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1 Introduction
In recent years, thin-film transistors (TFTs) fabricated on
insulating substrates have been of great interest. TFTs are
used not only in 3-D integrated circuits but also in various
large-area electronic systems such as switching elements and
driving circuits for liquid crystal displays (LCDs). For the
application of an active matrix flat-panel display, some ad-
dressing types must be chosen.' However, for the consid-
eration of resolution, contrast and angle of view, color and
gray-scale capabilities, and the possibility of deposition on
inexpensive substrates, an LCD matrix addressed by TFTs
is the best method.'

TFTs of polycrystalline silicon (poly-Si) and hydrogen-
ated amorphous silicon are used in most LCD applications
because their fabrication processes are compatible to very
large scale integration (VLSI) technologies. A further ad-
vantage is their fabrication cost, since hard glass substrates
are used. Moreover, polysilicon TFTs have a practical higher
field-effect mobility2 as compared with amorphous silicon
TFTs. This renders them capable of peripheral drive circuit
integration.3

Most studies of polysilicon TFTs are concentrated in re-
duction of the defects in polysilicon films to realize higher
performance TFTs. Various approaches in the fabrication
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Abstract. Polycrystalline silicon (poly-Si) thin-film transistors (TFTs) with
thin oxide/nitride (0/N) structures as gate dielectrics are fabricated. Var-
ious gate dielectrics, i.e., high-temperature thermal oxides with different
thicknesses, low-pressu re chemical-vapor-deposited silicon nitrides, and
different combinations of 0/N structures with various thicknesses, are
performed to study their effects on poly-Si TFTs. The effective carrier
mobility of devices with thin gate oxides is several times larger than of
those with thick gate oxides. However, the breakdown voltages of thin
gate oxides are too low to satisfy the requirements of TFT applications.
Silicon nitrides can be substituted because of the high breakdown volt-
age and the smooth dielectric/poly-Si interfaces. A problem in adopting
silicon nitride is the large interface stress between the silicon nitride and
the poly-Si. A thin thermal pad oxide beneath the silicon nitride is there-
fore grown to reduce the high interface stress. Finally, the equivalent
oxide thickness effect of the 0/N gate structures on the electrical char-
acteristics of TFTs is systematically investigated.

processes have been that are aimed in two di-
rections: enlargement of the grain size of the polysilicon film
and removal of defects in the poly-Si layer by hydrogen
passivation. Recently, the effects of gate dielectrics on the
characteristics of TFTs are receiving more and more atten-
tion. In this paper, the thickness effects of gate thermal oxides
are investigated. Oxide/nitride dielectric structures as gate
insulators are proposed. Their relationship to device perfor-
mance, including threshold voltage, field-effect mobility, and
ON/OFF state currents, is discussed.

2 Device Fabrication
We used 6- to 20—fr-cm, 3-in.-diam, (100) oriented p-type
silicon wafers to fabricate the investigated TFTs. Figure 1
shows a cross-sectional view of the polysilicon TFTs used
in this experiment. A layer of silicon dioxide 600 nm in thick-
ness was grown on the silicon substrate to simulate the glass
substrate. Small-grained poly-Si film 300 nm thick was de-
posited on the substrate using low-pressure chemical vapor
deposition (LPCVD) at 625°C and was defined as the active
region. After a cleaning process, thermal oxides with different
thicknesses and oxide/nitride dielectric structures with dif-
ferent thickness combinations of thermal oxides and LPCVD
nitrides were formed. Then, a second layer of poly-Si was
patterned to obtain the gate electrode. Ion implantation of
arsenic at 180 keV to a dose of 4 X i0 cm 2 or POC13
diffusion was implemented to form the source, drain, and
gate. A layer of sputtering oxide was deposited and thermal
annealing in a conventional furnace was conducted to activate
the dopants and anneal out the damages induced by the im-
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Fig. 1 Cross-sectional view of a polysilicon TFT.

Fig. 2 The transfer curves of I versus VG at V0= 1 V for the pure-
oxide samples with different gate-oxide thicknesses measured at
vD=1 V.

plantation. Finally, contact holes were opened and Al evap-
oration was used to form the contact pads at the source, drain,
and gate.

The thicknesses of gate oxides and silicon nitrides were
measured by a Dektak hA surface profile measurement tool
and a Rudolph AutoEL III ellipsometer. The current-voltage
measurements were tested using an HP 4 145B semiconductor
parameter analyzer.

