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ELASTIC CONSTANTS IDENTIFICATION OF SHEAR DEFORMABLE

LAMINATED COMPOSITE PLATES

By W. T. Wang1 and T. Y. Kam2

ABSTRACT: A constrained minimization method is presented for the identification of elastic constants of shear
deformable laminated composite plates. Strains and/or displacements obtained from static testing of laminated
composite plates are used in the proposed method to identify the elastic constants of the plates. In the identifi-
cation process, the trial elastic constants of a laminated composite plate are used in a finite-element analysis to
predict the strains and displacements of the plate. An error function is established to measure the differences
between the experimental and theoretical predictions of strains and/or displacements. A constrained minimization
technique is used to minimize the error function and update the trial elastic constants. The best estimates of the
elastic constants of the plate are then determined by subsequently reducing the size of the feasible region of the
elastic constants and making the error function a global minimum. The accuracy and applications of the proposed
method are demonstrated by means of a number of examples. A sensitivity analysis is also performed to study
the effects of variations of experimental data on the accuracy of the identified elastic constants.
INTRODUCTION

The extensive use of composite laminates in the fabrication
of high-performance structural systems has made the reliability
of composite laminates an important topic of research. To en-
sure high reliability of the composite structural systems, the
actual behaviors of the constituted laminated composite parts
in service must be accurately predicted and carefully moni-
tored. The attainment of the actual behavioral predictions of
the structures depends on the correctness of the elastic con-
stants of the composite laminates. It is well known that there
are many methods for manufacturing laminated composite
components (Lubin 1982; Schwartz 1983), and different man-
ufacturing or curing processes may produce different mechan-
ical properties for the components. Furthermore, the material
properties determined from standard specimens tested in the
laboratory may deviate significantly from those of actual lam-
inated composite components manufactured in the factory. On
the other hand, laminated composite structures subjected to
dynamic loads or operated in severe environments may ex-
perience progressive stiffness reduction or material degrada-
tion, which will finally lead to the failure of the structures. It
is easy to perceive that accurate determination of current stiff-
ness or material properties of a laminated composite structure
can help prevent sudden failure of the structure. In the past
two decades, a number of nondestructive evaluation tech-
niques have been proposed for the determination of material
properties of laminated composite parts (Bar-Cohen 1986).
Nevertheless, these techniques have their own limitations or
specific difficulties in the identification of elastic constants,
especially for composite materials when in use. On the other
hand, a number of researchers have presented methods to iden-
tify or improve the analytical system matrices of a structure
using vibration test data. For instance, Berman and Nagy
(1993) developed a method that used measured normal modes
and natural frequencies to improve an analytical mass and
stiffness matrix model of a structure. Their method could find
minimum changes in the analytical model to make it agree
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exactly with the set of measured modes and frequencies. Kam
and his associates (Kam and Lee 1994; Kam and Liu 1998)
developed methods to identify the element bending stiffnesses
of beam structures using measured natural frequencies and
mode shapes or displacements alone. Recently, a number of
researchers used 12–16 experimental eigenfrequencies to
identify elastic properties of laminated composites (Wilde and
Sol 1987; Mota Soars et al. 1993; Ip et al. 1998; Rikards et
al. 1999). Since larger errors may be obtained in the measure-
ment of higher frequencies, the use of over 10 eigenfrequen-
cies in the elastic constants identification has thus made the
accuracy as well as the efficiency of the previously proposed
identification method questionable.

In this paper, a constrained minimization method is pre-
sented for the identification of elastic constants of shear de-
formable laminated composite plates. A shear deformable fi-
nite element is used to predict the deformations of the
laminated composite plates. Strains and displacements at sev-
eral points on the laminated composite plates are measured in
the static tests of the plates. An error function is established
to measure the sum of the differences between the experi-
mental and theoretical predictions of the deformations of the
laminated composite plates. The identification of elastic con-
stants is then formulated as a constrained minimization prob-
lem in which the elastic constants are determined by making
the error function a global minimum. A bounding technique is
used to reduce the size of the feasible region for the trial elastic
constants subsequently during the minimization process to im-
prove the convergence rate of the solution. The accuracy and
applications of the proposed method are demonstrated by
means of several examples. Finally, a sensitivity analysis is
proposed to investigate the variations of identified elastic con-
stants induced by those of experimental data.

