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Abstract 

This paper presents the design and implementation of a parallel controller based on the transputers IMS '1"800-21) for high-performance 
motor control applications. A unified controller architecture comprising transputer-based parallel computing boards and input/output boards 
suitable for the real-time control of various types of motor drives is proposed. The system can increase its computing and input/output 
processing capability by paralleling these boards. A host server based on a personal computer for user interface is also developed. To 
demonstrate the system's capability, we have applied the system to the fully digital adaptive control of an AC induction servo motor. The 
control functions can be easily implemented in parallel by using the high-level programming language Occam. The comparison with two 
existing parallel controllers also shows the performance and architectural features of the system. © 1997 Elsevier Science B.V. 
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1. Introduct ion 

Recently, interest in parallel-processing system architec- 
ture for real-time control applications has been growing 
rapidly due to increasing demands on system performances 
and the availability of advanced microprocessors. Many 
studies concerning the development of the parallel con- 
troller architecture for the application of advanced motor 
control are available. The most widely used parallel con- 
troller design is based on the tightly coupled multiprocessor 
system, in which the communication among processors is 
through the use of shared memory [1,2]. This type of system 
architecture is effective when only a certain number of 
processors are employed. If the number of processors in 
the system is increased, however, a communication bottle- 
neck will occur, and hence the efficiency will be degraded. 
Further, the system is usually complex to design and 
requires the writing of a complex operating system to 
manipulate the programming. Therefore, a loosely coupled 
system design based on multicomputers, such as INMOS 
transputers which use a message passing method for 
interprocessors communication, has been suggested as an 
alternative to implement high-performance servo motor 
drives [3,4] and other real-time control systems [5-7]. 
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In order to build up high-performance parallel controller 
using the transputers, it is important that the transputer's 
I/O (input/output) processing should be performed with a 
minimal delay. According to INMOS [10], two different 
methods can be used for the interface of the transputer to 
the real-world environment. One is using link adaptors and 
the other one is using a memory mapping bus. Harley et al. 
[4] reported that the memory-mapping method is about 18 
times faster than using a link adaptor for the same I/O data 
transfer. Although much work about using the transputers 
for real-time control has been done, the implementation 
of necessary I/O interfaces to controlled plants for fast 
real-time control by use of the memory-mapping scheme 
is still lacking [8,9]. Most of the work uses link adaptors 
for I/O handling [3,5-7], and hence this may influence 
the system performance. 

The purpose of this work is to design and implement a 
configurable and programmable transputer-based parallel 
controller system, where many types of peripheral hardware 
suitable for various types of motor control applications 
have been designed by means of the memory-mapping 
scheme so as to enhance the performance and flexibility 
of the system. The main techniques for the hardware and 
software designs of the system will be described. The sys- 
tem may provide a flexible and easy-to-use experimental 
setup for the implementation of sophisticated control 
algorithms, such as adaptive and learning control, for 
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Fig. 1. Transputer-based parallel control system architecture. 

high-performance motor control and power electronics 
applications. 

2. S y s t e m  o v e r v i e w  

Modern digital control systems typically perform real- 
time control and identification functions together with 
a number of other activities related to I/O handling, 
data-base management, and user interface processing. 
Some of the operations such as current control in a servo 
drive should be performed within a short sampling time 
interval (less than 100/~s) for high-performance control 
requirements. The system should also provide sufficient 
numerical computation capability for advanced control 
algorithms. These considerations led to the development 
of the proposed control system architecture, as shown in 
Fig. 1, which consists of a transputer-based parallel control- 
ler and a host PC (personal computer). The hardware of the 
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Fig. 2. Block diagram of the transputer-based input/output board. 
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Fig. 3. Block diagram of the transputer-based parallel computing board. 

parallel controller consists of one or more transputer-based 
input/output boards to provide fast I/O processing capability 
and one or more transputer-based parallel computing boards 
to provide computational power, as required by advanced 
control applications. The transputer is a family of high-per- 
formance microcomputers specifically designed for parallel 
processing. Its name was taken from the prefix of transistor, 
t r a n s ,  and the suffix of computer, p u t e r ,  since it is both a 
computer on a chip and a silicon component like a transistor. 
The transputer IMS T800-20 provides a processing power 
up to 10MIPS (million instructions per second) and 
1.5 MFLOPS (million floating-point operations per second), 
it also contains a multitasking kernel, which controls the 
scheduling of multiple tasks within the transputer [10,13]. 
Other important features of the chip are its four high-speed 
serial communication links (up to 20 Mbits/s), as well as 
system services, which include reset, analyse, and error 
handling logic to initialize and sustain operation of the 
chip. Using the interconnection of communication links 
and the system services logic among the transputers, the 
designed two transputer boards can operate concurrently 
to perform control functions in parallel. One of the I/O 
boards is connected to the host PC through an RS-232C 
serial interface or the PC bus for user interface processing. 
The host PC can also be used as a software development 
workstation when the Transputer Development System 
(TDS) software is implemented [12]. 

