
Hardware-efficient pipelined programmable FIR filter
design

T.-S.Chang and C.-W.Jen

Abstract: With the increasing demand for video-signal processing and transmission, high-speed
programmable FIR filters are required for real-time processing. This paper presents a hardware-
efficient pipelined FIR architecture with programmable coefficients. FIR operations are first
reformulated into multi-bit DA form at an algorithm level. Then, at the architecture level, the
(p, q) compressor, instead of Booth encoding or RAM implementation, is used for high-speed
operation. Due to the simple architecture, we can easily pipeline the proposed FIR filter to the
adder level and save up to half of the cost of previous designs without sacrificing performance.
The presented design is useful for bit-parallel input design, which can save 36.7% of the area cost
compared with previous approaches.
1 Introduction

Finite impulse response (FIR) filters are important building
blocks for various digital signal processing (DSP) applica-
tions. Recently, because of the increasing demand for
video-signal processing and transmission, high-speed and
high-order programmable FIR filters have frequently been
used to perform adaptive pulse shaping and signal equal-
isation on the received data in real time, such as ghost
cancellation [1, 2] and channel equalisation [3]. Hence, an
efficient VLSI architecture for a high-speed programmable
FIR filter is needed.

However, high-speed programmable FIR filters are hard
to implement efficiently because of the programmability
requirements that result in high implementation costs. The
programmability allows the FIR coefficients to be changed
at the run time. Therefore, we cannot directly use specific
low-cost implementations that depend heavily on the
coding and sharing of the constant FIR coefficients, such
as canonical signed digit (CSD) representation [4] and
subexpression sharing [5]. That is because there is no
efficient way to precompute and store the common sub-
expression of the programmable coefficients or to perform
real-time CSD encoding.

Distributed arithmetic (DA), since its introduction by
Peled and Liu [6], has been regarded as an efficient method
of implementing constant coefficient filters with ROM.
When DA is used for programmable filters, RAM has been
adopted to replace ROM to store the partial products [6–9].
However, RAM-based programmable filters suffer from a
lower convergence rate owing to the extra cycles needed to
update the contents of the RAM table. Besides, exponential
growth of the RAM size inhibits their use in higher-order

IEE, 2001

IEE Proceedings online no. 20010726

DOI: 10.1049=ip-cdt:20010726

Paper first received 12th October 1999 and in revised form 20th August
2001

The authors are with the Department of Electronics Engineering, National
Chiao-Tung University, 1001 Ta-Hsueh Rd., Hsinchu, Taiwan, Republic
of China
IEE Proc.-Comput. Digit. Tech., Vol. 148, No. 6, November 2001
filter designs. Hence, RAM-based DA is not well suited for
high-speed adaptive and programmable filter applications.

To implement programmable filters, a commonly used
approach is to use one multiplier and one accumulator for
each tap [1, 10]. However, the cost of multipliers is too
high to be applicable for high-order filters. A bit-level
approach such as the bit-plane technique [11] pipelines the
addition into the bit level. Although it performs at high
speed, large hardware costs and long latency make it
unsuitable for adaptive or high-order filtering applications.

In comparison, an attractive method is to encode the
input signals to reduce the multiplication complexity. The
technique of implementing the multiplier of each tap by a
modified Booth multiplier has been presented in [1, 12].
However, because of the accumulation loop in each tap, the
hardware cost of each tap is still too high. To conquer this
problem, another approach [13, 14] combined the Booth
encoding and DA formulation (called Booth DA in the rest
of the paper) to reorder the computation, such that each tap
is accumulation free and we can then reduce the hardware
cost of each tap. However, the Booth-encoding approach
is often limited to radix-3, since higher-order encoding
is often too complex to be implemented [15]. This limits
the possibility of attaining higher throughput. Besides,
although the Booth encoding circuit can be shared for all
taps, Booth selection circuits for different multiples of the
multiplicand often occupy a large area.

