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Estimation of Number of People in Crowded Scenes
Using Perspective Transformation

Sheng-Fuu Lin, Member, IEEE, Jaw-Yeh Chen, and Hung-Xin Chao

Abstract—In the past, the estimation of crowd density has
become an important topic in the field of automatic surveillance
systems. In this paper, the developed system goes one step further
to estimate the number of people in crowded scenes in a complex
background by using a single image. Therefore, more valuable
information than crowd density can be obtained. There are two
major steps in this system: recognition of the head-like contour
and estimation of crowd size. First, the Haar wavelet transform
(HWT) is used to extract the featured area of the head-like
contour, and then the support vector machine (SVM) is used to
classify these featured area as the contour of a head or not. Next,
the perspective transforming technique of computer vision is used
to estimate crowd size more accurately. Finally, a model world is
constructed to test this proposed system and the system is also
applied for real-world images.

Index Terms—Crowd density, crowd size, perspective transform.

I. INTRODUCTION

RECENTLY, efforts in crowd estimation at exhibition cen-
ters, stadiums, airports, and subways have been addressed

in the research field of automatic surveillance systems [1]–[5].
The estimation of crowd size is a difficult problem because in
a crowd, only parts of people’s bodies appear. As crowd den-
sity increases, the overlap among crowd members gets worse.
Moreover, there are significant varieties in color and texture of
the crowd, and the backgrounds against which the people lie
are unconstrained and complex. An estimating system of crowd
size should overcome all of the above challenging problems and
work well and robustly.

For real-time estimation of crowd density, two systems in
London [1] and Genova [4]–[6] have been proposed based on
existing installed closed circuit television (CCTV). The two sys-
tems basically employ a number of sample image processing
techniques for feature extraction over the image frames from
CCTV. The image processing techniques are summarized as fol-
lows. First, background removal, an idea which is also used in
[7] and [8], is used to measure the area occupied by the crowd
versus that of the background. Edge detection is an alternative
idea to measure the total perimeter of all the regions occupied
by people.

For extracting significant features, the technique described in
[9]–[12] estimates crowd densities uses the gray level depen-
dence matrix (GLDM) method [13] to carry out texture analysis
and a neural network (NN), implemented according to the Ko-
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honen’s self organizing map (SOM) model, for the task of crowd
density estimation. Maranaet al. [10] presented a technique for
automatic crowd density estimation based onMinkowski fractal
dimensionof the image of the area under monitoring.

As for designing an algorithm to classify and estimate the
number of people in crowds, there are many kinds of methods
that could be used. In [14], the crowd classification is performed
by the hybrid global learning (HGL) algorithm which com-
bines the least-squares method together with different global
optimization methods, such as random search (RS), simulated
annealing (SA), and genetic algorithm (GA). For detecting
a human head, the concept of NN-based face detection [15]
might be considered. However, not all people will directly face
the camera; therefore, the reverse side, right side, or left side
views of people in a crowd also will need to be observed in an
image. In this case, the contour of the human head would be
a better choice than the human face for detecting people in a
crowd. Papageorgiouet al. [16] used a Haar wavelet represen-
tation to capture the structural similarities between instances
of an object class such as a pedestrian, and the support vector
machine (SVM) [17] is used for classification in these papers.

Based on the literature, it can be seen that there are many
different methods to estimate crowd density. These researchers
inspire the motivation of this work. First, most research of these
related papers is based on the estimation of crowd density. The
estimated result of their research is usually the density of a
crowd as proposed by Poluset al. [18]. However, judgments
of crowd density are usually different for every person. There-
fore, the alternative idea of estimating the number of people in
crowds is proposed in this paper. Second, for certain purposes,
simplifying the problem or increasing computation speed, the
system is restricted in that it is aimed at only a fixed local area
to estimate crowd density. When the estimating system is set up
some place, it first has to capture a reference image which does
not contain any people, and some parameters need to be modi-
fied. These systems lack generality and robustness. The model
developed in this paper can work with any background without a
reference image, as will be illustrated in the following sections.