ANALYSIS OF SHEAR DEFORMABLE LAMINATED
COMPOSITE PLATE

Consider a rectangular plate of area a 3 b and constant
thickness h subject to transverse load p(x, y), as shown in Fig.
1. The plate is composed of a finite number of layer groups
in which each layer group contains several orthotropic layers
of the same fiber angle and uniform thickness. The x- and y-
coordinates of the plate are taken in the midplane of the plate.
The displacement field is assumed to be of the form

u (x, y, z) = u (x, y) 1 z ?c (x, y) (1a)1 0 x

u (x, y, z) = v (x, y) 1 z ?c (x, y); u (x, y, z) = w(x, y) (1b,c)2 0 y 3
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FIG. 1. Laminated Composite Plate: (a) Loading Condition; (b) Boun-
dary Condition

where u1, u2, and u3 = displacements in the x-, y-, and z-di-
rections, respectively; u0, v0, and w = associated midplane dis-
placements; and cx and cy = shear rotations.

The constitutive equations of a shear deformable laminated
composite plate can be written as (Ochoa and Reddy 1992)

N A A 0 0 A B B B u1 11 12 16 11 12 16 0,x

N A A 0 0 A B B B v2 12 22 26 12 22 26 0, y

Q 0 0 A A 0 0 0 0 w 1 cy 44 45 , y y

Q 0 0 A A 0 0 0 0 w 1 cx 45 55 ,x x= ?
N A A 0 0 A B B B u 1 v6 16 26 66 16 26 66 0, y 0,x

M B B 0 0 B D D D c1 11 12 16 11 12 16 x ,x

M B B 0 0 B D D D c2 12 22 26 12 22 26 y ,y

M B B 0 0 B D D D c 1 c6 16 26 66 16 26 66 x ,y y ,x

(2)

where N1, N2, . . . , M6 = stress resultants; Ai j , Bi j , and Di j =
material components; and the comma preceding a subscript
denotes the partial derivative with respect to the subscript. The
material components are given by

h /2

(m) 2(A , B , D ) = Q (1, z, z ) dz i, j = 1, 2, 6 (3a)ij ij ij ijE
2h/2

h /2

(m)¯¯ A = Q dz i, j = 4, 5; a = 6 2 i; g = 6 2 jA ,A = k ?k ? ij ijij Eij a g

2h/2

(3b)

The stiffness coefficients depend on the material proper-(m)Qij

ties and orientation of the mth layer group. For a layer with
zero fiber angle, the stiffness coefficients are expressed as

E n E1 12 2
Q = ; Q = = Q (4a,b)11 12 211 2 n n 1 2 n n12 21 12 21
1118 / JOURNAL OF ENGINEERING MECHANICS / NOVEMBER 2001
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E2
Q = ; Q = G ; Q = G = Q (4c–e)22 44 23 55 12 661 2 n n12 21

with

n n12 21=
E E1 2

where E1 and E2 = Young’s moduli in the fiber and matrix
directions, respectively; ni j = Poisson’s ratio for transverse
strain in the jth direction when stressed in the ith direction;
and G23 and G12 = shear moduli in the 2-3 and 1-2 planes,
respectively. The parameters ki are shear correction factors that
are determined using the expressions given by Whitney
(1973). In the plate analysis, the shear deformable finite ele-
ment developed by Kam and Chang (1993) is adopted to eval-
uate the deformation of the plate. The element contains five
degrees of freedom (three displacements and two slopes, i.e.,
shear rotations) per node. In the evaluation of the element
stiffness matrix, a quadratic element of a serendipity family
and the reduced integration are used. The accuracy of the el-
ement in predicting strains and displacements has been verified
by the theoretical and experimental results available in the lit-
erature (Kam et al. 1996; Kam and Lai 1999). It has also been
found that the use of a 6 3 6 mesh over the plate can yield
very good results. In the following identification of material
constants, normal strains (εx, εy) and deflection w at some par-
ticular points on a plate are defined as deformational param-
eters.