The controller can be interfaced to a motor (or multiple- 
motor) drive system. Control of the motor is achieved 
through the accesses to the peripheral devices, which are 
memory-mapped to the transputer in the I/O board shown 
in Fig. 2. This board contains a T800-20 transputer, a 
system services control logic block, up to 512 Kbytes of 
eraseable programmable read-only memory (EPROM), up 
to 128 Kbytes of static random-access memory (SRAM), 
and various I/O interfaces including an eight-channel multi- 
plexed digital-to-analog converter (DAC), an eight-channel 
multiplexed analog-to-digital converter (ADC), a pulse 
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decoder/counter (HCTL 2000), and a programmable coun- 
ter etc. to get feedback signals from the motor's sensors and 
provide drive signals to the motor. Furthermore, because 
the transputer is rather limited in its capability for handling 
multiple external interrupts, a programmable interrupt 
controller using Intel 8259A is also included for supporting 
the mechanism. The number of these I/O devices required 
to fulfil the sensor and drive functions has been reduced 
considerably by standardizing the input and output signals 
so that many types of motors can easily be interfaced to 
the system. 

However, to provide sufficient computational power to 
the controller, the parallel computing board contains four 
transputers configured as an expandable structure, as shown 
in Fig. 3. Each transputer in this board is implemented 
with up to 128 Kbytes of external SRAM memory. Thus 
the board would have a processing power of 40 MIPS, 
6 MFLOPS, and a memory of 1/2 Mbyte. When computa- 
tional requirements increase, additional power can be 
obtained by adding more of the parallel computing boards 
to the system and connecting the appropriate system 
service logic and communication links to the boards. There- 
fore, various types of controller architecture topology, 
such as arrays, meshes, hypercubes, pyramids, and other 
distributed networks, can easily be built up. 

3. H a r d w a r e  d e s i g n  

In this section, we describe two major techniques for the 
controller hardware design: memory-mapping I/O interface 

and multiple-interrupt control mechanism. It should be 
noted that all signals followed by ' / '  indicate that the signals 
are active low. 

3.1. Memory-mapping I/O interface design 

The transputer architecture provides a set of configurable 
control timing cycle settling for easy interface to external 
memory and for communication with peripherals [10]. The 
external memory read/write cycle is divided into six Tstates 
and each Tstate may be configured to be from one to four 
Tm periods long. Each Tm period is 25 ns for the transputer 
T800-20 (20 MHz) used. Using this facility, we can imple- 
ment the external memory and I/O interface for the trans- 
puter with minimum access time. Based on the timing 
characteristics of the external memory and all the I/O 
devices used in the input/output board, we can divide 
these devices into two groups: the faster-timing devices 
(CY7C199, 27C64, AD 569, HCTL2000, 8254) and the 
slower-timing devices (AD1678, 8250, 8259A), for access 
of the devices in each group with minimal delay. For both 
groups, the read/write cycle is configured by connecting the 
MemConfig to the MemAD9 of the transputer, as shown in 
Fig. 4. In this way, occupying eight Tm periods, the six- 
Tstate sequence for the faster-timing devices is T I - T 2 -  
T 3 - T 3 - T 4 - T 5 - T 5 - T 6 ,  and hence the read/write cycle 
time is 200 ns. For the slower-timing devices, several mem- 
ory-wait states are inserted to delay the cycle time, allowing 
all the devices in this group to be accessed in one cycle. This 
can be achieved by connecting the output of the two-input 
AND gate, the inputs of which are the chip select signal 
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(Slowio/) for this group of devices and the MemS4/, to the 
MemWait pin of the transputer, as shown in Fig. 4. The 
MemWait pin is sampled during two Tm periods before 
the end of the T4 or the wait period, and then a wait period 
can be inserted at the end of T4 if the MemWait is high 
when sampled. The resulting read/write control timing for 
the slower-timing devices is shown in Fig. 5. It should be 
noted that an extra period, Tx, is inserted at the end of the T6 
period. This is because the T5 period must always begin on a 
rising edge of the ProcClockOut signal when wait states are 
inserted and the external memory interface cycle should 
consist of an even number of Tm periods. The read/write 
cycle time for the slower-timing devices is then 400 ns 
long. 

