
E L S E V I E R Microprocessors and Microsystems 21 (1997) 113-120

MICROPROCESSORS AND

MICROSYSTEMS

A transputer-based parallel controller for motor control applications

Ming-Fa Tsai*, Ying-Yu Tzou
Power Electronics and Motion Control Lab., Institute of Control Engineering, National Chiao Tung Univ., Taiwan, R.O.C.

Accepted 27 March 1997

Abstract

This paper presents the design and implementation of a parallel controller based on the transputers IMS '1"800-21) for high-performance
motor control applications. A unified controller architecture comprising transputer-based parallel computing boards and input/output boards
suitable for the real-time control of various types of motor drives is proposed. The system can increase its computing and input/output
processing capability by paralleling these boards. A host server based on a personal computer for user interface is also developed. To
demonstrate the system's capability, we have applied the system to the fully digital adaptive control of an AC induction servo motor. The
control functions can be easily implemented in parallel by using the high-level programming language Occam. The comparison with two
existing parallel controllers also shows the performance and architectural features of the system. © 1997 Elsevier Science B.V.

Keywords: Transputers; Parallel controller architecture; Motor control

1. Introduct ion

Recently, interest in parallel-processing system architec-
ture for real-time control applications has been growing
rapidly due to increasing demands on system performances
and the availability of advanced microprocessors. Many
studies concerning the development of the parallel con-
troller architecture for the application of advanced motor
control are available. The most widely used parallel con-
troller design is based on the tightly coupled multiprocessor
system, in which the communication among processors is
through the use of shared memory [1,2]. This type of system
architecture is effective when only a certain number of
processors are employed. If the number of processors in
the system is increased, however, a communication bottle-
neck will occur, and hence the efficiency will be degraded.
Further, the system is usually complex to design and
requires the writing of a complex operating system to
manipulate the programming. Therefore, a loosely coupled
system design based on multicomputers, such as INMOS
transputers which use a message passing method for
interprocessors communication, has been suggested as an
alternative to implement high-performance servo motor
drives [3,4] and other real-time control systems [5-7].

* Corresponding author

0141-9331/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved
PII S0141-933 1 (97)00025-2

In order to build up high-performance parallel controller
using the transputers, it is important that the transputer's
I/O (input/output) processing should be performed with a
minimal delay. According to INMOS [10], two different
methods can be used for the interface of the transputer to
the real-world environment. One is using link adaptors and
the other one is using a memory mapping bus. Harley et al.
[4] reported that the memory-mapping method is about 18
times faster than using a link adaptor for the same I/O data
transfer. Although much work about using the transputers
for real-time control has been done, the implementation
of necessary I/O interfaces to controlled plants for fast
real-time control by use of the memory-mapping scheme
is still lacking [8,9]. Most of the work uses link adaptors
for I/O handling [3,5-7], and hence this may influence
the system performance.

The purpose of this work is to design and implement a
configurable and programmable transputer-based parallel
controller system, where many types of peripheral hardware
suitable for various types of motor control applications
have been designed by means of the memory-mapping
scheme so as to enhance the performance and flexibility
of the system. The main techniques for the hardware and
software designs of the system will be described. The sys-
tem may provide a flexible and easy-to-use experimental
setup for the implementation of sophisticated control
algorithms, such as adaptive and learning control, for

114 M.-F. Tsai, Y.-E Tzou/Microprocessors and Microsystems 21 (1997) 113-120

Host PC

PC File Server

Transputer-Based Parallel Controller
I -,;,;~-/;,,,~;d lo-e?~

/ "°L_zZ_
1 ..

:i 7

l~::ffa~ A Cp~ntr~lon

I I I I ~r°g~ I

I rra [I ~¢-~nink III "~
I I Se*oara#. II ~ I Idenaflca~onl II

co. , , ° ,~ I "'1 I e°s"l°nclrl'l I " III I ~ s o . d o , o

Fig. 1. Transputer-based parallel control system architecture.

high-performance motor control and power electronics
applications.

