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A Model-Based Fuzzy Logic Controller With Kalman
Filtering for Tracking Mean Arterial Pressure

Shing-Hong Liu and Chin-Teng Lin, Senior Member, IEEE

Abstract—This paper proposes a new noninvasive measurement
method for tracking the tendency of mean arterial pressure (MAP)
in the radial artery. The designed system consists of a tonometer, a
microsyringe device, and a model-based fuzzy logic controller. The
modified flexible diaphragm tonometer is to detect the continuous
blood pressure waveform and vessel volume pulse. A precise
mathematical model describing the interaction between the
tonometer and artery is derived. To reach accurate measurement
without distortion, a model-based fuzzy logic control system is
designed to compensate the change of MAP by applying a counter
pressure on the tonometer chamber through the microsyringe
device. The proposed control system consists of a linear predictor,
a Kalman filter, and a synthetic fuzzy logic controller (SFLC).
The linear predictor is to estimate the MAPs changing tendency
based on the identified arterial pressure–volume model and then
to beat-to-beat adjust the function of SFLC. The Kalman filter
is to reduce the physiologic and measurement disturbance of
the vessel volume oscillation amplitude (VOA). The SFLC is
composed of three parallel subcontrollers, each of which is a
simple fuzzy logic controller, for processing the three changing
states of the MAP: ascending, descending, and stabilizing states,
respectively. The design of the fuzzy rules in each subcontroller is
based on theoscillometric principlesaying that the arterial vessel
has the maximum compliance when the detected vessel volume
pulse reaches its maximum amplitude. Simulation results show
that, for the real physiologic MAP with changing rates up to 20
or 20 mm-Hg/minute, the model-based SFLC can beat-to-beat
adjust the tonometer’s chamber pressure to follow the tendency of
MAP accurately.

Index Terms—Blood pressure, compliance, oscillometry,
tonometer, vessel volume pulse.

I. INTRODUCTION

T HE MODERN technologies of noninvasively automatic
blood pressure measurement primarily include the Ko-

rotkoff and oscillometric methods. Both methods utilize an
occlusive cuff, as an external pressure source, wrapping around
a subject’s upper arm to disclose the systolic and diastolic
pressures within 30–60 s. In the oscillometric method, as the
occluding cuff pressure is gradually reduced from above sys-
tolic values to below diastolic values, occlusive cuff pressure
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oscillations or vessel volume pulses show a specific pattern
[1]–[4]. It is now generally accepted thata maximum vessel
volume pulse or occlusive cuff pressure oscillation occurs
when the occlusive cuff pressure is equal to the mean arterial
pressure(MAP) [5]–[8]. This means that the artery can be
considered to be in thegrossly unloading conditionbetween
the artery and the cuff pressure.

A variety of techniques have been proposed to noninvasively
register continuous arterial blood pressure waveform. Ya-
makoshi and others employed the vascular unloading technique
to measure the continuous blood pressure from the arteries in
fingers or heads [9]–[12]. In their instruments, there are two
types of sensors, i.e., photocouple and pizeoresister transducer,
that are used in the open loop control and the closed loop
control individually. In the open loop control, the photocouple
detected the subject’s MAP and to keep the cuff pressure equal
to the MAP. A shaker changed the cuff pressure to follow the
intra-arterial pressure in the closed loop control. Since Stein
and Blick first developed a mechanical force-sensing arterial
tonometer, various kinds of tonometer using piezoresistive
or strain gage pressure transducers have been designed to
register the blood pressure waveform in the superficial artery
[13]–[17]. These tonometric sensors may consist of an array of
these pressure transducers to detect the correct position in the
arterial vessel. But, they did not consider the problem that these
force-sensors would change vessel compliance. As a result, a
moderate accuracy was achieved when applying one of those
tonometers. Another method is photoplethysmography which
is constructed from a photocell and a light source to determine
the blood flow in a limb by the measurement of volume
changes of the limb. Therefore, it was used to detect the radial
artery filling for a rapid noninvasive measurement of arterial
opening pressure [18]. Drzewieckiet al. designed a flexible
diaphragm tonometer to simultaneously measure arterial blood
pressure waveform and vessel volume pulse with piezoresistive
pressure transducer and impedance plethysmography [19].
This tonometric sensor was also placed at the superficial artery.
Because these studies usually did not consider the coupling
condition between the sensor and the arterial vessel in long term
measurement, the accuracy of the measured blood pressure
waveform with their devices was uncertain due to not taking
the time-varying MAP into account.