II. CROWN SIZE ESTIMATION SYSTEM

The structure of the system is shown as a block diagram in
Fig. 1. There are two parts in the flowchart for this system. The
left side of the flowchart is themodel constructing phase, and
the right side is thetesting phase.

The objective in the model constructing phase is to construct
thesupport vector classifierwhich can determine whether or not
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Fig. 1. Block diagram of the system.

the input features are the contours of people. This phase involves
three stages:

1) image preprocessing;
2) features extracting;
3) support vector classification.

For minimizing the influence caused by different illumination,
the histogram equalization is used first to preprocess the input
image. Second, to get the significant features of all training im-
ages, the images are processed through Haar wavelet transform
(HWT) and statistical analysis, as shown in Section II-A. Then
these features are used to train the system.

The testing phase shows the complete procedure of how the
crowd size is estimated from the beginning. To achieve multi-
scale (human head) detection, the image is iteratively resized
before the histogram equalization and then processed by the
next stage. After all possible locations of people are detected by
the previously constructed model, the information of the sizes
and positions of these detected frames are used to estimate the
number of people in crowds with a perspective transformation
method (also called imaging transformation).

A. Feature Extraction

In general circumstances, only the heads of people can be ob-
served when there is a large crowd. Thus, the contour of the
human head is chosen as the detected target. As the crowd in-
creases, the size of a human head in a fixed picture decreases.
Therefore, to achieve the goal of estimation of crowd size, the
size of detected template of the human head is (the
smallest detectable size of the contours of people) in this paper.
To develop the model for the class of head-like contour, a set
of 1030 gray raw images (obtained from photos) of the human

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Ensemble average values of the wavelet coefficients coded using gray
level. (a) Average coefficients of random scenes with scale (4�4). (b) Average,
(c) vertical, and (d) horizontal coefficients of images of people with scale (4�4).
(e) Average coefficients of random scenes with scale (2 � 2). (f) Average, (g)
vertical, and (h) horizontal coefficients of images of people with scale (2� 2).

head of size is used. Using the Haar wavelet represen-
tation, both the coarse-scale ( pixels) and fine-scale (
pixels) features are used. At these scales of wavelets, there are
1182 [i.e., ( )] total features for a
pattern.

To extract the significant coefficients of these features, they
must be analyzed using statistical method. The basic analysis in
identifying the important coefficients consists of the following
steps. First, the wavelet coefficients of each input pattern are
normalized to minimize the influence of different input pattern.
Second, the average of normalized coefficients along the en-
semble is calculated Third, the standard deviation of all the coef-
ficients based on its corresponding average is computed. Finally,
these results are sorted and analyzed to select the important co-
efficients.

Consider the wavelet coefficient . The normalization step
represented by the following equation:

(1)

for any and , where is the number of co-
efficients in an input image, is the th coefficient of the th
input image in the th coefficient class, and is the normal-
ized wavelet coefficient which is bounded between 0 and 1. To
normalize the coefficients is to preserve the relation in distribu-
tion of gray level that the scale of gray level will be ignored. The
average th coefficient for each class, is calculated by

(2)

where is the number of input images.
As shown in Fig. 2, a gray level coding scheme is used to

visualize the average patterns in the different classes of coeffi-
cients. Note that the raw images are too numerous to show in
Fig. 2. The gray level coding for the arrays of coarse scale coef-
ficients ( ) are shown in Fig. 2(a)–(d). The gray level coding
for the arrays of finer scale coefficients ( ) are shown in
Fig. 2(e)–(h). Fig. 2(a) shows the vertical coefficients of random
images which do not contain a human head, and this figure is
uniformly gray as expected. The corresponding images, which
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are not shown here, of the average, horizontal, and diagonal co-
efficients, are similar. On the other hand, the coefficients of the
human head, shown in Fig. 2(b)–(d), show clear patterns with
the different classes of wavelet coefficients being tuned to dif-
ferent types of structural information. The average wavelets,
shown in Fig. 2(b), show the entire characteristics of a human
head. The vertical wavelets, shown in Fig. 2(c), obtain both the
right and left sides of the human head. The horizontal wavelets,
shown in Fig. 2(d), capture the top and chin of the head. The
wavelets of finer scale in Fig. 2(e)–(h) provide better spatial res-
olution of the human head, and overall shape and smaller scale
detail appear clearer. To select the most significant features, the
standard deviation of all of the coefficients based on its corre-
sponding average is computed here. The standard deviation of
human head coefficients is far below the standard deviation of
these nonhead coefficients. When the standard deviation of a co-
efficient is low, it means it is more reliable and it has a higher
relativity importance.