2. S y s t e m o v e r v i e w

Modern digital control systems typically perform real-
time control and identification functions together with
a number of other activities related to I/O handling,
data-base management, and user interface processing.
Some of the operations such as current control in a servo
drive should be performed within a short sampling time
interval (less than 100/~s) for high-performance control
requirements. The system should also provide sufficient
numerical computation capability for advanced control
algorithms. These considerations led to the development
of the proposed control system architecture, as shown in
Fig. 1, which consists of a transputer-based parallel control-
ler and a host PC (personal computer). The hardware of the

PC~

I
I I Link (32 or 128

Connector Kbytes)

I
I i

System RS-232C
S~Jccs (8250)

L~sic

PIC
(8259A)

I

EPROM I
(64/128/256/
512 g~es)

I

I
I (ADS69,/ •

I

Fig. 2. Block diagram of the transputer-based input/output board.

SRAM
(32 or 128
Kbytes)

SRAM
(32 or 128

Kbytes) (1"8o5) ~ ' (T805)

SRAM
(32 or 128
Kbytes)

SRAM
(32or 128
Kbym)

Fig. 3. Block diagram of the transputer-based parallel computing board.

parallel controller consists of one or more transputer-based
input/output boards to provide fast I/O processing capability
and one or more transputer-based parallel computing boards
to provide computational power, as required by advanced
control applications. The transputer is a family of high-per-
formance microcomputers specifically designed for parallel
processing. Its name was taken from the prefix of transistor,
t r a n s , and the suffix of computer, p u t e r , since it is both a
computer on a chip and a silicon component like a transistor.
The transputer IMS T800-20 provides a processing power
up to 10MIPS (million instructions per second) and
1.5 MFLOPS (million floating-point operations per second),
it also contains a multitasking kernel, which controls the
scheduling of multiple tasks within the transputer [10,13].
Other important features of the chip are its four high-speed
serial communication links (up to 20 Mbits/s), as well as
system services, which include reset, analyse, and error
handling logic to initialize and sustain operation of the
chip. Using the interconnection of communication links
and the system services logic among the transputers, the
designed two transputer boards can operate concurrently
to perform control functions in parallel. One of the I/O
boards is connected to the host PC through an RS-232C
serial interface or the PC bus for user interface processing.
The host PC can also be used as a software development
workstation when the Transputer Development System
(TDS) software is implemented [12].

The controller can be interfaced to a motor (or multiple-
motor) drive system. Control of the motor is achieved
through the accesses to the peripheral devices, which are
memory-mapped to the transputer in the I/O board shown
in Fig. 2. This board contains a T800-20 transputer, a
system services control logic block, up to 512 Kbytes of
eraseable programmable read-only memory (EPROM), up
to 128 Kbytes of static random-access memory (SRAM),
and various I/O interfaces including an eight-channel multi-
plexed digital-to-analog converter (DAC), an eight-channel
multiplexed analog-to-digital converter (ADC), a pulse

M.-F. Tsai, Y.-E Tzou/Microprocessors and Microsystems 21 (1997)113-120 115

decoder/counter (HCTL 2000), and a programmable coun-
ter etc. to get feedback signals from the motor's sensors and
provide drive signals to the motor. Furthermore, because
the transputer is rather limited in its capability for handling
multiple external interrupts, a programmable interrupt
controller using Intel 8259A is also included for supporting
the mechanism. The number of these I/O devices required
to fulfil the sensor and drive functions has been reduced
considerably by standardizing the input and output signals
so that many types of motors can easily be interfaced to
the system.

However, to provide sufficient computational power to
the controller, the parallel computing board contains four
transputers configured as an expandable structure, as shown
in Fig. 3. Each transputer in this board is implemented
with up to 128 Kbytes of external SRAM memory. Thus
the board would have a processing power of 40 MIPS,
6 MFLOPS, and a memory of 1/2 Mbyte. When computa-
tional requirements increase, additional power can be
obtained by adding more of the parallel computing boards
to the system and connecting the appropriate system
service logic and communication links to the boards. There-
fore, various types of controller architecture topology,
such as arrays, meshes, hypercubes, pyramids, and other
distributed networks, can easily be built up.