IDENTIFICATION OF ELASTIC CONSTANTS

The problem of elastic constants identification of a shear
deformable laminated composite plate is formulated as a min-
imization problem. In mathematical form it is stated as

tMinimize e(x) = (D*) (D*)

L USubject to x # x # x i = 1, . . . , 5 (5)i i i

where x = [E1, E2, G12, G23, n12] = material constants; D* = N
3 1 vector containing the differences between the measured
and predicted values of the deformational parameters; e(x) =
error function measuring the sum of differences between the
predicted and measured data; and = lower and upperL Ux and xi i

bounds of the material constants. It is noted that the lower and
upper bounds of the material constants are chosen in such a
way that the lower bound of E1 is larger than the upper bounds
of E2, G23, and G12. The elements in D* are expressed as

D 2 Dpi mi*D = i = 1, . . . , N (6)i
Dmi

where Dpi and Dmi = predicted and measured values of the
deformational parameters, respectively. It is noted that the er-
ror function in (5) may produce a number of local minima in
the feasible region. Therefore, the above minimization prob-
lem cannot be solved by merely using any of the conventional
local minimization algorithms. Another difficulty one may en-
counter in solving the above minimization problem is the dom-
inance of E1 over the search direction during the minimization
process. Since E1 is much larger than the other elastic con-
stants, it will force the search to converge to a solution that
can only produce a good estimate of E1. To overcome the
above difficulties, a global minimization method together with
a normalization technique are used to solve the problem of
(5). The above problem of (5) is first converted into an un-
constrained minimization problem by creating the following
general augmented Lagrangian (Vanderplaats 1984):

5

2 2¯ ˜C(x, m, h, r ) = e(x) 1 [m z 1 r z 1 h f 1 r f ] (7)p j j p j j j p jO
j=1
.127:1117-1123.
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with

2mj U˜ ˜ ˜ ˜z = max g (x ), ; g (x ) = x 2 x # 0 (8a,b)j j j j j j jF G2rp

2h j˜f = max H (x ), (8c)j j jF G2rp

L˜ ˜ ˜H (x ) = x 2 x # 0 j = 1, . . . , 5 (8d )j j j j

where mj , h j , and rp = multipliers; max[*, *] takes on the
maximum value of the numbers in the brackets = modifiedx̃i

design variables; and = modified lower and upperL U˜ ˜x and xi i

bounds of the modified design variables, respectively. The
modified design variables are defined asx̃

E E G G1 2 12 23x̃ = , , , , n (9)12F Ga a a a1 2 3 4

where ai = normalization factors. The normalization factors
are chosen in such a way that the differences among the mod-
ified design variables are <10 and the value of is larger thanx̃1

those of the other modified design variables. Unsatisfactory
results may be obtained if the above rule for selecting the
values of the normalization factors is violated. It is noted that
the modified design variables are only used in the minimi-x̃
zation algorithm while the original design variables x are used
in the finite-element analysis of the plate. The update formulas
for the multipliers mj , h j , and rp given in the literature (Van-
derplaats 1984) are

n11 n n n n11 n n nm = m 1 2r z ; h = h 1 2r f j = 1, . . . , 5 (10a,b)j j p j j j p j

n n11 maxg r if r < r0 p j pn11r = (10c)j H max n11 maxr if r $ rp j p

where the superscript n denotes iteration number; g0 = con-
stant; and = maximum value of rp. From experience, themaxrp

parameters are chosen as0 0 0 maxm , h , r , g , and rj j p 0 p

0 0m = 1.0, h = 1.0 j = 1, . . . , 5 (11a)j j
J. Eng. Mech. 2001
0 maxr = 0.4, g = 1.25, r = 100 (11b)p 0 p

It is noted that slight variations in the values of the parameters
in the above equation do not have significant effects on the
convergence of the solution.

The constrained minimization problem of (7) has thus be-
come the solution of the following unconstrained optimization
problem:

¯ ˜Minimize C(x, m, h, r ) (12)p

The above unconstrained optimization problem is to be
solved using a two-stage multistart global optimization algo-
rithm. In the adopted optimization algorithm, the objective
function of (12) is treated as the potential energy of a traveling
particle, and the search trajectories for locating the global min-
imum are derived from the equation of motion of the particle
in a conservative force field (Snyman and Fatti 1987). The
design variables (i.e., elastic constants) that make the potential
energy of the particle (i.e., objective function) the global min-
imum constitute the solution of the problem. At the first stage
of the optimization process, the side constraints in (5) are ob-
served and a series of starting points for the design variables
of (9) are selected at random from the region of interest. The
lowest local minimum along the search trajectory initiated
from each starting point is determined and recorded. A Bay-
esian argument is then used to establish the probability of the
current overall minimum value of the objective function being
the global minimum, given the number of starts and the num-
ber of times this value has been achieved. The multistart op-
timization procedure at this stage is terminated when two con-
ditions are met, i.e., a target probability, typically 0.67, has
been exceeded, and the value of the error function is <1028.
The estimates of the global optimal values of the design var-
iables obtained at this stage are defined as (i = 1, . . . , 5).*x̃ i