Finally, the data according to the importance of their relativity
is sorted and there are 36 (out of 1182) significant coefficients to
be selected. There are six average, three horizontal, and six ver-
tical coefficients at the scale of , and eight average, seven
horizontal, and six vertical coefficients at the scale of .
These coefficients serve as the feature vector for the classifica-
tion problem.

B. System Training

The classification technique chosen here is the SVM [17].
This recently developed technique possesses the special advan-
tage of having very few tunable parameters and of using struc-
tural risk minimization which minimizes a bound on the gen-
eralization error. To train the system, a database of images of
human heads captured at arbitrary visual angles with complex
backgrounds and images which do not contain any people as the
negative examples are used. Virtually any image which does not
contain any people can serve as a nonhead example because the
space of nonhead images is much larger than the space of human
head images. However, collecting a representative set of non-
head is difficult as there are no typical examples of nonheads.
To overcome the problem of defining this extremely large neg-
ative class, a bootstrapping training is used. As shown in Fig. 3,
the initial positive and negative training sets are used to train this
system. Then, those false detection of patterns will be added to
the database of negative examples and the classifier is then re-
trained with this larger set of data. By using these iterations of
the bootstrapping procedure on this system, the classifier can be
constructed to more completely identify nonhead class.

C. Vanishing Point

In this paper, three restrictive conditions are assumed in the
crowd size estimation model. It is assumed that all of the frames
of human heads have the same size in the real world, all crowds
distribute over a horizontal plane, and the center of image is
equal to optical center. These three conditions help to simplify
the estimating problem. All three-dimensional (3-D) lines with a
nonzero slope along the optic axis have perspective projections

Fig. 3. Framework of bootstrapping training.

that meet at the same point, called thevanishing point, on the
perspective projection image plane [19].

Let visual angle be the angle between the plane of camera
sensor and the horizontal plane. Furthermore, letbe the focal
length of the CCD camera and be the distance between the
vanishing point and the center of the CCD sensor. The model of
the vanishing point formation process is illustrated in Fig. 4. It
can be easily observed that the position of the vanishing point
is relative to . Therefore, can be calculated if the vanishing
point is found out first.

After the frames of human heads are detected (to detect dif-
ferent frame sizes, the images will be resized before the his-
togram equalization), those frames of a different size are rear-
ranged on the vertical center line of the image. To find out the
position of the vanishing point, all top-left points of these frames
are connected with a straight line. However, because of the error
due to the precision of the classifier and the assumed conditions,
these points could not be perfectly connected by one straight
line. Thus, the approximate line is calculated by linear regres-
sion [20]. Before the method is used, those frames with different
sizes at the same row are averaged to find a representative frame.
Therefore, the approximate line could be more correct. After the
optimal linear function is calculated, the vanishing point can be
obtained on the point of intersection which is intersected by the
regression line and the center line in the image. Fig. 5(a) shows
an example where there are 39 frames of human heads which
are detected by SVM, and Fig. 5(b) shows the result of the van-
ishing point as calculated by linear regression.
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Fig. 4. Model of the vanishing point formation process.

(a)

(b)

Fig. 5. (a) Example where there are 39 frames of human heads which are
detected by SVM. (b) Vanishing point which is calculated by linear regression.
Linear function isy = �0:095135x + 44:7735 where the original point is at
the bottom of the vertical center line.