3. H a r d w a r e d e s i g n

In this section, we describe two major techniques for the
controller hardware design: memory-mapping I/O interface

and multiple-interrupt control mechanism. It should be
noted that all signals followed by ' / ' indicate that the signals
are active low.

3.1. Memory-mapping I/O interface design

The transputer architecture provides a set of configurable
control timing cycle settling for easy interface to external
memory and for communication with peripherals [10]. The
external memory read/write cycle is divided into six Tstates
and each Tstate may be configured to be from one to four
Tm periods long. Each Tm period is 25 ns for the transputer
T800-20 (20 MHz) used. Using this facility, we can imple-
ment the external memory and I/O interface for the trans-
puter with minimum access time. Based on the timing
characteristics of the external memory and all the I/O
devices used in the input/output board, we can divide
these devices into two groups: the faster-timing devices
(CY7C199, 27C64, AD 569, HCTL2000, 8254) and the
slower-timing devices (AD1678, 8250, 8259A), for access
of the devices in each group with minimal delay. For both
groups, the read/write cycle is configured by connecting the
MemConfig to the MemAD9 of the transputer, as shown in
Fig. 4. In this way, occupying eight Tm periods, the six-
Tstate sequence for the faster-timing devices is T I - T 2 -
T 3 - T 3 - T 4 - T 5 - T 5 - T 6 , and hence the read/write cycle
time is 200 ns. For the slower-timing devices, several mem-
ory-wait states are inserted to delay the cycle time, allowing
all the devices in this group to be accessed in one cycle. This
can be achieved by connecting the output of the two-input
AND gate, the inputs of which are the chip select signal

T800-20

MemConfi

MemADO-3
EventAck

Event
MemS0/
MemSI/
MereS2/
MemS3/
MemS4/

MemWait " ~
MemRd/

MemWrB0-3/ --~ Address
Latch

(74LS373)

EN

MemAD0-31

74LS!39

A2-15

Self-Reset

Self-Analysep

EPROMCS/
SRAMCS~

IOEN/

d5•
G/

Addr.
Decoder

(74LSl38)

DAmux
DACS/D

HCTL2000CS/D
HCTL20OORst~

8254CS/P
pWMpreset ~

MemRd/
It

MemWrB0-3/

Fig. 4. Schematic diagram of the memory-mapping I/O interface.

116 M.-F. Tsai, E-Y. Tzou/Microprocessors and Microsystems 21 (1997) 113 120

400 nsec

TI 1"2 T3 T3 1"4 Tw Tw Tw Tw Tw Tw Tw T5 T5 T6 Tx TI
ProcClockOu~--']

MemS0/

MemSl/

MemS4/

Read Cycle
MemAD

MemRd/

Write Cycle

MemAD

MemWrB0-3/

I , . I
I v- / [I

25o 1

oa,. I

r 300 nsec 1
Fig. 5. Read/write configuration control timing for the slower I/O devices.

(Slowio/) for this group of devices and the MemS4/, to the
MemWait pin of the transputer, as shown in Fig. 4. The
MemWait pin is sampled during two Tm periods before
the end of the T4 or the wait period, and then a wait period
can be inserted at the end of T4 if the MemWait is high
when sampled. The resulting read/write control timing for
the slower-timing devices is shown in Fig. 5. It should be
noted that an extra period, Tx, is inserted at the end of the T6
period. This is because the T5 period must always begin on a
rising edge of the ProcClockOut signal when wait states are
inserted and the external memory interface cycle should
consist of an even number of Tm periods. The read/write
cycle time for the slower-timing devices is then 400 ns
long.

Because the external SRAM memory (CY7C199) imple-
mented in the parallel computing board has high speed
access time, the read/write cycle for each transputer on

(a)

EventAek

(b)

Fig. 6. Interrupt request and acknowledgment timing for (a) 8259A and
(b) T800.

this board is configured by connecting the Memconfig to
the MemAD8. The six-Tstate sequence is then T I - T 2 -
T 3 - T 4 - T 5 - T 6 and the read/write cycle time is
150 ns. No wait states are inserted in the read/write cycle
so as to minimize the access time to the external memory in
this board.