When comparing the estimates of the elastic constants ob-
tained at this stage with their true values, it has been observed
that the error for the estimate of E1 is <2%, those for the
estimates of E2 and G12 are <5%, and those for the estimates
of G23 and n12 are <10%. Further improvement of the accuracy
FIG. 2. Schematic Description of Experimental Setup
JOURNAL OF ENGINEERING MECHANICS / NOVEMBER 2001 / 1119
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FIG. 3. Locations on Laminated Plates for Measurements of Displace-
ments and Strains: (a) Square Plate (a/b = 1); (b) Rectangular Plate (a/b
= 2)

of the solution can be achieved by performing the second-stage
optimization process. At the second stage, the modified lower
and upper bounds of the modified design variables in (8) are
selected as

L U* * * *˜ ˜ ˜ ˜ ˜ ˜x = x 2 b x ; x = x 1 b x (13a,b)i i i i i i i i

The correction factors bi (i = 1, . . . , 5) may have different
values. In general, b1 is in the range from 0.05 to 1.0, b2 and
b3 are in the range from 0.1 to 1.0, and b4 and b5 are in the
range from 0.2 to 1.0. It is noted that at this stage of optimi-
zation the magnitudes of the correction factors only have slight
effects on the convergence rate of the final solution. In general,
the adoption of smaller values for bi (i = 1, . . . , 5) can make
the solution converge faster. The multistart global minimiza-
tion algorithm is again used to solve the minimization problem
of (12) with the inclusion of the side constraints in (13). The
multistart optimization procedure is terminated once a target
probability, typically 0.99, has been exceeded. In general,
when the conditions of (13) are observed, the global optimum
can be determined in a very efficient way.

EXPERIMENTAL INVESTIGATION

The composite materials under consideration are T300/2500
graphite/epoxy produced by Torayca Co., Japan. The proper-
ties of the graphite/epoxy material are first determined exper-
imentally in accordance with the relevant ASTM (1990) spec-
ifications. Each material constant was determined from tests
using five specimens. The mean values and coefficients of var-
iation of the experimentally determined material constants are
given as
1120 / JOURNAL OF ENGINEERING MECHANICS / NOVEMBER 2001
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E = 124.68 GPa (2.75%), E = 9.6 GPa (3.24%),1 2

G = 8.64 GPa (2.8%), G = 2.32 GPa (6.82%),12 23

n = 0.33 (5.1%)12 (14)

where the values in parentheses denote coefficients of varia-
tion.

For experimental investigation, a number of symmetric
rectangular laminates, namely and[457 /07 /2457 /07 /457]2 3 2 3 2 s

of dimensions 14 3 14 cm or 14 3 9 cm[07 /907 /07 /907]2 2 2 2 s

were manufactured and subjected to static tests in accordance
with the test procedure described in the literature (Kam and
Lai 1999). The lamina thickness for the laminated plates is
0.125 mm. A schematic description of the experimental setup
is shown in Fig. 2, in which the laminate is clamped at all
edges and the actual dimensions of the laminate are either 10
3 10 cm or 10 3 5 cm. The laminated plates were subjected
to two types of loadings, namely a center point load or a uni-
formly distributed load. A number of displacement transducers
(LVDT) and strain gauges were placed beneath the bottom
surface of the laminate for measuring the deformational pa-
rameters of the laminate. The load-displacement and load-
strain curves of the laminates were constructed using the data
measured from the displacement transducers (LVDT) and
strain gauges, respectively. Each laminate was repeatedly
tested six times and six readings were recorded for each de-
formational parameter. The mean values of the deformational
parameters are then used in the present method to determine
the elastic constants of the laminates. It is noted that the co-
efficients of variation of the measured deformational param-
eters are <3%. The points on the bottom surfaces of the lam-
inated plates at which the displacements and strains were
measured are shown in Fig. 3.

