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Abstract

A rack cutter with a curved-tooth is considered the generating tool for the generation of the proposed
gear, and a mathematical model of cylindrical gears with curvilinear shaped teeth is developed according to
the gearing theory. The developed computer program can develop profiles of the curvilinear-tooth gear
with point contacts. The developed gear tooth mathematical model is used to investigate the tooth un-
dercutting of curvilinear-tooth gears via differential geometry and the numerical method. © 2001 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Gear manufacturers and designers continuously attempt to develop more compact and higher
capacity gear pairs. A positive-shifted gear or a gear with a larger pressure angle has a larger tooth
root-thickness, which can increase the root strength of the gear. Moreover, gear pairs with higher
contact ratios can reduce the tooth contact and bending stresses.

Liu [1] discussed the characteristics of curvilinear-tooth gears and proposed manufacturing
cylindrical gears with curvilinear shaped teeth. That investigation applied a face mill-cutter to
generate curvilinear-tooth gears and suggested the merits of curvilinear-tooth gears which are as
follows: higher bending strengths, lower noise, better lubrication conditions, and no axial thrust
forces. Dai et al. [2] investigated manufacturing a cylindrical gear with curved teeth via a com-
puter numerically controlled (CNC) hobbing machine with male and female flying cutters. Al-
though they analyzed the fundamental characteristics of the gears based on the experimental
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Nomenclature

ag, bg tool setting of rack cutter 2 (Fig. 3)

Ip variable parameter which determines the location on rack cutter (Fig. 3)

[M.,] coordinate transformation matrix; transforming from coordinate system
S, to coordinate system S,

M, normal module (Fig. 3)

N£F> normal vector of surface X represented in coordinate system S,

n") unit normal vector of surface X represented in coordinate system

RY position vector of surface i (i = F, 1) represented in coordinate system S,

RE nominal radius of the face mill-cutter (Fig. 4)

. radius of pitch circle of gear 1

ST y!" z")  coordinate system i (i = a,c) with three mutual perpendicular axes X",
Y'Y and ZI¥ (Fig. 4)

Si(X:, Y, Z)) coordinate system i (i = 1, h) with three mutual perpendicular axes X, ¥;
and Z; (Fig. 5)

w face width (Fig. 4)

O variable parameter which determines the location on rack cutter (Fig. 4)

Ok the upper bound of parameter O

Og the lower bound of parameter O

Or fillet radius of rack cutter Xr (Fig. 3)

2k generating rack cutter surface F

2 generated tooth surface 1

o rotation angle of gear 1 when gear 1 is generated by rack cutter 2 (Fig. 5)

1//le) normal pressure angel of rack cutter Xk (Fig. 3)

Subscripts

F generating rack cutter surface

1 generated tooth surface

method, their proposed gear pairs are in line contact and the transmission errors of these gear
pairs are sensitive to gear axial misalignments.

The gear and pinion with curvilinear shaped teeth proposed herein are generated by the same
cutter, and the tooth mathematical model of curvilinear-tooth gears is developed according to the
gearing theory. The rack cutter with a curved-tooth is considered the generating tool for the
generation of the proposed gear. Three-dimensional tooth surfaces of curvilinear-tooth gears can
be plotted by applying the computer graphics. The proposed curvilinear-tooth gear is not sensitive
to gear axial misalignments since the bearing contact of the gear pair is located on the middle
region of the gear tooth surfaces. It is due to the fact that the curvatures of the mating tooth
surfaces are different. One of the mating tooth surfaces is cut by inside face mill-cutter and the
other mating tooth surface is cut by outside face mill-cutter which has different nominal radii of
face mill-cutter, as shown in Fig. 1. The curvilinear-tooth gear pair proposed in [1] is in line
contact. However, the curvilinear-tooth gear pair proposed in our paper is in point contact.
Therefore, the main advantage of the proposed gear pair is not sensitive to gear axial misalign-
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Straight—Edged
Cutting Tool

Gear Blank

Fig. 1. Generating mechanism for curvilinear-tooth gears.

ments. Besides, only one cutter is needed for our cutting of the proposed type of gearing, while the
generation method proposed in [1] needs two different cutters. However, compared with the line
contact gearing, the load capacity of point contact gearing is relatively small, and this is the main
disadvantage of the proposed gear. However, by properly choosing the nominal radius of the face
mill-cutter, the contact ellipses can be enlarged and the load capacity can thus be increased.