3.2. Multiple-interrupt control mechanism

In a practical real-time controller multiple interrupts often
occur, but the transputer provides only one event (interrupt)
pin. In the literature, the design of a multiple-interrupt
handler for a transputer using a five-input OR gate and an
event register has been proposed [4]. In our system the Intel
8259A programmable interrupt controller (PIC) device is
adopted. This device is specifically designed for use with
an Intel 80xx microprocessor-based system. It can handle
up to eight-priority interrupts for the microprocessor by
placing an interrupt-vector byte on the data bus during an
interrupt acknowledgment pulse interval [14]. In order to
make the 8259A work together with the transputer (T800),
they should have compatible timing requirement for
the interrupt handling. The interrupt request and acknowl-
edgment timing characteristics for the 8259A working in
the Intel 8086 or 8088 mode is shown in Fig. 6a. As can
be seen from this figure, the INTA/ signal for the 8259A
contains two negative pulses. But the EventAck signal
issued from the transputer is a positive pulse shown in
Fig. 6b. Therefore, it becomes necessary to design an inter-
face circuit to transform the EventAck signal into two nega-
tive pulses.

Figure 7 shows the schematic diagram to implement this
scheme. The circuit uses the EventAck as the triggering
signal for the D-type flip flop (74LS74). Initially, the
output of the flip-flop is logic high. As soon as an interrupt
request occurs, the EventAck signal becomes high, and the

output becomes low and remains low until the Q output

M.-F. Tsai, Y.-Y. Tzou/Microprocessors and Microsystems 21 (1997) 113-120

74LS245

Ev~tAck ~

7475

EventReq

lntVecte¢ 8259A

+$V]

8259CS/

Reset J

Fig. 7. Schematic diagram for the multiple-interrupt control mechanism.

117

signal gets a delay, which is approximately equal to the
pulse width, through the NOT and NOR gates and clears
the flip-flop. The first negative pulse is then generated.
Afterwards, a read instruction for getting the interrupt
vector from the data bus is then issued from the transputer.
This in turn generates the second negative pulse.

Display the function
menu

Wait for the
function command

~ Yes

~ Yes

J Send byte-by-byte]
the application codes

-] to the transputer net.

J Select and set
I the parmaeter(s)

I

@ I Yes J Read the data and
-[save to a .MAT file

I

-I one of the test function I

I

Fig. 8. Flow chart of the host server.

4. Software design

The system software can be separated into two parts: the
software on the parallel controller and software on the host
PC. As the hardwired kernel in each transputer can handle
the process scheduling, communication, and synchroniza-
tion automatically [10,13], the system software design in
the controller turns out to be very simple. It simply consists
of an EPROM loader, which can boot from ROM and load
a transputer network from an RS-232C port. The EPROM
loader in a designed transputer-based I/O board has
been created by modifying a monitor program provided in
the TDS tools directory [12]. This program contains the
Occam language source of the standard ROM loader
used in the INMOS evaluation boards, B00x, which include
RS-232C serial ports. The main modification is then to
place the address of the RS-232C port to the same address
as used in the transputer-based I/O board.

To interface the user to the controller, a host server based
on the personal computer has been designed in C language
with the flow chart shown in Fig. 8. The server contains
some menu-driven functions including program down-
load, parameter tuning, data storage, display, and board
test. The program down-load unit is handshaking with the
EPROM loader according to the TDS loading protocol [12].
The design of the board-test program is based on the poke
and peek functions given by the transputer.