SENSITIVITY ANALYSIS

The existence of noise in experimental data is inevitable. It
is therefore, likely that the measured deformation parameters
may deviate from the true values for the laminated composite
plates of which the elastic constants are to be identified.
Herein, an approximate analysis in the field of probability
(Benjamin and Cornell 1970) is used to investigate the effects
of the variations in measured deformational parameters on the
accuracy of the identified elastic constants. The deformational
parameters are assumed to be measured independently and
they can thus be treated as independent random variables. Let

be the expected value and standard deviation pair of¯(Y , s )i Yi

measured deformational parameter Yi. The elastic constants
can then be expressed as

x = G (Y) i = 1, . . . , 5 (15)i i

where Y = row vector containing the measured deformational
parameters. The expansion of xi at the mean values of the
measured deformational parameters in a truncated Taylor se-
ries gives

n
­Gi¯ ¯x > G (Y) 1 (Y 2 Y ) (16)i i k kO U
­Y ¯kk=1 Y

where n = number of deformational parameters; and standsȲ
for the collection of the expected values of all measured defor-
mation parameters. It is noted that the gradients are¯(­G /­Y )ui k Y

evaluated at the mean values of the measured deformational
parameters. The above minimization method can provide the
gradients ­Yk/­Gi, which can be used to determine the gradi-
ents ­Gi/­Yk via the following relations:
.127:1117-1123.
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­G 1i = i = 1, . . . , 5; k = 1, . . . , n (17)
­Y ­Yk k

­Gi

The first-order approximation to the variance of each elastic
constant is

2n
­Givar[x ] > var[Y ] i = 1, . . . , 5 (18)i kO S U D
­Y ¯kk=1 Y

where var[ ] = variance of the random variable in the brackets.

RESULTS AND DISCUSSION

The aforementioned minimization method will be applied
to the material characterization of the laminated composite
plates that have been tested. The upper and lower bounds of
the material constants are chosen based on experience

40 # E # 400 GPa, 0 # E # 40 GPa,1 2

0 # G # 40 GPa, 0 # G # 40 GPa 0 # n # 0.512 23 12

(19)

The modified design variables of (9) are obtained via the use
of the following normalization factors:
J. Eng. Mech. 2001.
a = 100; a = 10 i = 2, 3, 4 (20a,b)1 i

Since very good estimates of E1, E2, and G12 can be obtained
at the first stage of the optimization process, the correction
factors used to modify the lower and upper bounds of the
design variable at the second stage of minimization are chosen
as bi (i = 1, 2, 3) = 1/10 and bj ( j = 4, 5) = 3/10.

A detailed numerical investigation of the proposed method
for elastic constants identification has revealed that the accu-
racies of the identified elastic constants converge when the
number of deformational parameters adopted in the present
method is three or more. Three deformational parameters are,
therefore, used in the present identification method to deter-
mine the material elastic constants of the laminated composite
plates. About four and three starting points have been ran-
domly selected at the first and second stages, respectively, of
the minimization process to obtain estimates of the global min-
imum. The estimates of the actual material elastic constants as
well as the percentage differences between the theoretically
predicted and experimentally determined material elastic con-
stants at different stages for various cases are listed in Tables
1–4. It is noted that the present method can produce excellent
results for all the cases under consideration. In particular, even
the mere use of target probability 0.67 at the first stage of the
optimization process can still produce results of acceptable ac-
TABLE 3. Material Constants Identification of Laminated Composite Plates Subjected to Uniform Load (a/b = 2)

Plate layup
Measured deformational

parameter
Identified material constant

(first stage)
Identified material constant

(second stage)

[457/07/2457/07/457]2 3 2 3 2 s w1 = 0.03 mm E1 = 122.4 GPa, E2 = 9.23 GPa E1 = 124.5 GPa (0.14%), E2 = 9.3 GPa (3.13%)
[457/07/2457/07/457]2 3 2 3 2 s εx1 = 0.2 3 1023 G12 = 8.6 GPa, G23 = 2.49 GPa G12 = 8.45 GPa (2.2%), G23 = 2.43 GPa (4.74%)
[457/07/2457/07/457]2 3 2 3 2 s εy1 = 0.373 3 1024 n12 = 0.3 n12 = 0.331 (0.3%)
[07/907/07/907]2 2 2 2 s w1 = 0.057 mm E1 = 124.41 GPa, E2 = 9.8 GPa E1 = 124.8 GPa (0.1%), E2 = 9.52 GPa (0.83%)
[07/907/07/907]2 2 2 2 s εx1 = 0.25 3 1023 G12 = 8.12 GPa, G23 = 2.42 GPa G12 = 8.64 GPa (0.0%), G23 = 2.43 GPa (4.74%)
[07/907/07/907]2 2 2 2 s εy1 = 0.4 3 1024 n12 = 0.31 n12 = 0.32 (3.0%)
[07/907/07/907]2 2 2 2 s w1 = 0.057 mm E1 = 123.43 GPa, E2 = 9.23 GPa E1 = 125.1 GPa (0.34%), E2 = 9.72 GPa (1.25%)
[07/907/07/907]2 2 2 2 s w2 = 0.053 mm G12 = 8.7 GPa, G23 = 2.42 GPa G12 = 8.65 GPa (0.12%), G23 = 2.44 GPa (5.2%)
[07/907/07/907]2 2 2 2 s w3 = 0.047 mm n12 = 0.4 n12 = 0.32 (3.0%)