Several control techniques have been implemented in the
drug syringe to maintain the patient’s MAP in the desired range
[20]–[22]. These control schemes belong to the set-point ones,
in which the plant has a target output for determining the error
signal for the controller. Moreover, most of the previous control
systems operated mainly on some mathematical models of
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patients. However, it is difficult to identify a useful and simple
mathematical model of patients due to the complexity of the
human body. Even with an available mathematical model, it is
still not easy to design a controller to meet the practical require-
ments. Recently, the fuzzy logic control (FLC) has been widely
applied in the anesthesia control and other biomedical control
[23]–[27]. One of the advantages in using the FLC is that it
can be constructed empirically without explicit mathematical
models of nonlinear physiological systems. Also, since the
FLC is based on linguistic rules, it is not difficult to establish a
measurement system with the FLC.

In order to measure the continuous blood pressure wave-
form accurately without distortion using a flexible diaphragm
tonometer, the goal of this paper is to keep the tonometer’s
mean chamber pressure close to the MAP, i.e., to keep the
grossly unloading condition, because the arterial vessel has
the maximum compliance in this condition [3], [4], [8]. Since
the MAP cannot be measured directly, we shall apply the
oscillometric principle which indicates that if the detected
vessel volume pulse can be kept at its maximum amplitude, the
grossly unloading condition can be guaranteed [8], [19]. Ac-
cording to this principle, since the vessel volume pulse can be
measured by the tonometer through the impedance method, the
control objective in our measuring system is to keep the vessel
volume pulse always at its maximum amplitude. However,
the relationship between the amplitude of the detected vessel
volume pulse and the difference of the mean chamber pressure
and the MAP (i.e., thetransmuralpressure) is nonmonotonous
quadratic-function-typed. Moreover, since the tendency of
MAP always responses to human physiological conditions, it
varies with time. Hence, when the detected vessel volume pulse
departs from the maximum amplitude, the controller has no
sense on the adjustment direction. What worse is that the real
MAP waveform itself contains a large amount of physiologic
disturbance inherently. Therefore, maintaining the grossly
unloading condition is atime-varying noisy trajectory-tracking
control problem with unmeasureable desired trajectory[28],
which is a challenging task. To solve this problem, a Kalman
filter is designed to reduce the physiologic and measurement
disturbance of the VOA, and a linear predictor is designed to
estimate the changing tendency of the MAP [29]–[33]. When
the estimated MAP is increasing, the controller should increase
the chamber pressure; otherwise, the controller should decrease
the chamber pressure such that the vessel volume pulse can
regain its maximum value. In this way, the grossly unloading
condition can be maintained stably.

According to the approach proposed in the above, the pro-
posed system for tracking the tendency of the MAP consists of
a modified tonometer, a microsyringe device, a linear predictor,
a Kalman filter, and a fuzzy controller. The tonometer can si-
multaneously measure the arterial blood pressure waveform and
vessel volume pulse, and thus, through the microsyringe de-
vice, the changed vessel volume amplitude caused by the change
of the MAP can be compensated by applying a counter pres-
sure on the tonometer chamber to maintain the maximum vessel
volume amplitude. A proposed synthetic fuzzy logic controller
(SFLC) is used to control the microsyringe. The SFLC is com-
posed of three parallel subcontrollers, each of which is a simple

fuzzy logic controller, for processing the three changing states
of the MAP: ascending, descending and stabilizing states, re-
spectively. At the same time, a model-based linear predictor is
utilized to estimate the MAPs changing tendency and trigger
a suitable subcontroller of the SFLC corresponding to the as-
cending, descending or stabilizing state of the MAP.

In order to construct a reliable predictor and testing environ-
ment, we derive a mathematical model to describe the interac-
tion between the tonometer and the artery. The continuous ar-
terial blood pressure waveform and vessel volume pulse rela-
tive to different chamber pressures can be simultaneously sim-
ulated based on this model. Using these simulated data, a non-
linear model and an autoregressive exogenous (ARX) model are
built to describe the static and dynamic arterial pressure–volume
relationship, respectively [34], [35]. Based on these models, a
MAP linear predictor is set up and tuned to beat-to-beat adjust
the function of SFLC, and a Kalman filter is constituted to re-
duce the physiologic and measurement disturbance of the VOA.
For the real physiologic MAP with changing rates up to 20 or

20 mm-Hg/min, the simulated results show the good estima-
tion capability of the model-based linear predictor that can es-
timate the tendency of MAP and adapt the SFLC well. Such
an estimation capability is rather robust to the real MAP with
the physiologic disturbance phenomenon due to the mechanism
of Kalman filter. Hence, the SFLC can successfully control the
mean chamber pressure of the tonometer to achieve the grossly
unloading coupling condition in the measuring process.

This paper is organized as follows. In Section II, the sen-
sory device and the chamber-artery model are presented. In Sec-
tion III, the model-based synthetic fuzzy logic controller is de-
signed for the proposed measurement system. In Section IV, the
practically experimental measurement for verifying the derived
mathematical model, and the simulation results of the chamber
pressure control based on the proposed measurement system
using the model-based SFLC are presented. Conclusions are
made in Section V.