A typical way that the system works is described as
follows. At the beginning the host server down-loads the
developed application program from the host PC into
the root transputer of the controller. The EPROM loader
executed by the root transputer then loads and passes the
application program to the appropriate target transputer of
the controller. Afterwards, the system starts to execute the
application program and checks the input ready status of

118 M.-F. Tsai, Y. - Y. Tzou/Microprocessors and Microsystems 21 (1997) 113- ! 20

Converter

220V

Transputer-based fully digital adaptive controller
T3

Controllerparameter ~ _ ~ Identification

Adaptation Filters

PWM Inverter
Power Stage

1 I ' ; I
i] Speed ~ Vector

I
coo o. r I

PWM
Generation

v~

Current
Controller

Speed
Detection

HCTL2000

Induction
Motor

Eneodcr

Fig. 9. Block diagram of the transputer-based adaptive

the RS-232C serial port at each sampling time. If the status
is empty then it skips the interface processing and starts
another control loop. Otherwise, it signals an acknowledg-
ment to the host PC for the desired interface processing.
The user can interactively operate on the host PC to give
a desired function.

5. Applications and performance evaluation

The described system has been tested successfully and is
currently used in our power electronics and motion control
(PEMC) laboratory. An interesting application to verify
the performance and demonstrate the configurability of the

control system for an AC induction motor drive.

system has been the implementation of the self-tuning adap-
tive control of an AC induction motor drive, as shown in
Fig. 9, due to its computational complexity and fast I/O
requirement [15]. The controller has three nested control
loops. The inner loop consists of the current controller
task, the middle loop consists of the vector and speed
controller tasks, and the outer loop consists of the model
identification and controller parameter adaptation tasks. It
is important to minimize the execution time of the
controller tasks so as to increase the sampling frequency,
which in turn enhances the control of the system with
larger bandwidth. This could be achieved by parallelizing
the control algorithm into smaller tasks and mapping
them onto the parallel controller architecture on the

Table 1
A comparison of three parallel controllers in architecture and performance for real-time control

Controller Architecture types Building units Communication I/O types Matrix multiply
types (and rates) (and rates)

Transputer-based
The Loosely coupled parallel-Computing
proposed multicomputers boards and
controller transputer-based

I/O boards

Links (20 Mbits/s)

IBM Hemes PC bus
SPARTA Tightly coupled processor-based (PIE to PIE:

multiprocessors PIE modules and 12 Mbits/s)
I/O boards
MC68020-based VME bus

CONDOR Tightly coupled single board (5K messages/s or
multiprocessors computer, A/Dand 160 Kbits/s)

D/A boards

Memory-Mapping
(Faster devices:
200 ns or 5 21 ~s
Mbyte/s,
slower devices:
400 ns or 2.5
Mbyte/s)
PC bus
(PIE to I/O board: 1.9 ~s
0.4 Mbyte/s)

VME bus 27 ~s

M.-F. Tsai, Y.-E Tzou/Microprocessors and Microsystems 21 (1997) 113-120

Transputer TI Trxnsputer T2
(Current Control) (Speed Control)

PRI PAR ... initialization
SEQ WHILE TRUE

... initialization SEQ
clock ? time ... speed (m,) detection(161.ts)
WHILE TRUE ... output ~0,,~ (141.ts)

SEQ ~ ... input o,. (71xs)
... current det. & handling (34 gts) • ... input lo, tp (141~s)

if running 10 times I ... flux talc. (26ps)
then output the i,,ip (141as) I ... call cosine func.(37ps)

... current PI control. (121.ts) ... call sine func. (371xs)

... talc PWM pulse times (6las) ... 2-DOF speed control (241~s)

... output PWM pulses (14ps) ... coordination transform(6p.s)

... i f running 10 times ... output ~,t~ (141as)
then input t~,l~ (141as) -] ... input controller parameters (28 ps)

clock ? AFTER time PLUS 100 T M

Transputer TO

(User Interface Processing)

PRI PAR
SEQ

... initialization
clock ? time
WHILE TRUE

SEQ
... speed command (m~,) gen.
... output ~"
... input record-data (
channel ! record-data
time := time PLUS 1000
clock ? AFTER time

SEQ
... initialization
WHILE TRUE

SEQ
channel ? record-data
... save into buffer
... transmit the saved data to the

host PC if asked.