Note: Values in parentheses denote percentage difference between predicted and measured data.

TABLE 2. Material Constants Identification of Laminated Composite Plates Subjected to Point Load (a/b = 1)

Plate layup
Measured deformational

parameter
Identified material constant

(first stage)
Identified material constant

(second stage)

[457/07/2457/07/457]2 3 2 3 2 s w1 = 0.595 mm E1 = 126.2 GPa, E2 = 9.13 GPa E1 = 124.67 GPa (0.0%), E2 = 9.28 GPa (3.33%)
[457/07/2457/07/457]2 3 2 3 2 s εx1 = 0.7 3 1023 G12 = 8.18 GPa, G23 = 2.48 GPa G12 = 8.48 GPa (1.85%), G23 = 2.41 GPa (3.9%)
[457/07/2457/07/457]2 3 2 3 2 s εy1 = 1.1 3 1023 n12 = 0.29 n12 = 0.312 (5.45%)
[07/907/07/907]2 2 2 2 s w1 = 1.63 mm E1 = 125.64 GPa, E2 = 9.13 GPa E1 = 125.2 GPa (0.42%), E2 = 9.51 GPa (0.94%)
[07/907/07/907]2 2 2 2 s εx2 = 0.65 3 1023 G12 = 8.46 GPa, G23 = 2.08 GPa G12 = 8.63 GPa (0.118%), G23 = 2.51 GPa (8.2%)
[07/907/07/907]2 2 2 2 s εy2 = 0.53 3 1023 n12 = 0.29 n12 = 0.332 (0.6%)
[07/907/07/907]2 2 2 2 s w1 = 1.63 mm E1 = 126.41 GPa, E2 = 9.8 GPa E1 = 125.1 GPa (0.34%), E2 = 9.27 GPa (3.4%)
[07/907/07/907]2 2 2 2 s w2 = 1.01 mm G12 = 8.71 GPa, G23 = 2.43 GPa G12 = 8.54 GPa (1.16%), G23 = 2.43 GPa (4.74%)
[07/907/07/907]2 2 2 2 s w3 = 0.352 mm n12 = 0.34 n12 = 0.331 (0.3%)

Note: Values in parentheses denote percentage difference between predicted and measured data.

TABLE 1. Material Constants Identification of Laminated Composite Plates Subjected to Uniform Load (a/b = 1)

Plate layup
Measured deformational

parameter
Identified material constant

(first stage)
Identified material constant

(second stage)

[457/07/2457/07/457]2 3 2 3 2 s w1 = 0.12 mm E1 = 126.75 GPa, E2 = 10.02 GPa E1 = 125.1 GPa (0.34%), E2 = 9.51 GPa (0.94%)
[457/07/2457/07/457]2 3 2 3 2 s εx1 = 0.2 3 1023 G12 = 8.12 GPa, G23 = 2.48 GPa G12 = 8.53 GPa (1.27%), G23 = 2.49 GPa (7.32%)
[457/07/2457/07/457]2 3 2 3 2 s εy1 = 0.16 3 1023 n12 = 0.29 n12 = 0.3325 (0.75%)
[07/907/07/907]2 2 2 2 s w1 = 0.348 mm E1 = 126.03 GPa, E2 = 9.56 GPa E1 = 124.65 GPa (0.024%), E2 = 9.55 GPa (0.52%)
[07/907/07/907]2 2 2 2 s εx1 = 0.2 3 1023 G12 = 8.73 GPa, G23 = 2.42 GPa G12 = 8.65 GPa (0.12%), G23 = 2.24 GPa (3.4%)
[07/907/07/907]2 2 2 2 s εy1 = 0.238 3 1023 n12 = 0.3325 n12 = 0.332 (0.6%)
[07/907/07/907]2 2 2 2 s w1 = 0.348 mm E1 = 125.78 GPa, E2 = 9.13 GPa E1 = 124.7 GPa (0.016%), E2 = 9.57 GPa (0.33%)
[07/907/07/907]2 2 2 2 s w2 = 0.275 mm G12 = 8.37 GPa, G23 = 2.12 GPa G12 = 8.65 GPa (0.12%), G23 = 2.5 GPa (7.8%)
[07/907/07/907]2 2 2 2 s w3 = 0.125 mm n12 = 0.3325 n12 = 0.332 (0.6%)