To reduce the implementation cost of programmable
FIR filters, we first reformulate the filter operations into
multi-bit DA representations at the algorithm level. With
this formulation, all addends will have the same weights
that can avoid long-word-length adders in each tap. Multi-
bit representation also gives a unified formulation for
higher radix architectures. Then in the architecture level,
instead of coding input signals, we use (4,2) compressors
or multiple-operand adders to reduce the partial product
levels in the architecture designs. (4,2) compressors have
been shown to be as effective as Booth encoding at
reducing the partial product level and have a smaller
hardware cost than several other methods [16–18]. A
benefit of the (4,2) compressor is that, instead of transmit-
ting the coded input along the filter chain, we can transmit
fewer original input samples, which contributes a large
delay saving.
227

2 Algorithm reformulation

Algorithm reformulation can provide a deeper insight into
finding an efficient way to implement multiplication in
filters, since the addition and multiplication in filter opera-
tions are associative. In this Section, we will present the
multi-bits DA reformulation of the filter operations. DA is
a computation reordering method that operates at the bit
level. Considering an N-tap FIR filter with input sequence
xn , output sequence yn , and coefficient ci , without loss of
generality we can express the FIR formulation with an
unsigned fraction as

yn ¼
PN�1

i¼0

cixn�i ¼
PN�1

i¼0

ci

PWx�1

j¼0

xn�i; j2
�j

 !
ð1Þ

where Wx is the word length of xn and xn�i, j denotes the jth
bit of xn�i . The DA reformulation that decomposes x into
the bit level and reorders the summations is

yn ¼
PN�1

i¼0

cixn�i ¼
PWx�1

j¼0

PN�1

i¼0

cixn�i; j

� �
2�j ð2Þ

To express the formulations as multi-bit DA expressions,
we can express xn as a dWx=Pe-digit number with a P-bit
digit dk ,

x ¼
PdWx=Pe�1

j¼0

dj2
�Pj ð3Þ

where d e denotes the smallest integer greater than or
equal to the argument. Substituting eqn. 3 into eqn. 1
228
and reordering the computation, we can obtain a similar
formulation as eqn. 2:

yn ¼
PN�1

i¼0

cixn�i ¼
PN�1

i¼0

ci

PdWx=Pe�1

j¼0

dn�i; j2
�Pj

 !

¼
PdWx=Pe�1

j¼0

PN�1

i¼0

cidn�i; j

� �
2�Pj ð4Þ

Comparing with the direct implementation, eqn. 1, DA
formulation first adds the partial products of the same
weighting and then accumulates the results. This gives a
lower word-length requirement in each tap adder. No
accumulation is required in the inner summation for the
shift-and-add operation, which gives a faster speed and
lower hardware cost. These two advantages were first
investigated in the Booth DA design [13]. However, with
the Booth encoding, extra coded input signal delays and
complex Booth encoders will offset the hardware savings
of these two advantages. In the next Section, we will
present a different architecture design to maximise the
hardware advantage.

3 Architecture design

Fig. 1 shows the proposed FIR architecture. For Booth DA
architecture, the dotted blocks are comprised of the Booth
selector and carry save adders. Table 1 shows the major
difference between the two architectures. Both designs
show a fully pipelined filter with input signals, Xin , of
Wx ¼ 8 bits and one output, Yout , every four cycles
(Wx=2¼ 4). In the proposed design, we first use the
preprocessing unit to convert bit-parallel input signals to
digit-serial input (2-bits-at-a-time in this case), then, AND
Table 1: Hardware cost of the Booth DA and the proposed method for FIR designs (coefficient storage and the final VMA
are not shown here)

Method Preprocessing
stages

Tap adders Delays

Booth
encoder

AND gate Booth
selector

full adders input sample delays
þpipeline delays

Booth DA 10 0 N� (Wxþ1)�11 (N71)� (Wcþ log2 N=2þ1)�7 (N7 1)� (1=2�Wx71)�3�8
þ (N7 1)� (Wcþ log2 Nþ 1)�2�8

Proposed
(2-bits at
a time)