Transputer T3

(Identification and Adaptation)

... initialization
WHILE TRUE

SEQ
... input os,,i~, (71~s)
... identification (I 051as)
... adaptation (421as)
... output pameters (281as)
,.. output record-data

Fig. 10. The Occam programming for the parallel implementation of the adaptive speed control of an induction motor.

119

assumption that the control algorithm has a sufficient degree
of concurrency.

Because the three loops are nested, each loop can be
executed concurrently. By direct parallelization of the
three nested control loops, the controller tasks can be
mapped onto three transputers. One additional transputer
is used to implement the user interface process. An
Occam language programming for this parallelization is
shown in Fig. 10. Using three-transputer mapping for the
controller tasks, we have the 'speed-up' of 2.06, which is
obtained by dividing the total sequential executing time,
418/zs, using one transputer by the concurrent execution
time, 203/xs, using three transputers. In this implementa-
tion, the synchronization of the tasks is done by data hand-
shaking, that is, only when the data needed for the task is
received from the appropriate communication link can the
task proceed. It should be noted that the synchronization
frequency between the T1 and T2 processors depends on
the sampling times of the current controller task and the
speed controller task running on the two processors,

respectively. In this application the sampling time on the
speed control loop is one ms and that on the current loop is
100/xs. So the synchronization and communication between
the two processors takes place once the current controller
task has run ten times.

The next demonstrated example is through comparison
of the controller in performance and architecture with two
existing parallel controllers, SPARTA [16] and CONDOR
[17]. The performance evaluation is carried out through
the execution time of a fixed-point matrix-vector multipli-
cation, which is given by

y = A x (1)

where A is a 2 × 4 matrix, x is a 4 × 1 vector, and the
result y is a 2 × 1 vector. An integer data length of 16 bits
was used for A, x, and y. The results are illustrated in Table 1.
As can be seen from this table, of the three controllers,
although the proposed controller is not the best for the arith-
metic calculation, it is the fastest in terms of the inter-
processor communication and I/O rate. Above all, the

120 M.-F. Tsai, Y.-Y. Tzou/Microprocessors and Microsystems 21 (1997) 113-120

proposed controller is the most expandable in architecture,
as previously stated.

6. Conclusions

In this paper, the design and implementation of a parallel
controller architecture using IMS T800-20 transputer
chips for high-performance control applications has been
discussed. The system architecture is configurable by
using one or more input/output boards, which utilizes a
memory mapping bus for various I/O interfaces and one
or more parallel computing boards, and hence demonstrates
the configurability and modularity. The system can be easily
programmed using Occam 2 language [11]. The system's
capability has been demonstrated by implementing the
parallel adaptive control of an ac induction motor drive.
The system also shows its performance and architectural
features by comparing the system with two other existing
parallel controllers. Although the application work high-
lights the motor control, this system may be useful for the
study and implementation of different complex control
algorithms for other high-performance control applications.

Acknowledgements

This research was supported by the National Science
Council under Contract NSC79-0404-E-009-028, Taiwan,
R.O.C.

References

[1] F. Harashima, et al., Multimicroprocessor-based control system for
quick response induction motor drive, IEEE Trans. Ind. Appl. IA-21
(4) (1985) 602-609.

[2] K. Kubo, et al., A fully digitalized speed regulator using multimicro-
processor system for induction motor drives, IEEE Trans. Ind. Appl.
IA-21 (4) (1985) 1001-1008.

[3] G.M. Asher, M. Summer, Parallelism and the transputer for real-time
high-performance control of AC induction motors, lEE Proc. 137
(Part D) (No. 4) (1990) 179-188.

[4] R.G. Harley, et al., Real-time issues of transputers in high perform-
ance motion control systems, IEEE Trans. Ind. Appl. 29 (2) (1993)
306-312.

[5] H.A. Thompson, P.J. Fleming, Fault-tolerant transputer-based con-
troller configurations for gas-turbine engines, lEE Proc. 137 (Part
D) (4) (1990) 253-260.

[6] F. Garcia-Nocetti, et al., Implementation of a transputer-based flight
controller, IEE Proc. 137 (Part D) (3) (1990) 130-136.