As is well known, gears with tooth undercutting may decrease the gear strength. Kin [3] applied
the contact-line envelope and the pressure-angle limit concepts to prevent the tooth undercutting
of worm and worm gear surfaces. Fong and Tsay [4] utilized surface unit normal vectors to in-
vestigate the tooth undercutting of spiral bevel gears, while Litvin [5,6] provided a detailed in-
vestigation of the singularity and tooth undercutting. This study also analyzes the tooth
undercutting of curvilinear-tooth gears according to the developed gear mathematical model and
the gearing theory.

2. A mathematical model of cylindrical gears with curvilinear shaped teeth

Fig. 1 illustrates the generating mechanism for cylindrical gears with curvilinear shaped tecth
[1], where axis A-A represents the rotation axis of the gear blank, axis B—B expresses the cutter
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Fig. 2. Relations between the rack cutter and gear blank.

spindle, R; denotes the nominal radius of the face mill-cutter, and r» indicates the radius of the
gear pitch circle. During the generation process, the cutter spindle moves rightward with ve-
locity rw, and rotates clockwise with angular velocity o, while the gear blank rotates clockwise
with angular velocity w,. This generating process will produce one space and the gear blank is
indexed to one tooth and the generating cycle is repeated until all the teeth and spaces are
produced.

The manufacturing of cylindrical gears with curvilinear shaped teeth can be simulated by
considering the meshing of a gear blank with a rack cutter as depicted in Fig. 2. During the
generation process, the rack cutter translates with velocity rw, while the gear blank rotates with
angular velocity w,, where r represents the radius of the gear pitch circle. The tooth form of rack
cutter in the longitudinal direction is a circular arc tooth rather than a straight tooth that gen-
erates the spur gears.

2.1. Normal middle section of the rack cutter

Fig. 3 depicts the normal middle section of the rack cutter X ™ that generates the gear space.
The profile of the rack cutter’s normal middle section is the same as the straight-edged rack cutter
that generates the tooth profile of involute gears The normal middle section of rack cutter Z

consists of two parts: the straight line MO M2 and the circular arc of radius pp with its center at
Cr as displayed in Fig. 3. The straight line generates the working part of the gear tooth surface
while the circular arc produces the fillet surface. Parameters ag, b, Mn, xp , Ir and pp are the
design parameters of the normal middle section of the rack cutter Z . Fig. 3 reveals that both
sides of the rack cutter normal middle section are symmetrical. The straight line M0 2 ) of the
normal middle section of the rack cutter can be represented in the coordinate system
SO, Y0, Z0) by
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)
MO M®| =

M (g)
Pr

Fig. 3. Normal middle section of rack cutter Z? )

I cos tpff> — ar
R = £(lpsin ) + bp — ap tan ") |, Y
0

where the design parameters, ar and bg, can determine the coordinates of the initial point, MéF), of
the straight line M s (F) . [r represents the distance measured from the initial point MéF>, moving

along the strar ht line M (F) M ® to any point M ) on the right-side normal middle section of the
rack cutter ZFR Point M of the normal mlddle section of the rack cutter ZFR generates the
lowest point of the worklng part of the tooth surface X;. The upper sign in Eq. (1) represents
the right-side of the normal middle section of the rack cutter Z(F]i while the lower sign depicts the
left-side of the normal middle section of the rack cutter X\ .

2.2. Rack cutter surfaces

The mathematical model of the right- and left-side rack cutter surfaces should be individually
expressed since the right- and left-side surfaces of the rack cutter are not symmetrical as illustrated
in Fig. 2. The right-side of the rack cutter surface Xgr is used to generate the left-side of the
curvilinear gear tooth surface X, while the left-side of the rack cutter surface Xg; is used to
produce the right-side of the curvilinear gear tooth surface 2.