II. SENSORY ANDCHAMBER PRESSURE–VOLUME MODELS

In this section, a mathematical model related to the os-
cillometry is derived to describe the interaction between the
tonometer and the artery. This model includes the mechanics
of the tonometer, the arterial pressure pulse waveform, and
the mechanics of the arterial wall. Based on this model, we
then apply the oscillometric principle to derive a mathematical
model for describing the time-variant arterial pressure–volume
relationship under the use of tonometer. With these models,
we can then design a controller to control the mean chamber
pressure to follow the tendency of MAP for the measurement
system of continuous arterial blood pressure waveform in
Section IV.

A. Mathematical Oscillometric Model of the Tonometer

An arterial tonometer with a flexible diaphragm, modified
from the previous studies [19], [36], is constructed to concur-
rently record the arterial blood pressure and the vessel volume
pulse. The designed tonometer is made mainly of plexiglass,



678 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 31, NO. 6, NOVEMBER 2001

(a) (b)

Fig. 1. (a) Dimensional view of the modified flexible diaphragm arterial
tonometer; (b) sectional view of flexible diaphragm tonometer. A, cover; B,
main frame; C, four electrodes; D, water outlet, E, flexible diaphragm.

and is miniaturized so that it could be directly placed over a su-
perficial artery, as shown in Fig. 1. The change in the chamber
pressure is continuously monitored using a pressure transducer
(NPI-12, Lucas, USA) connected to the chamber. The variation
of the vessel volume is assessed using the impedance plethys-
mography [19]. The relationship between the voltage difference,

, across the electrodes of the compartment and the volume of
the compartment, , can be expressed by

(1)

where is the current passing through the compartment,is
the resistivity of the fluid in the compartment, andis the
length. It can be found that the more the volume, the smaller
the voltage differences between the two electrodes. From Fig. 1,
we also find that the tonometer can be considered as an air
cuff bladder. Therefore, we adopted the oscillometric model
of the cuff bladder to construct the oscillometric model of the
tonometer.

Mechanics of Artery:In the blood pressure measurement,
the cuff bladder and the tonometer are placed in different
locations. Usually, the cuff bladder is utilized to detect the
deep artery, like the brachial artery. Therefore, the cuff bladder
fully makes the deformation of the vessel wall. Relatively, the
tonometer is utilized to detect the superficial artery, like the ra-
dial artery. The flexible diaphragm only deforms the part of the
vessel wall. However, since the radial bone is below the artery,
the artery can also be considered to be in the fully compressed
condition. Therefore, the vessel lumen is typically circular for
positive transmural pressure. Oppositely, when the transmural
pressure is negative, the lumen that will be compressed by the
bone and the flexible diaphragm will deviate from a circular
cross-section into an elliptical shape. This condition is like the
variation of arterial cross-section in the oscillometric method.
Therefore, in this paper, we adopt the vessel model and the
arterial pressure pulse waveform function of Drzewiecki [7]. In
the vessel model, the arterial distention follows a logarithmic
function

(2)

Fig. 2. Relationship between the chamber pressure and volume of the designed
tonometer; where the empty circles represent the first measured pressure values,
and the black circles represent the second measured pressure values.

where is the lumen area, is the transmural pressure, and
, , , and are the constants. Thus, the lumen’s radius is

(3)

A radial arterial pressure pulse, , is synthesized with the
Fourier series:

(4)

where is the heart rate, and , are the Fourier coeffi-
cients. These constants are shown in the Table I.

Tonometer Model:To derive the tonometer model, we practi-
cally perform an experiment to obtain the pressure–volume rela-
tionship of the tonometer. In the beginning, the chamber is filled
with saline from one outlet, and another outlet is used for the re-
moval of the air. Then, one outlet is closed, and the chamber
pressure is calibrated with the atmosphere pressure. We add
more saline into the chamber, and record the relative chamber
pressure until above 130 mm-Hg. Fig. 2 describes the relation-
ship between the chamber pressure and volume. According to
these results, the tonometer’s flexible diaphragm deformation
and stretch can be modeled by a linear function:

(5)

where and are the coefficients of the linear regression in
Fig. 2, is the chamber pressure, and is the chamber
volume. Then, the transmural pressure can be obtained as fol-
lows:

(6)

Radial Dynamic Model:Because the saline is uncompress-
ible, we only need to consider the vessel lumen affecting the
change of the chamber volume. Since the vessel length for mea-
surement with the tonometer is constant, the vessel volume can
be represented by a cross section. In order to calculate the lumen
area easily, the lumen is considered to be in the circular shape.
Fig. 3 shows three representative cases of relationship between
the lumen and chamber in different transmural pressures, where
the distance, , from the lumen center to flexible diaphragm
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TABLE I
CONTROL VALUES OF MODEL CONSTANTS