0 N�Wx�2�2 0 (2N71)� (Wcþ log2 N=2þ 1)�7 (N7 1)� (1=2�Wx71)�2�8
þ (N7 1)� (Wcþ log2 Nþ 1)�2�8

Note: The gate count of a full adder, delay, AND gate are 7, 8 and 2, respectively [19]

bit-parallel to digit-serial
converter

Xin preprocessing
8 2

C0 C1 CN-2

postprocessingYout

accumulation and
vector merging adder (VMA)

W +1+log Nc 2

coefficient
storage

Cn-1

W +1c multi-operand
adder

(W /2)-1
delays

x

Fig. 1 The FIR architecture with multi-bit DA for the 2-bits at a time case, where the dotted block is a tap adder
IEE Proc.-Comput. Digit. Tech., Vol. 148, No. 6, November 2001

gates and multi-operand adders perform the inner summa-
tion of eqn. 4. Finally, all the partial products are propa-
gated through the pipeline registers and accumulated at the
final accumulator. As shown in Fig. 1, DA formulation
reduces the word length of the tap adders since each tap
adder only requires a word length of (Wc þ 1þ log2 N) bits
instead of (Wc þWx þ log2 N) bits. Besides, since each tap
adder is accumulation free, we can pipeline it.

In the Booth DA design, the partial product is generated
through a modified Booth function. The modified Booth
function is split into Booth encoder and Booth selection
circuits. The Booth encoding circuit is shared with all taps
and placed in the preprocessing circuit, which generates
‘zero’, ‘negative’ and ‘double’ signals to select different
multiples of the coefficients. The Booth selection circuit is
placed at each tap to select the proper multiples of the
coefficients, included in the dotted block. Since the Booth
encoding circuit is shared with all taps, the Booth encoded
signals (three signals: zero, negative and double) instead of
input signals (two bits at a time) have to be propagated
through the upper delay chains.

The advantage of Booth encoding is that it generates
only half of the partial product compared with other
designs without Booth encoding. However, the benefit
obtained is at the expense of increased hardware complex-
ity. Indeed, Booth encoding implementation requires the
hardware for the encoding and for the selection of the
partial products (0, Y, �Y, 2Y, �2Y).

On the other hand, reducing the number of partial
products by half can be attained by one level of AND
gates and one row of (4,2) compressors. The major advan-
tage of the use of this cell is that it allows a highly regular
layout. The 2-to-1 reductions of the (4,2) compressor cells
can also efficiently reduce the height of the partial product
tree as the Booth function, since the delay from input
operand to sum output is two XOR delays and the delay
from carry-in to all output is one XOR delay. The inter-
connection of the two full adders should be carefully
chosen such that the delay from any input to the sum
output in the (4,2) compressor is no greater than the 3 XOR
gate delays. Therefore, instead of the Booth function that
takes up more area, we use a compressor to implement the
addition. Comparing the multi-bit DA with the Booth DA,
we can find that the multi-bit DA has a simple preproces-
sing stage, fewer input sample delays and a simple tap
adder design.

4 Hardware comparisons

4.1 Comparison with the Booth DA design

The Booth DA design is a digit-serial approach. An
optimised Booth encoding circuit costs about 10 gates
count [1] and the Booth selection circuit costs 11 gates.
Therefore in the Booth DA design, the hardware items
include:

1 Booth encoder þ N Booth selectors

þ ðN � 1Þ tap adders

þ 2ðN � 1Þ delays for pipelining the tap adder path

þ input sample delays þ final VMA

þ coefficient storage

The detailed hardware items and the associated gate area
are shown in Table 1. All these area costs in this paper are
based on a 0.6 mm CMOS SPDM cell library [19]. For fair
comparison, the pipeline method of the Booth DA and the
proposed design use the cut-set retiming method to achieve
IEE Proc.-Comput. Digit. Tech., Vol. 148, No. 6, November 2001
fully pipelined designs. The sign extension of the tap
adders for both designs also use the sign-extension
method proposed in the Booth DA design.