Fig. 4 depicts the formation of the rack cutter surface and the relations between coordinate
systems S (X(F)) Y,‘fF> ) and S(xX ), ¥ ZE). The rack cutter surface Y is formed in the
coordinate system SF as the normal mlddle section of the rack cutter X\, represented in the
coordinate system S rnoves along the circular-arc 4B. Circular-arc AB stands for the tooth
traces of the rack cutter Ct denotes the center of the circular-arc 4B, W designates the width of
the rack cutter (also the face width of the gears), and Rr denotes the radius of the circular-arc AB
(the nominal radius of the face mill-cutter as illustrated in Fig. 1). The homogeneous coordinate
transformation from coordinate system S(F) to coordinate system S{F) can be represented as

R = MR, (2)

C
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Fig. 4. Relations between coordinate systems S and S(.

where
1 0 0 0
(Me] = 0 cosfr sinfg Rp(l —cosbg)
ca 0 —sinOp cosOg Ry sin O
0 0 0 1

Substituting Eq. (1) into Eq. (2) yields the equation of the rack cutter surface X represented in
coordinate system S as

Ir cos lpff) — ap
R = | £(Ipsiny") + b — ap tan ") cos O + Rp(1 — cos 0F) |, (3)
F(/psin wff) + bp — ap tan u//ff)) sin Op + Ry sin Og

where

-w —-w
O <O <Opy, Op=sin”' [ — ), Op,=sin' [ — 4
Fl F Fu Fl < 2RF > Fu <2RF > ( )
and Rp is the radius of the curve A}?. Parameter O is the surface parameter of the rack cutter
surface as determined by Eq. (4).
The normal vector N{F) and unit normal vector n") of the rack cutter surface X can be ob-

tained and represented in coordinate system S(F) as

OR®E)  aR®
NO =< (5
Ol 00k
and
N
(F) — ¢
nc - ‘N 1:)|a (6)

where the position vector RS:F) denotes the equation of the rack cutter surface 2y represented in
coordinate system SéF ). Symbols /¢ and 0 are the surface coordinates of the rack cutter surface.
According to Egs. (3), (5) and (6), the unit normal vector of the rack cutter surface X is
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+sin ")
n = | —cos " cos O |- (7)

cos ) sin O

The upper sign in Egs. (3) and (7) represents the right-side of the rack cutter surface Xgg while
the lower sign denotes the left-side of the rack cutter surface Xy .

2.3. Equation of meshing

Fig. 5 displays the schematic relationship among coordinate systems S{F) (X)) y(F) 7))
S1(X1, 11, Zy) and S, (X, Y, Z,) for the gear generation process. The coordinate system S, is the
reference coordinate system, the coordinate system S; denotes the gear blank coordinate system,
and the coordinate system S(F) represents the rack cutter coordinate system. The rack cutter
translates a distance ¢, during the gear generation process while the gear blank rotates through
an angle ¢,, where the axis Z; represents the rotation axis of the gear.

The common unit normal vector to the rack cutter surface and the generated gear tooth surface
at their common contact point passes through the instantaneous axis of rotation /-/ according to
the gearing theory [5,6]. Therefore, the following condition can be observed:

— C — C C , (8)
N

where X, Y(¥) and Z(F) are the coordinates of a point on the instantaneous axis of rotation

expressed in coordinate system S{F); x(F), yF) and z{F) denote the coordinates of the instantaneous

contact point on the rack cutter surface as expressed by coordinate system S{'; symbols r{l), n(})
and n{f) symbolize the components of the common unit normal represented in coordinate system
SF). Eq. (8) is termed as meshing equation of the gearing theory. Substituting Egs. (3) and (7) into
Eq. (8) produces the following meshing equation for the rack cutter surface 2r and gear tooth
surfaces:

Xe Xn
A A
et— T, —— I Z.,7,
/ IRENg _ ~
o® = Y, AN ~
C / A/ -
Xl I ( ~ - YC
¢1/—< \ _ ~
AT
0,0u N Yy
o~

Fig. 5. Relations between coordinate systems Sgi), S; and ;.
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f(lg, 0, ¢)) = £ VF — ag(cos t//£1F> + tan wle) sin wle)) + bp sin lﬁle)J cos O
+ (Re(1 = cos Og) — ri¢by) sinyy™) = 0. 9)

The upper sign in Eq. (9) denotes the meshing equation for the right-side of the rack cutter
surface Xgr and the left-side of the gear tooth surface X, while the lower sign depicts the
meshing equation for the left-side of the rack cutter surface Xy and the right-side of the gear
tooth surface X g.