Because the external SRAM memory (CY7C199) imple- 
mented in the parallel computing board has high speed 
access time, the read/write cycle for each transputer on 

(a) 

EventAek 
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Fig. 6. Interrupt request and acknowledgment timing for (a) 8259A and 
(b) T800. 

this board is configured by connecting the Memconfig to 
the MemAD8. The six-Tstate sequence is then T I - T 2 -  
T 3 - T 4 - T 5 - T 6  and the read/write cycle time is 
150 ns. No wait states are inserted in the read/write cycle 
so as to minimize the access time to the external memory in 
this board. 

3.2. Multiple-interrupt control mechanism 

In a practical real-time controller multiple interrupts often 
occur, but the transputer provides only one event (interrupt) 
pin. In the literature, the design of a multiple-interrupt 
handler for a transputer using a five-input OR gate and an 
event register has been proposed [4]. In our system the Intel 
8259A programmable interrupt controller (PIC) device is 
adopted. This device is specifically designed for use with 
an Intel 80xx microprocessor-based system. It can handle 
up to eight-priority interrupts for the microprocessor by 
placing an interrupt-vector byte on the data bus during an 
interrupt acknowledgment pulse interval [14]. In order to 
make the 8259A work together with the transputer (T800), 
they should have compatible timing requirement for 
the interrupt handling. The interrupt request and acknowl- 
edgment timing characteristics for the 8259A working in 
the Intel 8086 or 8088 mode is shown in Fig. 6a. As can 
be seen from this figure, the INTA/ signal for the 8259A 
contains two negative pulses. But the EventAck signal 
issued from the transputer is a positive pulse shown in 
Fig. 6b. Therefore, it becomes necessary to design an inter- 
face circuit to transform the EventAck signal into two nega- 
tive pulses. 

Figure 7 shows the schematic diagram to implement this 
scheme. The circuit uses the EventAck as the triggering 
signal for the D-type flip flop (74LS74). Initially, the 
output of the flip-flop is logic high. As soon as an interrupt 
request occurs, the EventAck signal becomes high, and the 

output becomes low and remains low until the Q output 



M.-F. Tsai, Y.-Y. Tzou/Microprocessors and Microsystems 21 (1997) 113-120 

74LS245 

Ev~tAck ~ 

7475 

EventReq 

lntVecte¢ 8259A 

+$V ] 

8259CS/ 

Reset J 

Fig. 7. Schematic diagram for the multiple-interrupt control mechanism. 

117 

signal gets a delay, which is approximately equal to the 
pulse width, through the NOT and NOR gates and clears 
the flip-flop. The first negative pulse is then generated. 
Afterwards, a read instruction for getting the interrupt 
vector from the data bus is then issued from the transputer. 
This in turn generates the second negative pulse. 
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Fig. 8. Flow chart of the host server. 

4. Software design 

The system software can be separated into two parts: the 
software on the parallel controller and software on the host 
PC. As the hardwired kernel in each transputer can handle 
the process scheduling, communication, and synchroniza- 
tion automatically [10,13], the system software design in 
the controller turns out to be very simple. It simply consists 
of an EPROM loader, which can boot from ROM and load 
a transputer network from an RS-232C port. The EPROM 
loader in a designed transputer-based I/O board has 
been created by modifying a monitor program provided in 
the TDS tools directory [12]. This program contains the 
Occam language source of the standard ROM loader 
used in the INMOS evaluation boards, B00x, which include 
RS-232C serial ports. The main modification is then to 
place the address of the RS-232C port to the same address 
as used in the transputer-based I/O board. 

To interface the user to the controller, a host server based 
on the personal computer has been designed in C language 
with the flow chart shown in Fig. 8. The server contains 
some menu-driven functions including program down- 
load, parameter tuning, data storage, display, and board 
test. The program down-load unit is handshaking with the 
EPROM loader according to the TDS loading protocol [ 12]. 
The design of the board-test program is based on the poke 
and peek functions given by the transputer. 

A typical way that the system works is described as 
follows. At the beginning the host server down-loads the 
developed application program from the host PC into 
the root transputer of the controller. The EPROM loader 
executed by the root transputer then loads and passes the 
application program to the appropriate target transputer of 
the controller. Afterwards, the system starts to execute the 
application program and checks the input ready status of 
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the RS-232C serial port at each sampling time. If the status 
is empty then it skips the interface processing and starts 
another control loop. Otherwise, it signals an acknowledg- 
ment to the host PC for the desired interface processing. 
The user can interactively operate on the host PC to give 
a desired function. 