D. Equidistant Parallel Lines in Computer Vision

After the position of the vanishing point is decided, the visual
angle can be calculated by

(3)

Fig. 6. Model of the projection of a number of parallel lines.

where , and . Suppose there are
several equidistant parallel lines which are parallel to the CCD
sensor on the horizontal plane in the real world. Aschanges,
these equidistant parallel lines will show the different form of
the density distribution in the image.

Referring to Fig. 6, the distribution of those equidistant par-
allel lines could be drawn by the following equation:

(4)

(5)

where is the real length of a pixel in the image, and

(6)

(7)

By using similar triangles, the following relation can easily be
found:

(8)

Substituting (6) and (7) into (8), the segment can be
calculated. To provide more details, the possible situations are
divided into three different cases. There are four variables which
are defined for simplifying the expression of the equation first

(9)

Then, the representations of can be divided into the
following cases.

Case 1: If and , then the segment
can be calculated by

(10)
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Fig. 7. Procedure of the grouping.

Case 2: If and , then the segment
can be calculated by

(11)

Case 3: If and , then the segment
can be calculated by

(12)

Finally, the distance of the projection of those parallel lines can
be calculated. The information is significant for estimation of
the number of people in crowded scenes.

E. Estimation of Crowd Size

In this estimating model, it is first assumed that the arrange-
ment of crowds is general and the distance between people is
equidistant. Here, an effective method is proposed to estimate
the number of people in crowds and get an acceptable testing
result. The estimation algorithm is described as follows.

Because the distribution of a crowd may not only be a concen-
tric group, a simple method which can divide these frames into
several groups is used here if the distributions of crowd are dis-
persed concentrically. In order to clarify the process, Fig. 7 illus-
trates a simple example. Each frame could be a group of crowd.
For the top-left point, which is the starting point for scanning
each frame, both the lines in and directions are extended
to enclose a region known as the scanning region. If there is
another frame intersected in the scanning region, this frame is
regarded as a member belonging to the same group. Then, the
scanning region is expanded to a new scanning region which
contains these two frames and the top-left point of this region

Fig. 8. Definition of some variables during estimating process.

is treated as the starting point again. This process is repeated
until the quantity of the extension inand directions are both
equal to the threshold value which will be defined later, and the
scanning region still does not contain any other frames.

Therefore,all of the frames ofhuman headscanbedivided into
severalgroupsofcrowds.Asthesizeofframeschanges,thecondi-
tionof formationof thecrowdedgroupshouldbedifferent.There-
fore, the thresholdvalue of thequantityof theextension inand
directions is variable. The threshold valueis defined as

(13)

where is the number of all of the frames in the image,is the
length of the side ofth frame, and is the grouping coefficient,
selected here as 0.5.

Next, since both the gradient of the arrangement and the
distribution of the crowd groups are known, the approximate
number of people in crowds can be estimated by the relation
between the grouping area and total area of frames with
different sizes. As mentioned earlier, all groups of crowds are
assumed so that all people are arranged in compliance with the
same global rule. According to this rule, to estimate the density
of crowd and the number of people will be the utmost that can
be done. However, this rule means that the estimating result
may not be correct because every person in each crowd group
may not actually arrange with the global rule.

For obtaining a better estimating number, the above-men-
tioned assumption is modified. The local gradient parallel lines
of each group region is computed separately to calculate the
number of people in a crowd. As shown in Fig. 8, letbe the
number of intervals which is divided by the projection of parallel
lines in th crowd group. Let be the broad length of the scope
of th crowd group, be the length of the minimum frame in
th crowd group, and be the length of the maximum frame

in th crowd group. Then, the approximate number of people in
th crowd group could be estimated by the following:

(14)
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where is the decreasing parameter for reducing the size of
the frame of the human head

(15)

where
total number of people in the image;
number of people inth crowd group;
number of people atth interval in th crowd group
diluted parameter that considers the space between
human heads.

In general, if the crowd density tends to high, the diluted pa-
rameter is about ; if the crowd density tends to low,
the diluted parameter is about Finally, the number of
people in crowds is calculated. In the given example, the esti-
mated crowd size is 58. For verifying the accuracy of the pro-
posed algorithm, many conditions with different levels of com-
plexity will be tested in the next section.