Fig. 3. Mechanical properties of the chamber and lumen volumes under
different transmural pressures.

is constant. In Case 1, the transmural pressure is positive, so
the lumen radius,, is greater than the distance,. Therefore,
the flexible diaphragm is a concave. We can use the geometric

method to calculate the lumen area inside the chamber. An in-
cluded angle ( AOB) is , and the chord of the arc is ,

(7)

(8)

Hence, the changed amount of chamber volume, , due to
the stretching vessel lumen is

(9)

where is the measured lumen length. In Case 2, the transmural
pressure is zero, so the lumen radius,, is equal to the distance,

, and the volume, , is zero. In Case 3, the transmural
pressure is negative, andis smaller than . Thus, the flexible
diaphragm forms a protrudent shape, like a cambered surface
with center point at and the radius being , which is
changed by the increased chamber volume and the change of
the lumen cross-section. In this condition, the width of the mea-
surement hole of the tonometer,, is constant. Therefore, the
protrudent volume of the flexible diaphragm, , can be
calculated by the geometric method

(10)

(11)

(12)

where the included angle (EO’F) is . The artery and the
tonometer are interfaced via the protrudent volume of the flex-
ible diaphragm, , whose change can be regarded as the
change of the vessel lumen. Hence, the volume is

(13)

To simulate an actual arterial blood pressure and vessel
volume change measurement procedure, the chamber volume
is increased by slowly syringing saline into the chamber. Thus,
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(a)

(b)

Fig. 4. Derivation of the static arterial pressure–volume relationship from the
proposed tonometer’s model. (a) Curve of the chamber volume in the pumping
water process; (b) distribution of the vessel volume amplitude with respect to
the chamber pressure.

the chamber volume, , is computed with both and
,

(14)

where is the initial volume of the chamber, and is
the syringe volume whose increased rate is 3 ul/s. In Table I,
we list all the constant values of the model. By relating the
tonometer chamber pressure and volume to the arterial pres-
sure and volume with (6), (9), and (13), (2), (5), and (14) can
be solved simultaneously for the tonometer chamber pressure,

, and volume, , at every instant of time. Because these
equations are nonlinear, a computer solution is obtained using
a numerical root-solving algorithm. Fig. 4 shows the simulation
results of the tonometer model. The arterial blood pressure is
preset at the MAP equal to 100 mm-Hg, systolic pressure at 121
mm-Hg, and diastolic pressure at 79 mm-Hg. Fig. 4(a) shows
the oscillometric process of chamber volume. Because the alter-
nating current amount of chamber volume is smaller than the di-
rect current amount of chamber volume, we use a second-order
high-pass filter whose cuff-off frequency locates at 0.5 Hz to
filter the direct current amount of chamber volume. All ampli-
tudes of the vessel volume pulses corresponding to each heart-
beat are extracted and plotted with respect to the chamber pres-
sure, as shown in Fig. 4(b).

B. Model of Chamber Pressure–Volume Relationship

In this section, we shall apply the oscillometric principle to
derive a nonlinear-function-type model for modeling the time-
variant arterial pressure–volume relationship under the use of
the tonometer. Since the nonlinear model cannot completely
describe the dynamic relationship between the chamber pres-
sure and the vessel volume pulse, an autoregressive exogenous
(ARX) model is further derived to model the dynamics of the
tonometer [35].

1) Nonlinear Model: Because the tendency of MAP al-
ways responses to human physiological conditions, it varies
with time. Fig. 4(b) shows that, the relationship between the

Fig. 5. Performance of the nonlinear regression model of the tonometer,
VOA(t) = VOA e , demonstrated by solid line,
where the regression coefficient is 0.993,VOA (t) is 8.85,MAP(t)
is 99.4, and� is 21.9. The dot curve shows the distribution of the vessel
volume amplitude, which is part of the curve in Fig. 4(b) around its maximum
amplitude.

chamber pressure and amplitude of vessel volume pulse is a
nonlinear function. If the blood pressure pulse is constant, the
MAP is the only time-variant variable in this function. Hence,
by the curve fitting techniques, the envelope of the vessel
volume oscillation amplitude, VOA, can be approximated by a
nonlinear time-variant function which depends on the chamber
pressure. Although, in Fig. 4(b), the envelop of VOA behaves
as an asymmetric function, we only adopt a symmetric function
to fit the envelope of VOA around its maximum amplitude to
reduce the complexity of the model. This simplified model is
good enough for our control propose since when the detected
vessel volume pulse departs from the maximum amplitude, the
controller must immediately change the chamber pressure to
regain the new maximum amplitude to follow the MAP. Thus, a
Gaussian curve which is represented by the solid line in Fig. 5
can be governed by the following equation:

(15)

where is a constant and is the maximum of VOA.
2) Dynamic Model: The relationship between the vessel

volume and transmural pressure was formulated as a static
nonlinear mapping in Section IV-B. In this section, we shall
consider the dynamic model of the vessel volume oscillation
amplitude that describes the pumping process in the coupling
condition between the chamber pressure and the arterial pres-
sure. This nonlinear black-box model can be represented by a
single-input/single-output time-variant ARX model

(16)

where denotes the discrete time step, is the residual error,
and represent the number of the model order, andand

are the time-variant coefficients of the model. From Fig. 4(a), we
find that the procedure of pumping saline into the chamber only
needs a short time, about 50 s. Hence, we assume that the evo-
lution of the MAP tendency is so slow, such that in the cycle of
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creating dynamical model, the MAP is considered as a constant
value. In this case, the time-variant ARX model will be reduced
to the time-invariant ARX model as the following equation:

(17)

We use a linear regression method to create the ARX model
[35]. The regression vector, , and the parameter vector,,
are introduced in (18) and (19), shown at the bottom of the page.
Therefore, we can rewrite (17) as a linear regression model

(20)

For each data segment, the parameter vector of the model is de-
termined using a least-squares method. Letdenote an arbitrary
estimate of the parameter vector. Then the loss function is de-
fined as

(21)

where is the beat number in the increasing pressure process,
and . An optimal estimate of the pa-
rameter vector can be found from the measurement data,

and , by minimizing the loss
function :

(22)

The order of model,, determines the complexity and accu-
racy of the model. While a too low-order model might not rep-
resent the actual dynamic system accurately, a too high-order
model might easily incorporate noise i.e., overfitting and results
in poor prediction capability. Therefore, the model validation is
required to verify that the identified model fulfills the modeling
requirements according to subjective and objective criteria of
good model approximation. In this paper, (21) is used to deter-
mine the model order. Fig. 6 shows the base 10 logarithm of the

points of the loss function values, ,
in (21) with respect to the model order number, where the solid
line corresponds to the clean VOA, and the dot line to the noisy
VOA. The figure shows that these two curves overlap closely
when the order number is below 10, and deviate gradually when
the order is increasing. This means that the model reaches a good
approximation capability at order 10, but is becoming overfit-
ting at order larger than 10. From the above analysis, the model
order chosen in our system in (17) is .

Fig. 6. Determining the optimal order of the ARX model, where solid line
represents the base 10 logarithm of theN � l points of loss function values
in (21) without disturbance; dot line represents the corresponding loss function
values with disturbance.

III. M ODEL-BASED SYNTHETIC FUZZY LOGIC

CONTROL (SFLC)

In normal control systems, the difference between the mea-
sured output and the desired output is used as the feedback
to the controller, controlling the plant to achieve the level of
the desired output [21], [23], [24], the so-called “set-point con-
trol”. According to the optimal coupling condition and the os-
cillometric principle mentioned in Section II, since the vessel
volume pulse can be measured by the tonometer, the goal of
our controller is to keep the vessel volume pulse at its max-
imum amplitude. An obvious dilemma to this control goal is
that the maximum amplitude to be reached ischanging from
time to time and is unknown in advance. Hence, what we meet
is the time-varying trajectory tracking control problem with un-
known desired trajectory. From Fig. 5, if the chamber pressure is
greater or lower than the present MAP, the amplitude of vessel
volume pulse will become smaller than the maximum. More-
over, since how the subject’s MAP varies in each heartbeat and
whether the tendency of MAP is in the ascending or descending
state are unknown, the controller cannot utilize the difference
information to regulate the chamber pressure. What worse is
that the real MAP waveform itself contains a large amount of
physiologic disturbance inherently. Therefore, in this section,
a Kalman filter is used to reduce the physiologic disturbance
of MAP, and a model-based synthetic fuzzy logic controller
(SFLC) is designed to control the chamber pressure. The model-
based SFLC consists of the SFLC and a model-based linear pre-
dictor. The SFLC can control the measurement system under
three different changing states of the MAP, and the model-based
linear predictor can estimate the MAPs changing tendency to
adjust the SFLC properly.

A. Kalman Filter

In designing a controller to beat-to-beat adjust the chamber
pressure following the MAP, two disturbance factors should be

(18)

(19)
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considered. First, the MAP is not a constant in each beat, al-
though it still maintains in a physiologically stabilized state.
The other is the quiver of the measured hand in the measure-
ment process. To overcome these disturbances, we consider the
measurement of VOA as a state-estimation problem and perform
the recursive estimation of the state with the aid of the Kalman
filter [29], [37]. For this, we need to prepare our model in the
state-space form consisting of two jointed linear equations: the
state equation and the observation equation. More precisely, we
rewrite the ARX model in (17) as follows:

(23)

(24)

where the state is , the
input vector is , the mea-
surement errors are , , and the system matrices are

...
...

