures. Besides,
the velocity vectors shown in the following figures are
scaled relatively to the maximum velocity in the flow field.

The transient developments of the velocity vectors and
isothermal lines around the middle fin for the swinging
speed of the fins S = 0.05 and the amplitude of the fins
A = 0.05 under Re = 500 case are shown in Fig. 2. At the
time © = 0.0 (Fig. 2a), the fins are stationary and the fluid
flows steadily. As the time 7 > 0, the fins begin to swing

Table 2. Comparison of the average Nusselt number of the
middle fin at the steady state for different Reynolds numbers of
the present study with the Blasius solution

Re

100 500 1000 1500
Blasius solution 5.92 13.25 18.73 22.94
Authers’ results 5.97 13.57 18.70 22.52

back and forth. As shown in Fig. 2b, the fin is on the way
to move upward. The fin pushes the fluid near the top
surface of the fin, which enhances the heat transfer near
the top surface of the fin. In the meantime, the fluid near
the bottom surface of the fin replenishes the vacant space
near the bottom surface of the fin induced by the move-
ment of the fin. Most of the fluid near the bottom surface
of the fin are difficult to catch up to the bottom surface of
the fin in time, which is disadvantageous to the heat
transfer. Afterwards, the fin moves upward continuously
until the amplitude of the fin A is equal to 0.05. The
variations of the flow fields are similar to those mentioned
above.

The fin turns downward immediately as the fin reaches
the maximum upper amplitude. As shown in Fig. 2¢, the
fin is on the way to move downward and the position of
the middle fin is at the center of the channel. The varia-
tions of the flow fields are opposite to those of the upward
movement of the fin mentioned earlier. The fin pushes the
fluid near the bottom surface of the fin and the fluid close
to the top surface of the fin continuously replenishes the
vacant space near the top surface of the fin.

In Fig. 2d, the fin is on the way to move upward and the
position of the middle fin returns to the center of the
channel. The variations of the flow fields are similar to
those as shown in Fig. 2b. As the time increases, the fins
swing back and forth as mentioned above. Since the
swinging speed of the fins is slow, the variations of the flow
fields are slight.

As for the thermal fields, the variations of the
thermal fields usually correspond to the variations of
the flow fields. Since the fins swing with a small speed, the
flow fields are similar to the fluid flowing over a flat plate.
Thus, the variations of the thermal fields are slight and the
distributions of the isothermal lines are similar to those of
the fluid flowing through a flat plate.

Figure 3 shows the time variations of the average Nus-
selt number on the top and bottom surfaces of the middle
fin at the same conditions as shown in Fig. 2. Based upon
the variations of the flow and thermal fields mentioned
earlier, as the fin moves upward, the average Nusselt
number increases on the top surface of the fin and de-
creases on the bottom surface of the fin. As the fin moves
downward, the results of the variations of the average
Nusselt number on the surface of the fin are opposite to
those of the fin moving upward. Furthermore, as shown in
Fig. 4, the variations of the time-average overall Nusselt
number on the middle fin with time compared with those
of the steady state are very slight.

In Fig. 5, there are the transient developments of the
velocity vectors and isothermal lines around the middle fin
for the swinging speed of the fins Sy = 0.5 and the am-
plitude of the fins A = 0.05 under Re = 500 case. Since the
swinging speed of the fins is greater than that of the case
above, the variations of the flow and thermal fields around
the fins are more drastic than those of the case above. At
the beginning of the motion, as shown in Fig. 5b, the fin is
on the way to move upward. The fluid near the top surface
on the fin is pushed by the fin and flows upward.
Conversely, the fluid close to the left and bottom surfaces
of the fin simultaneously replenishes the vacant space
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induced by the movement of the fin near the bottom
surface of the fin. Consequently, a small recirculation zone,
which is disadvantageous to the heat transfer, is observed
around the left corner of the bottom surface of the fin. The
variations of the isothermal lines are slight at this time.

As the time increases, the fins move upward continu-
ously as indicated in Fig. 5c. The flow and thermal fields
are similar to those mentioned earlier, but the recircula-
tion zone around the left corner of the bottom surface of
the fin enlarges gradually.

As shown in Fig. 5d, the fin is on the way to move
downward and the position of the middle fin is at the
center of the channel. Due to the downward movement of
the fin, the fin pushes the fluid near the bottom surface of
the fin, and the fluid near the left and top surfaces of the
fin simultaneously replenishes the vacant space near the

top surface of the fin. As a result, a recirculation zone is
formed around the left corner of the top surface of the fin.
As the time increases (Fig. 5e-j), since the fin is in
motion of swinging back and forth with a large swinging
speed, the recirculation zones and reattachment flows
around the top and bottom surfaces of the fin are formed
alternately and continuously, and migrate to the down-
stream gradually. As a result, the variations of isothermal
lines are like a wavy motion. These could cause the
boundary layers of the flow and thermal fields to be con-
tracted and disturbed during the transient developments,
which enhance the heat transfer of the fin. The distribu-
tions of the isothermal lines become sparser near the re-
circulation zones and denser near reattachement flows.
Figure 6 indicates the time variations of the time-
average overall Nusselt number on the surface of the
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middle fin at the same conditions as shown in Fig. 5. Based
upon these reasons mentioned above, the time-average
overall Nusselt number during the transient developments
is enhanced. Furthermore, the flow and thermal fields may
approach a stable state as the time increases, and the mean
increment of the time-average overall Nusselt number on
the middle fin is about 10% in the computing range. As
expected, the heat transfer rate increases with increased
the swinging speed of the fins. Moreover, the mean in-
crement of the time-average overall Nusselt number for
the amplitude of the fins A = 0.1 case is about 16%, which
is larger than that of the A = 0.05 case.