III. EXPERIMENTAL RESULTS

To verify the performance of the proposed system without
controversy, the correct number of people in crowds should be
provided in order to be compared with the result estimated by
the system. A model world was constructed for this purpose.
In this model world, there are 125 person-like puppets that are
used to simulate a crowd in the real world. Then, many sizes
of crowds and visual angles between the plane of the camera
sensor and the horizontal plane are regulated to generate many
test images. All of the information such as the number of people
in crowds and visual angle is recorded correctly in advance to be
compared with results estimated by the system. An evaluation
of the performance of the proposed model is presented in the
experiments of different numbers of crowd in the model world
and the real world separately. After all of the parameters are
determined off-line, four pictures can be dealt per second by the
proposed algorithm (where a personal computer with Pentium
III, 800 MHz processor is used). All of these experiments and
an analysis will be detailed in the following section.

A. The Results of Estimation of Crowd Size in the Model World

First, the images that contained different levels of crowd den-
sity with simple backgrounds in the model world were tested. In
this experiment, the crowd is constructed by a number of pup-
pets in a model world and the number of the puppets can be
controlled and well known. Furthermore, the testing images can
be captured at arbitrary visual angles to make the testing proce-
dure more complete. Therefore, there is an absolute and correct
number of puppets in the crowd that is used as the right answer to

(a)

(b)

(c)

Fig. 9. Three kinds of estimated examples. Both the parameters� = 72:5

andN = 3 are fixed, and each crowd size is separatelyN = 40; 80; and120
in series. (a) 40/40. (b) 80/78. (c) 120/117.

compare the result for every testing image. To probe the perfor-
mance of the proposed system, several kinds of conditions were
simulated and experimented upon. The angle between the plane
of camera sensor and the horizontal plane, the size of the
crowd group , the crowd size , and the crowd density are
the four influential factors to this system which are discussed.
The upper image in each set of images is the testing image,
and the lower image is obtained as the result of processing the
testing image. For each image, two numbers are shown in the
caption: the exact number of puppets in the image and the final
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(a)

(b)

(c)

Fig. 10. Three kinds of estimated examples. The parametersN = 110 is
fixed, N = random and angles are separately� = 72:5 , 68.5 , and 64.5
in series. (a) 110/110. (b) 110/109. (c) 110/112.

estimated number of puppets. For example, a set of two num-
bers (110/100) means that there are 110 puppets in the image
and 100 puppets finally estimated. Fig. 9 shows three kinds of
crowd sizes ( and ) that have been divided into
three crowd groups ( ) at a fixed angle ( ) and
tested. Fig. 10 shows the fixed crowd size ( ) with
random crowd groups ( random) at three kinds of angles
( , , and ). These tested re-
sults show that the crowd size can be estimated close to the real
number even when the head detection is not very good.

Fig. 11. Plot of the estimation accuracy of different crowd sizes and crowd
groups with fixed visual angle.

Fig. 12. Plot of the estimation accuracy of different visual angles and crowd
groups with fixed crowd size.

In the following, the performance of the system under dif-
ferent conditions is illustrated in Figs. 11 and 12. In each case,
we test 250 samples, calculate the absolute error and divide it
by the right number to obtain the error rate. Then, accuracy is
100% minus the error rate. In Fig. 11, the relationship between
the estimation accuracy, the crowd size, and the crowd group
at the same visual angle can be observed. When the number
of the crowd group is small and the distribution of people in
crowd is concentrated, the estimation accuracy tends to be high;
if not, it tends to be low. This is because when the size of crowd
group is fewer and the distribution is more concentrated, the
estimating conditions are nearer the assumed conditions of the
system. Even though the accuracy decreases as the crowd size
increases, the overall accuracy is still around 90%95%. In
Fig. 12, the relationship between the estimation accuracy, the
visual angle, and the crowd group at the same crowd size is de-
scribed. It can be clearly observed that the estimation accuracy
of the system is strongly affected by the visual angle. When
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(a)

(b)

(c)

Fig. 13. Some estimating examples in the real world. (a) 88. (b) 222. (c) 1583.

the angle increases, the estimation accuracy tends to be low.
If the angle is larger, the overlap among much of the crowd is
larger such that the effect of estimation is worse. For this reason,
the estimation accuracy of the crowd distributed dispersively is
higher than the crowd distributed concentratedly. Although the
accuracy increases as the visual angle decreases, the number of
people in crowds which can be detected also decreases because
the field of vision also decreases. To obtain the optimal visual
angle which considers both the higher accuracy and crowd size,
the optimal value of this angle is 72.5experimentally.