For the proposed design, we assume two-bits-at-a-time
for equal throughput consideration. The hardware required
for this case is:

2N AND for partial product

þ ðN � 2Þ tap ð4; 2Þ compressors

þ 2ðN � 1Þ delays for pipelining the tap adder path

þ input sample delays þ final VMA

þ coefficient storage

The detailed hardware items and the associated area are
shown in Table 1.

For a more detailed observation and specific compar-
isons, Fig. 2 shows the total area ratio plot (proposed
design=Booth DA) of Table 1 for cases of 12-bit and 24-bit
word length. As shown in the Figure, the multi-bit DA
designs use less area compared with the Booth DA designs,
saving up to 17% of the area for a 4-tap case. When the tap
number grows, the hardware saving becomes less. On the
other hand, the hardware saving becomes larger as the word
length grows.

The main area saving of the multi-bit DA comes from
the input sample delays and tap adders. As shown in Table
1, since we only propagate the input sample with two-bits-
at-a-time instead of three Booth encoded signals, we can
save (N7 1)(Wx=27 1) delays. This part contributes a
10% area reduction to the proposed design. The Booth
selector also consumes more gate area than a full adder, so,
for each tap adder in the dotted block, two adders costing a
(4,2) compressor plus are input AND gate require less area
than the hardware cost of one Booth selector and an adder
in the Booth DA. This contributes to the area reduction of
(10þN� (Wx þ 1)� 117N�Wx � 47 (N7 2)�(Wc þ

log2 N=2 þ 1)� 7). The area reduction in tap adder designs
is large at small N values, but becomes smaller at large N
values. For N	 32, the area reduction of this part will be
negative, which means the area of this part will cost more
than the previous design and offset the area saving by the
input sample delays. The negative area saving is due to the
(log2 N=2) factor in the tap adder part, since we keep the
full word length of the partial result. Therefore the curve in
Fig. 2 has a sharp rise when the tap number is from 4 to 32,
but rises slowly when the tap number is greater than 32.
Although this reduction is small for the 2-bits-at-a-time
case, it will grow when we extend to higher radix designs.

1.00

ga
te

 a
re

a
ra

tio

0.98

0.96

0.94

0.92

0.90

0.88

0.86

0.84

0.82
0 100 200 300 400

taps

500 600

Fig. 2 Gate area ratio plot (the proposed method with 2-bits-at-a-

time=the Booth DA), starting from taps¼ 4 (Wx¼Wc¼ 12 bits or 24 bits

is assumed in the Figure)

–r– 12 bits –j– 24 bits
229

The delays of the two designs are comparable. For
the Booth DA with the pipeline architecture, the delay is
‘4-input MUXþANDþ FAþDFF setup time’. For
2-bits-at-a-time with the pipeline architecture, the delay
is ‘ANDþ 2� FAþDFF setup time’. Therefore both
designs can operate at the same clock rate.

4.2 Extension to higher radix designs

When extending to higher radix designs for higher
throughput, the area saving by the multi-bit DA is larger
than that at the 2-bits-at-a-time case. The overall architec-
tures of the higher radix designs are similar to those shown
in Fig. 1. However, for Booth DA designs, the high radix
designs need a high radix Booth encoding and selection
circuit and more coefficient storage for different multiples
of the coefficients. Table 2 shows the hardware cost of the
4-bit Booth DA designs and the proposed designs and
Table 3 shows the hardware cost of the 5-bit Booth DA
designs and the proposed designs. Both Tables have the
same throughput. To be more specific, Fig. 3 shows
the area ratio plots between the proposed designs and the
previous Booth DA designs. As shown in the Figure,
the area saving can be up to 30% for the p¼ 3 case and
up to 50% for the p¼ 4 case (for the 4 taps case). As the
tap number grows, the area saving will be 14% for
the p¼ 3 case and 35% for the p¼ 4 case. The sharp rise
in the area ratio curve is also due to the (log2 N) factor in
the adder part. The effect of different word lengths (coeffi-
cient or input) is quite small, as shown in Fig. 3. However,
the difference becomes larger and larger when the tap
number grows.