... (25)

...
...

... (26)

(27)

We will make the assumption that the covariances of the state
and observation processes are diagonal and time invariant, i.e.,

.
Based on the model output and the previous signal mea-

surement, the optimal mean square error estimate
of [38]. According to the Kalman filter theory, the
system state can be recursively estimated by

(28)

where the gain is obtained by Kalman recursion:

(29)

(30)

(31)

where denotes the pseudo-inverse. Using the above equa-
tions, an estimated can be obtained after
each observation of , and the respective chamber pres-
sure, , can be calculated via (28)–(31).

B. Model-Based Linear Predictor

In Section III-A, we have derived the chamber-artery non-
linear time-variant model of tonometer in (15). This model is
used here to identify the varying situations of the MAP [35].
The goal is to predict the changing tendency of the MAP; i.e.,
to identify whether the MAP is in ascending, stabilization, or de-
scending state. To achieve this goal, we shall design a linear pre-

dictor to predict the value of MAP at the time step, ,

such that the difference between the corresponding

Fig. 7. Block diagram of the closed-loop chamber pressure control of the
proposed measurement system.

and the real is minimum. In other words, the least
square criterion for tuning the linear predictor based on the time

sample is

(32)

where is the estimated amplitude by the Kalman

filter when the model’s parameter is , and

is the prediction error.
Taking the gradient of the optimization criterion in (32) can do
the least criterion

(33)
Therefore, the recursive linear predictor using the gradient is
described by

(34)

where is the constant gain. Here, we use the gradient of

as the decision value. If a decision value falls within
a threshold region, it means that the present MAP is in a stable
state. Thus, the decision maker will trigger the Stabilizing
FLC in the SFLC to keep the chamber pressure. However, if a
decision value is beyond the threshold region, it implies that the
MAP is ascending or descending now, so the decision maker
will activate either the Ascending FLC or Descending FLC in
the SFLC.

C. Synthetic Fuzzy Logic Controller (SFLC)

Fig. 7 shows the block diagram of the close-loop chamber
pressure control of the proposed measurement system. The
whole system consists of a SFLC, a Kalman filter used to
reduce the disturbances that are produced by the MAP’s
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Fig. 8. Structure of the proposed synthetic fuzzy logic controller (SFLC)
that includes the ascending, descending, and stabilizing subcontrollers, and a
decision maker.

physical phenomenon and the environmental effect, a linear
predictor used to adjust the SFLC, a microsyringe device used
to change the chamber pressure of the tonometer, and proper
disturbance added to the simulation model to create a more
realistic control environment. The tendency of the MAP is
quite stable in normal situations, but it is likely that a great
change in MAP occurs due to blood pressure-related diseases
or other intervention. In accordance with these reasons, the
designed SFLC is composed of three parallel subcontrollers,
i.e., the Ascending FLC, Stabilizing FLC, and Descending
FLC, as shown in Fig. 8. A decision maker enables one of the
three subcontrollers based on the estimation result of the linear
predictor that is used to beat-to-beat estimate the changing
tendency of MAP.

In the beginning, we create the nonlinear model and dynamic
model of the chamber pressure–volume, then adapt the chamber
pressure until the oscillation amplitude of vessel volume reaches
its maximum . The measured and the related
chamber pressure, , pass the Kalman filter to obtain the

more truthful estimated . It will be used to estimate
the rough tendency of the MAP by the linear prediction. At the
same time, it is also normalized and used as the SFLCs input.
The SFLC designed here requires three input variables. They
are the current and preceding estimated normalized oscillation
amplitude of vessel volume, and , and the
amount of change in the chamber pressure, . The output
of the SFLC, , is used to trigger the microsyringe
device, modulating the chamber pressure. Here, and
indicate the preceding and the next sampling time of, respec-
tively.

The three parallel subcontrollers in the SFLC possess the sim-
ilar fuzzifiers and defuzzifiers, but have different rule bases.
In either of the Ascending and Descending FLCs, the fuzzy
term set for is composed of nine membership func-
tions: much push (MP), moderately push (DP), little push (LP),
very little push (VLP), zero (Z), very little draw (VLD), little
draw (LD), moderately draw (DD), and much draw (MD). These
fuzzy terms are defined by means of triangular functions in the

subset of real numbers. The current or preceding

estimated normalized oscillation amplitude of vessel volume,
or , determines the degree of the coupling

between the vessel’s side and the tonometer’s side with five
membership functions, defined in the [0.954 1] subset of real
numbers: BEST, BETTER, GOOD, WORSE, and WORST. In
the Stabilizing FLC, the fuzzy terms of are defined in

, and those of and are defined
in [0.972 1].