B. The Results of Estimation of Crowd Size in the Real World

The images that contain different numbers of crowds with
simple and complex backgrounds in the real world are tested

in this section. All of the images were captured in populous
places that were full of different numbers and forms of crowds.
In this experiment, the major issue is that the correct number
of people in a large crowd cannot be provided to evaluate the
performance of estimated results. Therefore, when the number
of people in crowds is too large, the system still provides the
estimating result.

There was much more noise disturbance in the images cap-
tured outdoors than the ones captured in the model world. There
are two main influential factors. First, the amount of illumi-
nation is influenced by the intensity of light. Even though the
image is processed by the histogram equalization first, it still
cannot show the clear contours of people if it is too dark or too
bright. Second, the textures in a large crowd are complex. As
the crowd grows larger, colors and shapes in the crowd become
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more complex and the overlap in the crowd is greater. Because
all the testing images in the experiment are monochrome im-
ages, only the gray level, which refers to a scalar measure of in-
tensity, can be provided without color information. Therefore,
even though no one color belongs to the class of head, a wrong
detection still will happen if a contour of distribution is circular.
As a crowd grows larger and the poses of people change, the cir-
cular contours formed by the textures between people increase
and the task of estimation is more difficult. As mentioned pre-
viously, the overlap in a crowd is the major influential factor,
especially in the real world.

Although there are more difficult parts to be detected,
the system still can make use of the processed data and the
perspective transformation to estimate the approximate number
of people in crowds. Fig. 13 shows some estimated examples
from the real world. In this paper, the value of the diluted
parameter is determined empirically to be 2.3. For each image,
the numbers in caption are shown as the estimated number
of people in crowds. From the results, it can be seen that
the estimating system can work well in the real world even
when the noise is serious. Overall, the estimation system is
suitable to most conditions in outdoor environments and its
performance is good.

IV. CONCLUSIONS

In this paper, an approach for the estimation of crowd size by
wavelet templates and vision-based techniques is proposed. For
calculating the more accurate crowd size in unconstrained envi-
ronments without a previous reference image or many image se-
quences, an effective people detector is usually necessary. Gen-
erally speaking, only people’s heads can be distinguished in
a crowd. To describe the characteristics of head, the HWT is
used to extract the features of the contour of a head. Using the
wavelet template, only significant information that characterizes
the contour of a head is evaluated and used. Then, the features
are processed by the SVM which is used as a classifier. SVM is
an approximate implementation of the method of structural risk
minimization, and it has been shown to provide a better general
performance than traditional techniques, including NNs. From
the detected results processed by these two techniques, the de-
tection performance is shown to be acceptable.

However, even though the detection tool can work well in
some cases, it is still limited to some complex situations such
as when the overlap among people is great and the contours of
the heads are not clear. Therefore, a vision-based technique is
proposed to compensate for the lack of detection. By making
use of the sizes and positions of the detected frames, informa-
tion about geometrical projection can be obtained to estimate
the approximate number of people in crowds. The proposed ap-
proach has a high estimating accuracy rate in experiments.

In the future, the system can be modified along some of the
following points to improve the estimating result. As mentioned
earlier, the performance of the estimating result is mainly influ-
enced by the kernel factor which is the diluted parameter and
is empirically chosen. If it can be found by a certain theoretical

foundation, the estimating result will possibly be nearer to the
correct number. On the other hand, if an image sequence can be
provided, more information about moving people can be used to
further improve the efficacy of head detection. As the number
of incorrectly detected or overlooked heads is reduced, the esti-
mated result will become more accurate.
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