3 Results and Discussion

3.1 Thermal Oxides as Gate Dielectrics
Polysilicon TFTs with gate oxides of 100, 84, 58, and 44 nm
in thickness are labeled as P01, P02, P03, and P04, re-
spectively. These samples were fabricated and measured to
investigate the effect of gate-oxide thickness. The oxides of
these samples were thermally grown at 1 050°C and the
source/drain regions were formed by POC13 diffusion at
950°C for 10 mm and drive-in at 900°C for 20 mm. Figure 2
shows the transfer curves of the samples P0 1 , P02, P03,
and P04, with channel length and channel width of 10 and
40 m, respectively, measured with gate voltage (VG) from
— 10 to 20 V and 0.3 V/step, and drain voltage (VD) of 1 V.
The 0FF-state currents ( 'OFF) are tested at VG =0.2 V,
VD I V and the ON-state currents (IoN) are extracted at
VG 20 V, VD 1 V. The ON-state current increases with
decreasing gate-oxide thickness (t0), while 'OFF is almost
independent of t0,, thus resulting in the increase of ON/OFF
current ratio with decreasing oxide thickness, as shown in
Fig. 3. In other words, TFTs with thinner gate oxides have
better performance. The thinner gate oxide has the larger gate

Fig. 4 Field-effect mobility dependence on the gate-oxide thickness
for the pure-oxide samples.

capacitance, so more carriers are induced by the preset gate
voltage. This means that the thinner gate-oxide thickness
improves the ability to induce the channel carriers. In contrast,
'OFF is defined at low VG, where little channel induction
occurs and it is not affected by the gate-oxide thickness.

The dependence of field-effect mobility and threshold
voltage on the gate-oxide thickness is shown in Figs. 4 and
5, respectively. Threshold voltage VT is defined at VD = 1 V,
'D nA, and the field-effect mobility of charge carriers
is calculated at 17D V and VG 20 V. For TFTs with thin-
ner gate oxides, the carrier mobilities become larger and the
threshold voltages become smaller. A previous report also
indicated that high-performance poly-Si TFTs could be ob-
tamed by reducing the gate-oxide 2

We now discuss the results mentioned above more care-
fully. The potential barrier height in the channel of poly-Si
can be described as

q2Nd
B8Ec(VV) ' (1)

where q is the elementary charge, N is the trap-state density,
dCh 5 the induced channel thickness, ESi is the dielectric con-
stant of silicon, and C0 is the gate-insulator
The effective carrier mobility of poly-Si is written as

1fe O exp( — 4B) (2)

where ji is the preexponential term.4"3 By shrinking the
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Fig. 3 The curves of ON-state current and ON/OFF current ratio
versus gate-oxide thickness for the pure-oxide specimens.
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thickness of the gate oxide, the gate capacitance is increased.
Thus, the potential barrier is reduced. This results in the
increase of carrier mobility. In addition, the threshold voltage
is smaller for TFTs with thinner gate oxides, which leads to
the increase of fe and 'ON at a constant gate voltage. More-
over, TFTs with thin gate oxides have more electrons to be
induced than those with thick gate oxides for the same gate
bias, due to the higher capacitance. Thus, the P04 samples
have the highest ON-state currents because they have the
strongest inversion at VG 20 V and VD 1 V. Furthermore,
the better characteristics of TFTs with thin gate oxides may
be also ascribed to the interface smoothness. The growth rate
of oxide at poly-Si grain boundaries is faster than that in
poly-Si grains because of the higher diffusivities of oxygen
atoms in grain boundaries than those in grains. Thus, the
interface morphology ofpoly-Si and silicon dioxide is rough.
Hence, transporting electrons in the channels ofpoly-Si TFTs
are scattered by the grooving polyoxides. As electrons drift
from source to drain for TFTs with thicker gate oxides, they
collide more easily with the rougher gate oxides. This phe-
nomenon degrades the carrier mobility and the ON-state cur-
rents of TFT devices with thick gate oxides. This scattering
effect of electrons is similar to that in single crystalling metal-
oxide semiconductor field-effect transistors (MOSFETs)
biased at very high fields)2 Consequently, thinner oxides
facilitate the mobility of poly-Si TFTs due to less electron
scattering. Both the gate-oxide thickness and the interface
morphology between the gate oxide and the poly-Si influence
the carrier mobility of the poly-Si TFTs.

Since TFTs with thinner gate oxides have better perfor-
mance and are interesting, samples with further thinning gate
oxides of 18 nm in thickness were then fabricated. They also
have better performance at low VG, but the breakdown voltage
at the gate is only 6.2 V. Hence, it is necessary to find a
method to grow the thin gate dielectrics that possess high
breakdown voltages. 0/N gate structures are therefore
chosen.

3.2 0/N Dielectric Structures as Gate Insulators

0/Ndielectric structures to replace thermal oxides as the gate
insulators of TFTs are proposed in accordance with the fol-
lowing reasons: (1) silicon nitride has twice the breakdown
voltage of pure oxide with the same equivalent thickness,
since the silicon nitride has almost the same breakdown field
as the silicon dioxide,'4 which means silicon nitride is very

Sampk
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promising for the device scaling down of TFTs; (2) silicon
nitride is able to achieve smoother interface morphology than
thermally grown polyoxide because the silicon nitride is de-
posited by the LPCVD method; and (3) silicon nitride has
low fabrication temperatures when it is deposited by the
LPCVD method. Hence, silicon nitride seems to be an ex-
tremely good material for gate insulators of TFTs. However,
a problem in adopting silicon nitride is the large interface
stress between silicon nitride and poly-Si. This is also the
reason why silicon nitride is rarely used as a gate insulator
of single crystalline MOSFETs. Thus, a thin thermal pad
polyoxide is grown beneath the silicon nitride to reduce the
high stress at the interface between the silicon nitride and
poly-Si substrate.