As stated previously, the major area difference comes
from the input sample delays and the Booth selector. When
the radix increases, the gate structure of the Booth selector
circuits becomes more and more complex and consumes
too large an area. A simpler multi-operand adders design
230
contributes a portion of the area saving. The area saving of
the input sample delays and the coefficient storage is a
major part of the area saving when the radix increases.
That is because the high radix Booth DA has to transfer the
encoded Booth signals rather than the original input
samples. In the Booth DA, the generation of odd multiples
also requires extra hardware cost. More precisely, take the
case of a filter of order N¼ 32 as an example: Table 4
shows the hardware cost. As shown in the Table, the total
area saving is 36503.5, of which 75.9% of the area
reduction is contributed by the delay savings and the
other 24.1% of the area reduction is due to the simpler
compressor structure.

0.90

g
a
te

a
re

a
ra

ti
o

(p
ro

p
o

s
e
d

/B
o

o
th

D
A

)

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45
0 100 200 300 400

taps

500 600

0.85

Fig. 3 Area ratio plot between the proposed p-bits-at-a-time and modi-

fied Booth DA methods, starting from taps¼ 4 (Wx¼Wc¼ 12 bits or 24 bits

is assumed in the Figure)

–r– 12 bits (p¼ 3)
–j– 24 bits (p¼ 3)
–m– 12 bits (p¼ 4)
–�– 24 bits (p¼ 4)
Table 2: Hardware costs of the radix-4 Booth DA and the proposed 3-bits-at-a-time method for FIR designs (final VMA is
not included here)

Method AND gate Booth encoder
and selector

Full adders Input sample delays
þpipeline delays
þ coefficient storage

Radix-4
Booth DA

0 19þN� (Wxþ2)�19 (N7 1)� (Wcþ log2 N=2þ2)�7 (N7 1)� (1=3�Wx71)�5�8
þ (N7 1)� (Wcþ log2 Nþ 2)�2�8
þN� (Wcþ 2)�2�8

3-bits at
a time

N�Wx�3�2 0 (3N75)� (Wcþ log2 N=2þ2)�7 (N7 1)� (1=3�Wx71)�3�8
þ (N7 1)� (Wcþ log2 Nþ 2)�2�8
þN�Wc�8

Table 3: Hardware costs of the radix-5 Booth DA and the proposed 4-bits-at-a-time method for FIR designs (final VMA is
not included here)

Method AND gate Booth encoder
and selector

Full adders Input sample delays
þpipeline delays
þ coefficient storage

Radix-5
Booth DA

0 39þN� (Wxþ3)�39 (N7 1)� (Wcþ log2 N=2þ3)�7 (N7 1)� (1=4�Wx71)�9�8
þ (N7 1)� (Wcþ log2 Nþ 3)�2�8
þN� (Wcþ 3)�4�8

4-bits at
a time

N�Wx�4�2 0 (4N76)� (Wcþ log2 N=2þ3)�7 (N7 1)� (1=4�Wx71)�4�8
þ (N7 1)� (Wcþ log2 Nþ 3)�2�8
þN�Wc�8
IEE Proc.-Comput. Digit. Tech., Vol. 148, No. 6, November 2001

Table 4: A hardware cost example for N¼ 32 and Wx¼Wc¼ 24 bits

Methods AND gate
(T1)

Booth
function (T2)

Full adders
(T3)

T1þT2þT3 Delays Total

Radix-5
Booth DA

0 33735 6401.5 40136.5 54680 94816.5

4-bits-at-
a-time

6144 0 25193 31337 26976 58313
As to the cycle delay of both designs, the delay of the
higher-radix Booth DA is slightly larger than that of
proposed multi-bit DA owing to the complex Booth selec-
tion circuit. The higher-radix Booth DA also requires extra
cycles to generate the odd multiples, which will lower the
overall performance.