2.4. Gear tooth surfaces

The locus of the rack cutter surface 2, expressed in coordinate system S, can be obtained by
applying the following homogeneous coordinate transformation matrix equation:

R(IF) _ [Mlc]R£F>, (10)
where

cos¢p, —sing, 0 ri(cos¢, + ¢, sing,)

My = | S0P cosd O ri(sin ¢, — ¢, cos ¢,)
te 0 0 1 0

0

0 0 1

and symbol r; denotes the radius of the gear pitch circle and ¢, represents the gear rotation angle
when the gear is generated by rack cutter Xr. The mathematical model of the generated gear tooth
surfaces is a combination of the meshing equation and the locus of the rack cutter surfaces ac-
cording to the gearing theory. Hence, the mathematical model of the gear tooth surfaces can be
obtained by simultaneously considering Egs. (9) and (10). Similarly, the pinion tooth surfaces can
be produced by utilizing the same rack cutter that produces the gear tooth surfaces. Therefore, a
mathematical model of the pinion tooth surfaces can also be developed by applying the process
described above.

3. Computer graphs of the curvilinear-tooth gears

The mathematical model for curvilinear-tooth gears proposed herein can be verified by plotting
the gear profile. The coordinates of the curvilinear-tooth gear surface points can be calculated by
the developed gear mathematical model and numerical method. A three-dimensional gear tooth
profile of the curvilinear-tooth gear can be plotted by the computer graphics.

Table 1 lists some major design parameters of the curvilinear-tooth gears. A three-dimensional
gear tooth profile of the curvilinear-tooth gears can be plotted by applying the developed gear
mathematical model and computer graphics as depicted in Fig. 6. Fig. 6 reveals that the right- and
left-sides of the tooth surfaces of a curvilinear-tooth gear are distinct, and the tooth thickness at
the middle section of the tooth flank is larger than at other sections.
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Table 1

Design parameters for cylindrical gears with curvilinear shaped teeth
Parameters Gear Pinion
Number of teeth 36 18
Normal module (mm) 3 3
Pressure angle (°) 20 20
Face width (mm) 30 30
Nominal radius of the face mill-cutter (mm) 30 30

Z, 0 30mm

Fig. 6. Cylinderical gears with curvilinear shaped teeth.

4. Tooth undercutting of curvilinear gears

The undercutting of a cylindrical gear with curvilinear shaped teeth can be analyzed by ap-
plying the theory of gear singularity proposed by Litvin [6]. According to the concept of differ-
ential geometry, a surface point is defined as a singular point if its tangent plane does not exist.
The simplest method to check the tooth undercutting of a gear surface is to verify the appearance
of singular points on the generated gear tooth surfaces. Let REF) and REI) represent the position
vectors of tooth surfaces for the rack cutter and generated gear, respectively, as represented in
coordinate system S;(X, ¥r,Zr). The rack cutter surface X and gear tooth surface X, have a
common contact point at every instant in the generating process. Therefore, the following con-
dition must be observed at their common contact point:

R — R, (1)
Differentiating Eq. (11) with respect to time yields that
Vi + VP = v v, (12)

The subscript “tr”” in Eq. (12) denotes the transfer velocity while subscript “r” represents the
relative velocity. Thus, Eq. (12) can be rewritten as
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The condition for the appearance of a singular point on the tooth surface X; can be described by
equation Vﬁl) = 0. Therefore, Eq. (13) becomes

v v — o, (14)

where the subscript “tr’”” in Eq. (14) is omitted for simplicity. Differentiating Eq. (9), the meshing
equation for the rack cutter and gear tooth surfaces with respect to time yields

d
&f(va Or, 1) = 0. (15)
Egs. (14) and (15) can be rewritten as
oR"™ dlry  OR") do
¢ dip ¢ _ _yFD 1
oty dr a0 Ve (16)

and

o i o oo do, -
Olg dt 00 dt 64)1 dt’

where RﬁF) depicts the position vector of the rack cutter surface represented in coordinate system
S., and VéFl) denotes the relative velocity of the rack cutter surface X with respect to the gear
tooth surface X at the instantaneous common contact point represented in coordinate system S..