The representative fuzzy rules for the Ascending, De-
scending, and Stabilizing FLCs are as follows, respectively:

THE ASCENDING FLC:
WHEN is Z,

IF is BETTER and is BEST,
THEN is VLP.

THE DESCENDING FLC:
WHEN is Z,

IF is BETTER and is BEST,
THEN is VLD.

THE STABILIZING FLC:
WHEN is VLD,

IF is GOOD and is BETTER,
THEN is VLP.

The meaning of the above rules is explained as follows. If
a smaller is yielded, the Ascending FLC will trigger
the microsyringe device to elevate the chamber pressure since
the Ascending FLC is activated by the decision maker when
the MAP is in the ascending state, i.e., in the direction of ap-
proaching its maximum. On the contrary, if a smaller is
observed, the Descending FLC will decrease the chamber pres-
sure, since the Descending FLC is activated when the MAP is
in the descending state, i.e., in the direction of departing from
its maximum. Therefore, the functions of the rules in the As-
cending FLC are opposite to those in the Descending FLC. In
the above fuzzy rule of the Stabilizing FLC, if the chamber pres-
sure is increased at time, and an attenuated amount of

is found to be larger than that of , then this control
action is incorrect. Thus, it is required to trigger the microsy-
ringe device to reduce the chamber pressure at the next time
step, . Basically, the rule structure of the Stabilizing FLC
is itself symmetric.

The individual-rule-based inference process is supervised
by computing the degree of match between the fuzzified
input values and the fuzzy sets describing the meaning of the
rule-antecedent, as described in the rule set. The Mamdani’s
max-min operator [39] is used to find the possibility distribution
function. The technique of ’center of area’ is used to process
the defuzzification and to calculate the output, , of
the controllers.

IV. EXPERIMENT AND SIMULATION RESULTS

A. Experiment Process

In this section, we practically use the designed tonometer to
measure one subject (male, 22 years, systolic/diastolic/mean
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(a)

(b)

Fig. 9. Derivation of the static arterial pressure–volume relationship from a
test subject. (a) Curve of the vessel volume pulse versus the chamber pressure;
(b) distribution of the vessel volume amplitude with respect to the chamber
pressure.

pressure being 112/76/89 mm-Hg) with normotension, and
record the vessel volume amplitudes corresponding to different
chamber pressures. From this experiment, we can check the
validity of the mathematical oscillometric model of tonometer
derived in Section II-A. The modified tonometer was placed
over the radial artery of the subject and fixed with elastic
bandage. The chamber pressure of the tonometer was gradually
increased up to 160 mm-Hg, at a rate of 3 mm-Hg/s by means of
the controlled microsyringe device. A period of 30-s measured
signal of the chamber pressure and vessel volume pulse was
digitized with a sampling frequency of 100 Hz and recorded
using the A/D card (ADVANTEC PCL 818 LG) based on
Pentium 133 personal computer. Fig. 9 shows the static arterial
pressure–volume relationship. Fig. 9(a) shows the curve of
the vessel volume pulses yielded by high-pass filtering the
original measured signal of vessel volume. All amplitudes of
the vessel volume pulses corresponding to each heartbeat are
extracted and plotted with respect to the chamber pressure, as
shown in Fig. 9(b). It can be seen that a peak occurs when the
chamber pressure is close to the MAP. It is observed that the
oscillometric phenomenon showing Fig. 9(b) is very close to
that in Fig. 4(b), meaning that the mathematical oscillometric
model of tonometer describes the practical system very well.

B. Simulation Results

Based on the data obtained in the above, we modeled the ar-
terial pressure–volume relationship by (15), in which the value

is 8.85, is 21.9 mm-Hg, and the MAP is 100 mm-Hg.
In order to test the generalization capability of the SFLC, the
chamber pressure was controlled to follow the desired MAP
with a changing rate of 20 mm-Hg/min. In the linear pre-
dictor of our control system, the threshold region was chosen
to be 0.1 mm-Hg through trial-and-error testing to obtain the

(a)

(b)

(c)

(d)

Fig. 10. Simulation results of the SFLC with a model-based linear predictor
and a Kalman filter for tracking the tendency of MAP with a changing rate of
20 mm-Hg/min. (a) The desired MAP values with disturbance (solid line) and
the chamber pressure(P (t)) under control (dot line); (b) the tracking error
between the desired MAP andP (t); (c) the SFLCs output signals; (d) the

VOA(t) values (circle) andVOA(t) values (empty circle).

best performance of the SFLC. In our simulations, the rate of
the added disturbance to the variation of MAP in each heartbeat
was set at about 1 mm-Hg.