Note: Values in parentheses denote percentage difference between predicted and measured data.
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TABLE 4. Material Constants Identification of Laminated Composite Plates Subjected to Point Load (a/b = 2)

Plate layup
Measured deformational

parameter
Identified material constant

(first stage)
Identified material constant

(second stage)

[457/07/2457/07/457]2 3 2 3 2 s w1 = 0.33 mm E1 = 127.12 GPa, E2 = 9.87 GPa E1 = 125.78 GPa (0.9%), E2 = 9.28 GPa (3.3%)
[457/07/2457/07/457]2 3 2 3 2 s εx1 = 0.121 3 1023 G12 = 8.15 GPa, G23 = 2.49 GPa G12 = 8.46 GPa (2.1%), G23 = 2.43 GPa (4.74%)
[457/07/2457/07/457]2 3 2 3 2 s εy1 = 0.185 3 1023 n12 = 0.3 n12 = 0.331 (0.3%)
[07/907/07/907]2 2 2 2 s w1 = 0.7 mm E1 = 125.41 GPa, E2 = 9.8 GPa E1 = 125.41 GPa (0.59%), E2 = 9.28 GPa (3.3%)
[07/907/07/907]2 2 2 2 s εx1 = 0.25 3 1022 G12 = 8.21 GPa, G23 = 2.42 GPa G12 = 8.46 GPa (2.08%), G23 = 2.18 GPa (6.0%)
[07/907/07/907]2 2 2 2 s εy1 = 0.4 3 1024 n12 = 0.32 n12 = 0.332 (0.6%)
[07/907/07/907]2 2 2 2 s w1 = 0.7 mm E1 = 123.43 GPa, E2 = 9.23 GPa E1 = 125.4 GPa (0.6%), E2 = 9.24 GPa (3.75%)
[07/907/07/907]2 2 2 2 s w2 = 0.4 mm G12 = 8.7 GPa, G23 = 2.42 GPa G12 = 8.62 GPa (0.02%), G23 = 2.43 GPa (5.2%)
[07/907/07/907]2 2 2 2 s w3 = 0.29 mm n12 = 0.4 n12 = 0.31 (6.0%)

Note: Values in parentheses denote percentage difference between predicted and measured data.

TABLE 5. Variation of Identified Elastic Constants for Laminated Composite Plates (a/b = 1)

Plate layup
Loading
condition Deformation parameter

Coefficient of Variation (%)

E1 E2 G12 G23 n12

[457/07/2457/07/457]2 3 2 3 2 s Point load w1 = 0.59 mm, εx1 = 0.7 3 1023, εy1 = 1.1 3 1023 10.7 14.9 15.4 25.1 10.3
[457/07/2457/07/457]2 3 2 3 2 s Uniform load w1 = 0.12 mm, εx1 = 0.2 3 1023, εy1 = 0.16 3 1023 6.1 9.14 11.7 15.1 5.3
[07/907/07/907]2 2 2 2 s Point load w1 = 1.63 mm, εx2 = 0.65 3 1023, εy2 = 0.53 3 1023 9.8 13.7 14.2 21.2 10.1
[07/907/07/907]2 2 2 2 s Point load w1 = 1.63 mm, w2 = 1.01 mm, w3 = 0.352 mm 6.5 10.3 11.7 14.4 5.8
[07/907/07/907]2 2 2 2 s Uniform load w1 = 0.348 mm, w2 = 0.275 mm, w3 = 0.125 mm 10 14.3 16.7 24.4 9.8
[07/907/07/907]2 2 2 2 s Uniform load w1 = 0.348 mm, εx1 = 0.2 3 1023, εy1 = 0.238 3 1023 5.4 9.6 11.1 14.7 5.8

TABLE 6. Variation of Identified Elastic Constants for Laminated Composite Plates (a/b = 2)

Plate layup
Loading
condition Deformation parameter

Coefficient of Variation (%)