Egs. (16) and (17) determine the limited line L on rack cutter surface 2y that generates singular
points of the gear tooth surface 2. The generating rack cutter surface must be limited to the line L
to avert tooth undercutting of the generated gear tooth surface. Egs. (16) and (17) can be rep-
resented by matrix form as

ﬁng) axé”

oly o0p —V\ D)

ayc(F> ay§F> [ dlg _ V(Fl

ol 00p dr :| — ye ( 1 8)
F F do, _pFED |-

wf) ol | [ 4

Olp 00F _Of doy

of o op, dt

Ol 00g

Eq. (18) yields a system of four equations in two unknowns: d/g/d¢ and df/dz. Linear algebra
confirms that Eq. (18) has a unique solution when the rank of the augmented matrix is two. This
yields

ol e
alg 06 xc
F F
A =2 ol ey [ =0, (19)
Ol 00p ye
o o 3 dy
3l O0p 3¢y dr
o e y(F1)
Ay 06 xe
F F
AZ — azg ) az£ ) _V(Fl) = 07 (20)
3y o0p 2
o o _3f diy
3lF  O0p 3¢ dr
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o g _pFy
dlp O0p ye
(F) (F)

aZc: aZc _ Fl)

Ay = |31y aop VeVl |=0 (21)
of of  _39f d¢y
Ol 00g a¢1 !

and
ax£F> (’3x£F) _1(F1)
dlg 06p ¢
— [ " | —

A4 olr o0p Vi 0, (22)
R,
a[lr GHF zc

where Eq. (22) is the same as the meshing equation. Egs. (19)—(22), if considered simultanecously,
can be rewritten as a system of two independent equations with three parameters, /r, O and ¢, as

F(lg,0p,¢)) = A7+ A5+ 43 =0 (23)
and
S (lg, 0, ¢,) =0. (24)

Since Egs. (23) and (24) form a system of two independent equations with three unknowns, one of
these unknowns, e.g., ¢, may be selected as an input variable to solve two independent equations
with two unknowns /g and ¢,. This system of equations can solve the limited line L on the rack
cutter surface that generates the singular points on the generated tooth surface.

The example in Table 2 illustrates the singular points (line of undercutting) on the left- and
right-side gear tooth surfaces of the curvilinear-tooth gear. Table 2 illustrates the relationship
among the Z; component of the gear tooth cross-section and the surface coordinates /. and /ggr
under design parameters, lpfl” and Rg, when the singular point appears. /g, represents the surface
coordinate of the left-side tooth surface X, while /g depicts the surface coordinate of the right-
side tooth surface X g. Parameter wle) is the normal pressure angle of the gear while Rf is the
radius of curve 4B (i.e. the nominal radius of the face mill-cutter as depicted in Fig. 1). Table 2
demonstrates that the location of singular points on the middle section of tooth surface X is equal
to 0.204 mm when the pressure angle of the curvilinear-tooth gear is 20°. The range of rack cutter
design parameters /g is 0.0 mm < /¢ < 5.652 mm, where /r = 0.0 mm generates the starting point
of the involute curve on the tooth surface and /r = 5.652 mm generates the end point of the
involute curve (i.e. the tip of addendum). The tooth undercutting occurs on the gear surface when
the location of singular points, defined by /g, ranges from 0.0 to 5.652 mm. The singular points on
tooth surfaces are also symmetrical because both sides of the tooth surfaces for the tooth flank of
curvilinear-tooth gears are symmetrical. Fig. 7 displays the undercutting line on the tooth sur-
faces. The tooth undercutting appears near the middle section of the tooth flank when there are 16
teeth as illustrated in Fig. 7(a). The tooth undercutting line covers the whole tooth surface when
there are 14 teeth as displayed in Fig. 7(b).