Figure 7 shows the time variations of the time-average
overall Nusselt number on the middle fin for the swinging
speed of the fins S = 1.0 and Re = 500 under the
amplitude of the fins A = 0.05, 0.1 and 0.15 cases. In the

W01 7T
" |+amplitude A=0.1 |
" |[-*-amplitude A=0.05 |
T steady state |
Nu i 1
150 F 8
10.0 ot e

Fig. 6. The variations of the time-average overall Nusselt number
on the middle fin with time for the S = 0.5 and Re = 500 case
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computing range, the mean increments of the time-aver-
age overall Nusselt number are about 18, 37 and 38%
corresponding to the amplitudes of the fins A = 0.05, 0.1
and 0.15 cases, respectively. The results show that the heat
transfer is enhanced significantly as the amplitude of the
fins increases from 0.05 to 0.1. But, as the amplitude of the
fins increases from 0.1 to 0.15, the enhancement of the heat
transfer is slight, this could be that the flow and thermal
fields had approached an optimal condition.

The time variations of the time-average overall Nusselt
number on the middle fin for the swinging speed of the
fins S¢ = 0.5 and the amplitude of the fins A = 0.05 under
Re = 1000 case is indicated in Fig. 8. As the time increases,
the flow and thermal fields may approach a stable state and
vary slightly. In the computing range, the mean increment
of the time-average overall Nusselt number on the middle
fin is about 15%.

Figure 9 shows the time variations of the time-average
overall Nusselt number on the middle fin for the swinging
speed of the fins S = 1.0 and Re = 1000 under the am-
plitude of the fins A = 0.05 and 0.1 cases. The variations of
the time-average overall Nusselt number with time are
hardly found out to approach a stable state, this is sug-
gested as that the swinging speed of the fin is too fast and

B0 r———FT——T——T17—
[ |-e—amplitude A=0.05 ]
|- amplitude A=0.1 1
[ |-+ amplitude A=0.15 "
20,0 - ===sleady A A
Nu ]
15.0 —
10.0 I I | i | L 1 I_
0.0 2.0 4.0 6.0 8.0

T

Fig. 7. The variations of the time-average overall Nusselt number
on the middle fin with time for the S = 1.0 and Re = 500 case
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Fig. 8. The variations of the time-average overall Nusselt number
on the middle fin with time for the S = 0.5 and Re = 1000 case

40.0 ————— — ]
350F 9
— 30.0F

4
25.0F .
20.0 3
- [—e— amplitude A=0.05 ]
15.0 F|—a— amplitude A=0.1 -
o — steady state .

10.0 b

0.0 4.0 8.0

T

Fig. 9. The variations of the time-average overall Nusselt number
on the middle fin with time for the S = 1.0 and Re = 1000 case

Fig. 10a-c. The photograph of the swinging of the fin in
a stationary, b and ¢ swinging



the flow and thermal fields are unable to develop regular
patterns in time. In the computing range, the mean in-
crements of the time-average overall Nusselt number on
the middle fin are about 54 and 52% for A = 0.05 and 0.1
cases, respectively.

5

Conclusions

The heat transfer of extremely thin fins of a finned heat
sink swinging back and forth in a flow is investigated
numerically. Some conclusions are summarized as follows:

1. As the fins swing with a relatively low speed, the vari-
ations of the flow and thermal fields may approach to
regular patterns with time. However, the variations of
the flow and thermal fields are unable to develop
regular patterns with time as the fins swing with a
large speed.

2. As the fins swing with a large speed, the recirculation
zones and reattachement flows are observed around the
fins alternately and continuously, and migrate to the
downstream gradually. This may cause the velocity and
thermal boundary layers to be contracted and dis-
turbed, which results in a significant enhancement of
the heat transfer.

3. The swinging amplitude of the fins affects the en-
hancement of heat transfer remarkably.

Appendix

The photographs of the swinging of the fin induced by a
flow are shown in Fig. 10. A finned heated sink with single
extremely thin fin is set on the test section of a small wind
tunnel. The extremely thin fin is made of Co-based
amorphous ribbon and 25 um in thickness. As shown in
Fig. 10a, both the fluid and fin are stationary. In Fig. 10b-
¢, the fluid flows through the tunnel. The extremely thin
fin is then swinging induced by the flow. Thus, the images
of the fin in the photographs are foggy.
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