E1 E2 G12 G23 n12

[457/07/2457/07/457]2 3 2 3 2 s Point load w1 = 0.33 mm, εx = 0.121 3 1023, εy = 0.185 3 1023 10.2 13.5 15.9 27.8 9.7
[457/07/2457/07/457]2 3 2 3 2 s Uniform load w1 = 0.03 mm, εx = 0.2 3 1023, εy = 0.373 3 1024 8.7 11.6 13.9 19.4 7.2
[07/907/07/907]2 2 2 2 s Point load w1 = 0.7 mm, εx = 0.25 3 1023, εy = 0.4 3 1024 12.2 15.3 17.6 28.4 10.3
[07/907/07/907]2 2 2 2 s Point load w1 = 0.7 mm, w2 = 0.4 mm, w3 = 0.29 mm 7.9 11.2 11.9 15.3 7.2
[07/907/07/907]2 2 2 2 s Uniform load w1 = 0.057 mm, εx = 0.25 3 1023, εy = 0.4 3 1024 7.5 10.2 11.7 14.1 6.9
[07/907/07/907]2 2 2 2 s Uniform load w1 = 0.057 mm, w2 = 0.053 mm, w3 = 0.047 mm 7.8 9.7 11.1 14.2 6.7
curacy. Among the elastic constants, excellent results can be
obtained for the predictions of E1, E2, and G12, for which the
errors are <4%. On the other hand, the error for the prediction
of G23 can be as large as 8.2%. The cause of the relatively
large errors in the prediction of G23 is due to the relatively
small contribution of transverse shear deformation to the mag-
nitudes of the deformational parameters. It is worth noting that
if the present normalization and bounding techniques were not
adopted in the material constants identification process, erro-
neous results would be obtained, or worse, there would be
difficulties in making the solution converge. In addition to the
laminates that have been used as examples in the above illus-
tration, elastic constants of other laminates have also been
identified using the present method and similar accuracies of
the identified elastic constants have been observed.

Finally, the effects of uncertainties encountered in defor-
mation measurements on the variations of the identified elastic
constants are studied using the aforementioned approximate
analysis [see (18)]. The coefficients of variation for the mea-
sured deformational parameters are assumed to be 5% in the
sensitivity analysis of the elastic constants of the laminated
composite plates that have been tested. Tables 5 and 6 list the
coefficients of variation of the identified elastic constants for
the laminated composite plates. It is noted that the coefficients
of variation of the elastic constants are in the range from 5.3%
to 28.4%. Among the elastic constants, G23 is most sensitive
to the variations of the measured deformational parameters.
Furthermore, G23 becomes much more sensitive to the varia-
tions of the measured deformational parameters if the plates
are subjected to a center point load. For instance, for the

plate of a/b = 1, the coefficients of var-[457 /07 /2457 /07 /457]2 3 2 3 2 s

iation of G23 for the cases of point and uniform loads are 25.1
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and 15.1 respectively. Again, the cause of the relatively large
variations of G23 is due to the relatively small contribution of
transverse shear deformation to the magnitudes of the defor-
mational parameters and the small value of G23 itself.

CONCLUSIONS

A two-stage constrained minimization method for the iden-
tification of material elastic constants of shear deformable lam-
inated composite plates has been presented. The proposed
method has been established on the basis of a global optimi-
zation method coupled with a two-stage bounding technique.
A technique for normalizing the design variables has also been
adopted in the present method to increase the convergence rate
of the solution. Only three deformational parameters measured
from the static test of a laminated composite plate are needed
in the present method for the identification of elastic constants
of the plate. Static tests of several laminated composite plates
with different layups and aspect ratios subjected to various
loading conditions have been performed, along with the ex-
perimental data used to study the feasibility and accuracy of
the present method. The study has shown that the present
method can produce good estimates of the elastic constants for
the laminated composite plates in an effective and efficient
way. The error in the identification of elastic constants E1, E2,
and G12 are <4%, while those for n12 and G23 are <8.3%. A
sensitivity analysis of the variations of the identified elastic
constants has been performed. It has been shown that the elas-
tic constants may have 5.3–28.4% variations when there are
5% variations in the measured deformational parameters.
Among the elastic constants, G23 is most sensitive to the var-
iations of the measured deformational parameters, and the rea-
.127:1117-1123.
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son for this is due to the relatively small contribution of G23

to the deformation of the plates.
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