The tooth undercutting phenomenon becomes more severe near the middle section of the tooth
flank according to the analysis results depicted in Table 2. According to Fig. 4, the profile of rack
cutter on the XF)-Y®) plane can be considered as the normal section of rack cutter with helix
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Table 2
Location of singular points under different design parameters when module M, = 3 mm and number of teeth = 16 (unit:
mm)

Sections Parameters
gy = 20° i) = 20° Yy =250
Singular points: Ry = 30 mm Ry = 750 mm Ry = 30 mm
Zl lFL lFR lFL IFR lFL lFR
-12.0 -0.308 -0.264 0.204 0.204 -2.077 -2.198
-10.0 -0.135 -0.104 0.204 0.204 -1.862 -1.927
-8.0 —-0.005 0.014 0.204 0.204 -1.695 -1.729
-6.0 0.089 0.101 0.204 0.204 -1.571 —1.588
-4.0 0.154 0.159 0.204 0.204 —-1.486 -1.492
-2.0 0.192 0.193 0.204 0.204 -1.436 -1.437
0.0 0.204 0.204 0.204 0.204 -1.419 -1.419
2.0 0.192 0.193 0.204 0.204 -1.436 -1.437
4.0 0.154 0.159 0.204 0.204 —-1.486 -1.492
6.0 0.089 0.101 0.204 0.204 -1.571 —1.588
8.0 -0.005 0.014 0.204 0.204 -1.695 -1.729
10.0 -0.135 -0.104 0.204 0.204 -1.862 -1.927
12.0 -0.308 -0.264 0.204 0.204 -2.077 -2.198

(b) 0 10(mm)
Fig. 7. Undercutting line on tooth surface when the number of teeth is 16 (a) and 14 (b).
angle 0. Therefore, the curvilinear-tooth gear generated by this rack cutter can be viewed as an

involute gear with varying helical angle across the whole face width, and the pressure angle on the
transverse plane can be obtained by
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tan o,
o = tan™! < ano > (25)

cos O

According to the fundamentals of involute gearing, the tooth undercutting is occurred easier
with a small pressure angle. Therefore, the tooth undercutting phenomenon becomes severer on
the transverse planes near the middle of the tooth flank, which have smaller pressure angles.

Singular points, expressed by /g and /gr, do not have the same location on the right- and left-
side tooth surfaces since the right- and left-side tooth surfaces of a curvilinear-tooth gear are
different. However, the locations of singular points on the right- and left-side surfaces are more
similar closer to the middle section of the tooth flank. In addition, the pressure angle plays an
important role in gear tooth undercutting as gears with a smaller pressure angle foster under-
cutting on tooth surfaces. The profile of a curvilinear-tooth gear approaches that of a spur gear
while the nominal radius of face mill-cutter is very large (e.g. Rg = 750 mm as illustrated in Table
2). The conditions of tooth undercutting for the right- and left-side tooth surfaces are the same
and the conditions of tooth undercutting for each cross-section are also the same when Rg = 750
mm. The undercutting characteristics of a curvilinear-tooth gear with R = 750 mm are almost the
same as those of a spur gear. The above results verify that the mathematical models for curvi-
linear-tooth gear and tooth undercutting proposed herein are correct.

Serious tooth undercutting may reduce the gear strength when the curvilinear-tooth gears have
a small number of teeth or pressure angle. The tooth undercutting of curvilinear-tooth gears can
be avoided by adopting the profile-shifted generation method. The undercutting analysis reveals
that tooth undercutting is significantly easier at the middle section than at other sections of the
tooth flank of the curvilinear-tooth gear. Therefore, the tooth undercutting at other sections will
not occur if it can be averted at the middle section of the tooth flank. The relationship between the
number of teeth and the profile-shifted coefficients for curvilinear-tooth gears is similar to that of
the spur gears since the middle section of the curvilinear-tooth gear tooth flank is the same as that
of the spur gear.

5. Conclusion

This study has developed a tooth mathematical model of curvilinear-tooth gears having point
contacts according to the generation mechanism with a curved-tooth rack cutter. The right- and
left-side tooth surfaces of the curvilinear-tooth gears are distinct and the middle section has the
largest tooth thickness. It is significantly easier to induce the tooth undercutting phenomena at the
middle section of the tooth flank than at other sections. Moreover, although the locations of
singular points at the right- and left-side tooth surfaces are not the same, the locations of singular
points are more similar closer to the middle section of the tooth flank.

Tooth undercutting of curvilinear-tooth gears can be prevented by employing a positive profile-
shifted modification during the gear generation process, and the profile-shifted coefficients for
spur gears can also be chosen for the curvilinear-tooth gears when modified curvilinear-tooth
gears are generated. The developed tooth mathematical model enables investigations on trans-
mission errors and contact ellipses of the gear set.
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