Fig. 10 shows the control performance of the SFLC with
a Kalman filter and a linear predictor, where the MAP is as-
cending and the changing rate is about 20 mm-Hg per minute.
The chamber pressure under the SFLC control as well as the de-
sired tendency of the MAP is shown in Fig. 10(a). It is observed
that the chamber pressure follows the desired tendency of the
MAP closely. To see the control performance more precisely,
Fig. 10(b) shows the difference between the actual chamber
pressure and the desired MAP. It is found that the tracking error
is kept within a fixed amount that is about 3 mm-Hg when the
MAP is ascending. When the tendency of the MAP becomes in-
creasing, the controller has a transient duration with large error.
The SFLC output signals are shown in Fig. 10(c). The SFLC
output signals usually keep the pressure values positive in the
ascending process. The SFLC produces only small positive or
negative output signals to keep the vessel volume at its max-
imum in the stabilizing state. Fig. 10(d) shows the performance

of the Kalman filter. We can find that the variation of
is smaller than that of , showing that, the Kalman filter
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(a)

(b)

(c)

(d)

Fig. 11. Simulation results of the SFLC with a model-based linear predictor
and a Kalman filter for tracking the tendency of MAP with a changing rate of
�20 mm-Hg/min. (a) The desired MAP values with disturbance (solid line)
and the chamber pressure(P (t)) under control (dot line); (b) the tracking
error between the desired MAP andP (t); (c) the SFLCs output signals; (d)

theVOA(t) values (circle) andVOA(t) values (empty circle).

is an efficient method to reduce the interference caused by the
internal or external disturbance. Fig. 11 shows the control per-
formance of the SFLC when the MAP is descending and the
changing rate is about 20 mm-Hg per minute. From Fig. 11(b),
we find that the tracking error is about 5 mm-Hg in the de-
scending segment, but in the stabilizing state, the tracking error
is only about 2 mm-Hg. There are two reasons for this larger
tracking error. First, the fuzzy inference in SFLC is designed to
firstly guess the ascending state, so if the guess is wrong, it will
then try the against direction. Second, the parameterin (15) is
large, but the error of the normalized amplitude of vessel volume
pulse is only about . Therefore, when the tracking error is
decreased to about 2 mm Hg, the controller will not adjust the
chamber pressure. Hence, if we can increase the resolution of
the fuzzy term sets of and , the tracking
error is expected to be further reduced.

V. CONCLUSIONS

The results obtained in this study clearly indicate that the
tonometric oscillometry with the impedance plethysmography
permits the accurate identification of the MAP when it makes
a large change due to blood pressure-related diseases or other
intervention. This method, unlike another conventional con-

tinuous blood pressure measurement, is designed to measure
blood pressure by detecting arterial volume pulsation and
making a grossly unloading condition between the artery and
the tonometer. Yamakoshiet al. did consider the unloading
problem [9]–[12], but they didn’t determine this condition when
the MAP had a large amount of change on a danger illness. The
conventional tonometers used only one transducer in the mea-
surement [13]–[17], so they could not process the unloading
problem. Drzewiecki designed a flexible diaphragm tonometer
that used two sensors, including impedance plethysmography
and pizeoresister transducer [19]. Because their goal was to
measure the arterial vessel compliance, their system didn’t
have a controller to maintain the grossly unloading condition.

According above comparisons, this paper proposes the use
of fuzzy logic control, called model-based synthetic fuzzy logic
controller (SFLC), for achieving the grossly unloading condi-
tion in the noninvasive blood pressure measurement. The char-
acteristics of the tonometer’s mechanism have been analyzed
to successfully simulate the changing situation of the chamber
pressure and volume. The simulated data describing the contin-
uous chamber pressure and changing volume waveforms were
used to derive a nonlinear model and a dynamic model. In the
nonlinear model, by applying the curve-fitting technique on the
experiment data, a Gaussian function was adopted to model
the relationship of the oscillation amplitude of vessel volume
to the transmural pressure. Based on this model, a linear pre-
dictor was set up to estimate the MAP trajectory in each heart-
beat, and the estimated results were feedback to the SFLC for
choosing a proper subcontroller. In the dynamic model, we used
the linear regression method to build an ARX model repre-
senting the dynamic relationship between the vessel volume
oscillation amplitude and chamber pressure. A Kalman filter

was used to estimate with the measured and
. This filter greatly reduced the disturbance to .

The simulation results showed that the SFLC with three parallel
subcontrollers and a model-based linear predictor was capable
of precisely controlling the chamber pressure to closely follow
the time-varying tendency of the MAP. Since the whole control
process is rather time efficient, the proposed control system can
beat-to-beat control the chamber pressure in real time. Further
clinical testing is needed to verify these conclusions practically.
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