[7] A.C.J. Stavenuiter, G.T. Reehorst, A.W.P. Bakkers, Transputer
control of a flexible robot link, Microprocessors and Microsystems
13 (3) (1989) 227-232.

[8] J.R. Elphick, T. Clarke, S.T. Lawes, A high-performance analogue
input/output system for transputer applications, Microprocessors and
Microsystems 19 (1) (1995) 3-8.

[9] P. Croll, G. Wilson, Peripheral handling techniques for the transputer,
Microprocessors and Microsystems 13 (2) (1989) 124-128.

[10] Transputer Reference Manual, Inmos Prentice-Hall, Hemel
Hempstead, UK, 1988.

[11] Occam 2 Reference Manual, Inmos Prentice-Hall, Hemel Hempstead,
UK, 1988.

[12] Transputer Development System, Inmos Prentice-Hall, Hemel
Hempstead, UK, 1988.

[13] A.M. Tyrrell, J.D. Nicoud, Scheduling and parallel operations on
the transputer, Microprocessing and Microprogramming 26 (1989)
175-185.

[14] iAPX 86, 88 User's Manual, Intel Corporation, 1981.
[15] H.J. Wu, M.F. Tsai, Y.Y. Tzou, Transputer-based fully digital adap-

tive control system for high-performance ac induction motor drives,
IEEE Power Electron. Spec. Conf. Rec., (1994) 1250-1256.

[16] J. Ish-Shalom, P. Kazanzides, SPARTA: Multiple signal processors
for high-peformance robot control, IEEE Trans. Robot. Autom. 5 (5)
(1989) 628-640.

[17] S. Narasimhan, D.M. Siegel, J.M. Hollerbach, CONDOR: An archi-
tecture for controlling the Utah-MIT Dexterous Hand, IEEE Trans.
Robot. Autom. 5 (5) (1989) 616-627.

Ming-Fa Tsai was born in Taiwan,
Republic of China, on April 17, 1958.
He received the B.S. and M.S. degrees
from the Departmemt of Electronic
Engineering and Control Engineering
of National Chiao Tung University,
Hsinchu, Taiwan, in 1980 and 1990,
respectively. In 1980, he joined the
Chinese Army for a two-year period ser-
vice, after which he worked at the
Chung Shan Institute of Science and
Technology in Lungtan, Taiwan as a

research assistant for four years.
From 1986 to 1987, he was a development enginer with the

Telestar international company, Taipei, Taiwan, and got a one-year
project concerning the manufacture of commercial flight simulator with
the Singer Link company, New York, U.S.A. Since 1990, he has been
working toward his Ph.D. in the Departmemt of Electronic Engineering
at the same university and is engaged in the research of motor control.
In 1996, he was a contract engineer with the Sunplus Technology
company, Hsinchu, Taiwan, where he was involved in microcontroller
ASIC design. His research interests also include the control theory,
parallel processing techniques, and power electronic systems.

Ying-Yu Tzou (S'81-M'88) was born in
Taiwan, Republic of China, on February
13, 1956. He received the B.S. and M.S.
degree in control engineering from the
National Chiao Tung University, and
the Ph.D. degree in electrical engineer-
ing from the Institute of Electronics
Engineering of National Chiao Tung
University in 1978, 1983, and 1987,
respectively.

. During 1980-1981 he was with the
Electronic Research and Service Organi-

zation (ERSO) of the Industry Technology Research Institute (ITRI) as
a design engineer in the control system department. During 1983-1986
he was with Microtek Automation, Inc., as a project manager for
the development of a Computer Numerical Controller (CNC)
for machine tools. He is currently an Associate Professor of the Depart-
ment of Control Engineering of the National Chiao Tung University,
and also serves as an industrial consultant for many local power
electronics and automation companies. He was the Director of the
Institute of Control Engineering during 1992-1994. His special
interests now are sensorless ac drives, intelligent UPS, FPGA
based control 1Cs for motor drives, and DSP applications in power
electronics and motion control.