First, TFTs with 0/N gate insulators of nearly the same
equivalent oxide thickness labeled as ONl, 0N2, 0N3, and
0N4 were fabricated to understand the effect of pad oxides.
Table 1 shows a summary of the TFT parameters of these
samples. The pad oxides of these TFTs were all thermally
grown at 850°C and the nitride were all deposited at 750°C
by LPCVD. The source/drain regions were formed by arsenic
ion implantation and post-implantation annealing at 850°C.
As can be seen from Table 1 , TFTs with thinner pad oxides
have better performance, which is attributed to the smoother
gate insulator/poly-Si interface. However, TFTs without pad
oxides, i.e. , the ON 1 samples, have worse characteristics than
those with a pad oxide of 125 A in thickness because of the
interface stress. In other words, utilization of the 0/N struc-
ture with a polyoxide 125 A thick can improve the electrical
properties of TFTs.

Secondly, the effect of 0/N-structure gate dielectrics with
various equivalent oxide thicknesses was also studied. Ta-
ble 2 shows the gate insulator combinations of different
equivalent oxide thicknesses specified as 0N5, 0N6, 0N7,
0N8, and 0N9. These samples have almost the same thick-
ness of pad oxides. The carrier mobility and ON-state current
for these TFTs are defined at VG =20 V, except those of the
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Table 1 Summary of TFT parameters of 0/N specimens with nearly
the same equivalent oxide thickness.

Gate Oxide Thickness (nm)

Fig. 5 Threshold voltage of TFTs with pure-oxide gates as a func-
tion of gate-oxide thickness.

Table 2 Gate dielectrics of 0/N samples with different equivalent
dielectric thickness.
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0N9 samples defined at VG 15 V. The ON-state current and
ON/OFF current ratio of TFTs with 0/N gate structure as a
function ofthe equivalent oxide thickness ofthe gate insulator
are shown in Fig. 6. The dependencies of the field-effect
carrier mobility and the threshold voltage on the equivalent
oxide thickness are shown in Figs. 7 and 8, respectively. The
carrier mobility of these specimens with 0/N gate structures
is smaller than those with pure oxides because the fabrication
temperature is lowered from 1050 to 850°C. These parameters
for the 0/N gate structures show the same dependence on
the equivalent oxide thickness as those for the thermal oxide
gate. Namely, TFTs with 0/N gates of thinner equivalent
oxide thicknesses have better electrical properties than those
with thicker 0/N dielectrics. The better performance of TFTs
with thinner 0/N gates is also partly attributed to the higher
capacitance and smoother interface morphology.

3.3 Electrical Properties of TFTs with
Optimum 0/N Gate Structures

In this experiment, the 0N9 samples have the thinnest gate
insulator. Hence, they possess the best electrical character-
istics among all of the testing samples. With the shrinking
down of the gate dielectric thickness, the gate cannot endure
the high voltage necessary to satisfy the requirements of ap-
plications. To further improve the electrical properties of
TFTs with 0/N structures, the ONIO samples were fabricated.
The ONIO specimens have the active poly-Si layer LPCVD

at 675°C. After the definition of the poly-Si island, a thin pad
oxide 100 A thick is thermally grown at 7500C and subse-
quently deposited with 200-A-thick silicon nitride at 750°C
in a LPCVD system. A second layer of poly-Si for the gate
region is then deposited and patterned. Ion implantation by
arsenic and a following annealing at 750°C are carried out
to form the source, drain, and gate. The fabrication processes
of samples ON1O are the same as those of 0N9, except the
deposition temperature of the poly-Si active layer is raised
from 625 to 675°C. The transfer curve of 'D versus VG at
VD 1 V for the specimens ON1O is shown in Fig. 9. The
field-effect mobility, ON-state current, and ON/OFF state
current ratio are improved to 17.4 cm2/V s, 77.9 A, and
2.2 X i0, respectively, at VG = 10 V and VD = 1 V. For the
conventional process, grain-growth schemes, such as Si
self-amorphization and recrystallization, and long-time grain
growth are very complex or inconvenient. By using 0/N gate
structures, better performance TFTs with as-deposited
poly-Si for the active layer can be achieved.

4 Summary and Conclusions
The thickness of gate oxides plays a very important role in
the influences of the characteristics of TFTs. The effective
carrier mobilities of the devices with the thin gate oxides are
several times as large as those ofTFTs with thick gate oxides.
Thin gate oxides suffer from low breakdown voltages, so
silicon nitrides are proposed instead. Silicon nitride has the
advantages of high breakdown voltage, smooth gate
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dielectric/poly-Si interface, and lower fabrication tempera-
tures as compared to thermal oxides, but the disadvantage of
large interface stress. Hence, 0/N dielectric structures as gate
insulators have been utilized to improve the electrical prop-
erties of TFTs. In contrast to conventional TFTs with pure
thermal oxides as gates, TFTs with 0/N gate structures can
attain a higher ON/OFF current ratio and carrier mobility by
reducing the equivalent oxide thickness. Consequently, the
performance of TFTs can be easily improved by thin 0/N
gate structures.
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