4.3 Comparison to the bit-parallel input design

The programmable FIR filter design [2] proposed in 1997
also used Booth encoding and DA-like reformulation. In
their design, the bit serial input was expanded to a parallel
input to get enough throughputs. The proposed design can
also be expanded to a parallel input to obtain such
throughput. For an 8-tap design with 10-bit coefficient
and input samples used for one block design in [2], the
hardware cost is:

5 � 8 � 11 ðBooth encoder and selectorÞ

þ 5 � 6 ðð5; 5; 4Þ compressor ¼ 6 FAÞ

þ 5 � 11 ðð3; 2Þ compressor ¼ 1 FAÞ

þ 5 � 14 ðð4; 2Þ compressor ¼ 2 FAÞ

þ 17 ðð6; 2Þ compressor ¼ 4 FAÞ ¼ 5 � 8 � 11 � 21

þ ð5 � 6 � 6 þ 11 � 5 � 1 þ 5 � 14 � 2 þ 17 � 4Þ � 7

¼ 12341 gates

Since the design in [2] used a fully parallel input, the
Booth encoder cannot be shared for all taps like the design
in the Booth DA. The complex Booth encoder and selector
cost 9240 gates, which occupies 74.8% of the gate area.

On the other hand, if we use the proposed design for the
8-tap filters with 10-bit coefficients and input samples, the
hardware cost is

8 � 10 � 10 ðAND gatesÞ þ 10 � 6 ðð8; 2Þ compressor

¼ 10 FAÞ þ ð13 � 18 þ 18 � 3Þ ðFAÞ

¼ 8 � 10 � 10 � 2 þ ð10 � 6 � 10 þ 13 � 18

þ 18 � 3Þ � 7 ¼ 7816 gates

The proposed design saves 36.7% of the gate area
compared with the design in [2]. We do not include input
sample delays and other adder circuits since they are the
same for both designs. In this design, the main area saving
comes from the efficient high-order compressor design that
has the same function as the complex Booth-encoder
design. These high-order compressor designs can follow
the approaches in [16–18]. The only drawback of the high-
order compressor is routing irregularity. The irregularity
can be reduced by using a (4,2) compressor to construct the
high-order compressor [16–18]. When compared to bit-
parallel ones or the extended Booth DA, the proposed one
is more regular and easily controlled. As to the power and
clock distribution, these global nets can be regularly
connected in the proposed pipelined architecture. The
power consumption of the proposed design is also less
IEE Proc.-Comput. Digit. Tech., Vol. 148, No. 6, November 2001
than the other design, since the pipeline latch can eliminate
the glitch propagation through the addition chain, and the
regular compressor design also has a more balanced addi-
tion path delay.

5 Conclusion

In this paper, we propose a hardware-efficient pipelined
programmable FIR filter design that adopts two techniques:
multi-bit DA algorithm formulation and compressor archi-
tecture. Due to DA formulation and simpler structures, the
delay of the presented design can be easily pipelined to the
adder level. As a short summary, the proposed approach
has the following advantages. First, it requires less hard-
ware cost with a similar cycle time and latency (Wx=P
cycles per input) as the previous Booth DA designs.
Second, with DA formulation, it can be easily pipelined
to the fast adder level instead of the slow accumulator
level. Third, by a multi-bit parallel input, it can provide a
design trade-off between the bit-serial one and bit-parallel
ones. Fourth, by using (4,2) to construct a (p, q) compres-
sor, the layout complexity can be reduced and easily
controlled.

The hardware cost for the 2-bits-at-a-time case can be
saved by up to 17% when compared with the previous
designs using the Booth DA. This design is especially
useful when extended to a parallel input, which can save up
to 50% of the hardware cost for 4-bits-at-a-time. Compared
with previous fully parallel input designs, the present
design can save 36.7% of the area cost.