5. Applications and performance evaluation 

The described system has been tested successfully and is 
currently used in our power electronics and motion control 
(PEMC) laboratory. An interesting application to verify 
the performance and demonstrate the configurability of the 

control system for an AC induction motor drive. 

system has been the implementation of the self-tuning adap- 
tive control of an AC induction motor drive, as shown in 
Fig. 9, due to its computational complexity and fast I/O 
requirement [15]. The controller has three nested control 
loops. The inner loop consists of the current controller 
task, the middle loop consists of the vector and speed 
controller tasks, and the outer loop consists of the model 
identification and controller parameter adaptation tasks. It 
is important to minimize the execution time of the 
controller tasks so as to increase the sampling frequency, 
which in turn enhances the control of the system with 
larger bandwidth. This could be achieved by parallelizing 
the control algorithm into smaller tasks and mapping 
them onto the parallel controller architecture on the 

Table 1 
A comparison of three parallel controllers in architecture and performance for real-time control 

Controller Architecture types Building units Communication I/O types Matrix multiply 
types (and rates) (and rates) 

Transputer-based 
The Loosely coupled parallel-Computing 
proposed multicomputers boards and 
controller transputer-based 

I/O boards 

Links (20 Mbits/s) 

IBM Hemes PC bus 
SPARTA Tightly coupled processor-based (PIE to PIE: 

multiprocessors PIE modules and 12 Mbits/s) 
I/O boards 
MC68020-based VME bus 

CONDOR Tightly coupled single board (5K messages/s or 
multiprocessors computer, A/Dand 160 Kbits/s) 

D/A boards 

Memory-Mapping 
(Faster devices: 
200 ns or 5 21 ~s 
Mbyte/s, 
slower devices: 
400 ns or 2.5 
Mbyte/s) 
PC bus 
(PIE to I/O board: 1.9 ~s 
0.4 Mbyte/s) 

VME bus 27 ~s 
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assumption that the control algorithm has a sufficient degree 
of  concurrency. 

Because the three loops are nested, each loop can be 
executed concurrently. By direct parallelization of  the 
three nested control loops, the controller tasks can be 
mapped onto three transputers. One additional transputer 
is used to implement the user interface process. An 
Occam language programming for this parallelization is 
shown in Fig. 10. Using three-transputer mapping for the 
controller tasks, we have the 'speed-up' of  2.06, which is 
obtained by dividing the total sequential executing time, 
418/zs, using one transputer by the concurrent execution 
time, 203/xs, using three transputers. In this implementa- 
tion, the synchronization of  the tasks is done by data hand- 
shaking, that is, only when the data needed for the task is 
received from the appropriate communication link can the 
task proceed. It should be noted that the synchronization 
frequency between the T1 and T2 processors depends on 
the sampling times of  the current controller task and the 
speed controller task running on the two processors, 

respectively. In this application the sampling time on the 
speed control loop is one ms and that on the current loop is 
100/xs. So the synchronization and communication between 
the two processors takes place once the current controller 
task has run ten times. 

The next demonstrated example is through comparison 
of  the controller in performance and architecture with two 
existing parallel controllers, SPARTA [16] and CONDOR 
[17]. The performance evaluation is carried out through 
the execution time of  a fixed-point matrix-vector multipli- 
cation, which is given by 

y = A x  (1) 

where A is a 2 × 4 matrix, x is a 4 × 1 vector, and the 
result y is a 2 × 1 vector. An integer data length of  16 bits 
was used for A, x, and y. The results are illustrated in Table 1. 
As can be seen from this table, of  the three controllers, 
although the proposed controller is not the best for the arith- 
metic calculation, it is the fastest in terms of  the inter- 
processor communication and I/O rate. Above all, the 
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proposed controller is the most expandable in architecture, 
as previously stated. 

6. Conclusions 

In this paper, the design and implementation of a parallel 
controller architecture using IMS T800-20 transputer 
chips for high-performance control applications has been 
discussed. The system architecture is configurable by 
using one or more input/output boards, which utilizes a 
memory mapping bus for various I/O interfaces and one 
or more parallel computing boards, and hence demonstrates 
the configurability and modularity. The system can be easily 
programmed using Occam 2 language [11]. The system's 
capability has been demonstrated by implementing the 
parallel adaptive control of an ac induction motor drive. 
The system also shows its performance and architectural 
features by comparing the system with two other existing 
parallel controllers. Although the application work high- 
lights the motor control, this system may be useful for the 
study and implementation of different complex control 
algorithms for other high-performance control applications. 
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