6 References

1 EDWARDS, B., CORRY, A., WESTE, N., and GREENBERG, C.: ‘A
single chip ghost canceller’. Proceedings of the IEEE 1992 Custom
Integrated Circuits Conference, 1992, pp. 26.5.1–26.5.14

2 CHOI, J.R., JANG, L.H., JUNG, S.W., and CHOI, J.H.: ‘Structured
design of a 288-tap FIR filter by optimized partial product tree compres-
sion’, IEEE J. Solid-State Circuits, 1997, 32, (3), pp. 468–476

3 PEARSON, D.J., REYNOLDS, S.K., MEGDANIS, A.C., GOWDA, S.,
WRENNER, K.R., IMMEDIATO, M., GALBRAITH, R.L., and SHIN,
H.J.: ‘Digital FIR filters for high speed PRML disk read channels’, IEEE
J. Solid-State Circuits, 1995, 30, (12), pp. 1517–1523

4 SAMUELI, H.: ‘An improved search algorithm for the design of multi-
plierless FIR filters with powers-of-two coefficients’, IEEE Trans., 1989,
CAS-36, pp. 1044–1047

5 HARTLEY, R.: ‘Subexpression sharing in filters using canonical signed
digit multipliers’, IEEE Trans., 1996, CAS-43, (10), pp. 677–688

6 PELED, A., and LIU, B.: ‘A new hardware realization of digital filters’,
IEEE Trans., 1974, ASSP-22, (6), pp. 456–462

7 WEI, C.H., and LOU, J.S.: ‘Multimemory block structure for imple-
menting a digital adaptive filter using distributed arithmetic’, IEE Proc.
G., Electron. Circuits Syst., 1986, 133, pp. 19–26

8 WHITE, S.A.: ‘Applications of distributed arithmetic to digital sequence
processing: a tutorial review’, IEEE ASSP Mag., 1989, 6, (3), pp. 5–19

9 JONES, D.L.: ‘Efficient computation of time-varying and adaptive
filters’, IEEE Trans. Signal Process., 1993, SP-41, (3), pp. 1077–1086

10 SID-AHMED, M.: ‘A systolic realization for 2-D digital filters’, IEEE
Trans., 1989, ASSP-37, pp. 560–565

11 REUVER, D., and KLAR, H.: ‘A configurable convolution chip with
programmable coefficients’, IEEE J. Solid-State Circuits, 1992, 27, (7),
pp. 1121–1123

12 MOLONEY, D., O’BRIEN, J., O’ROURKE, E., and BRIANTI, F.:
‘Low-power 200-Msps, area efficient, five-tap programmable FIR
filter’, IEEE J. Solid-State Circuits, 1998, 33, (3), pp. 1134–1138
231

13 LEE, H.-R., JEN, C.-W., and LIU, C.-M.: ‘A new hardware-efficient
architecture for programmable FIR filters’, IEEE Trans., 1996, CAS-43,
(9), pp. 637–644

14 DAWOUD, D.S.: ‘Realization of pipelined multiplier-free FIR digital
filter’. Proceedings of the IEEE 1999 Africon Conference, 1999,
pp. 335–338

15 MAC SORLEY, O.L.: ‘High speed arithmetic in binary computers’, IRE
Proc., 1961, 49, pp. 67–91

16 VILLEGER, D., and OKLOBDZIJA, V.G.: ‘Evaluation of Booth encod-
ing techniques for parallel multiplier implementation’, Electron. Lett.,
1993, 29, (23), pp. 2016–2017
232
17 SONG, P., and MICHELLI, G.D.: ‘Circuits and architecture trade-offs
for high speed multiplication’, IEEE J. Solid-State Circuits, 1991, 26,
(9), pp. 1184–1198

18 OKLOBDZIJA, V.G., VILLEGER, D., and LIU, S.S.: ‘A method for
speed optimized partial product reduction and generation of fast parallel
multipliers using an algorithmic approach’, IEEE Trans. Comput., 1996,
45, (3), pp. 294–306

19 Compass, PASSPORT library, 0.6 micron 5-volt standard cell library,
1996
IEE Proc.-Comput. Digit. Tech., Vol. 148, No. 6, November 2001

	Abstract
	1 Introduction
	2 Algorithm reformulation
	3 Architecture design
	4 Hardware comparisons
	5 Conclusion
	6 References

