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Abstract

We determine the minimum number of group tests required to search for a special edge when
the graph consists of cycles and paths, generalizing previous results of Aigner on paths and on
a simple cycle. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Suppose that we have a set of items containing exactly two defective ones. The
problem is to identify them through quantitative group testing [2]. Any subset S of
items can be tested, and the feedback f(s) reveals the number of defectives in S, i.e.
f(S)=0,1 or 2. There are constraints on which pairs of items can be the defective
pair, and the constraints can be represented by a graph where the vertex-set is the set
of items, and the edge-set is the set of allowed pairs. Thus, the problem can also be
viewed as searching for a special edge on a graph G(V,E).

Suppose |E| = n. Since each test has three possible feedbacks, [log, n] is the infor-
mation lower bound on the number of tests required. Aigner [1] proved

Theorem 1. If G consists of paths, then [logsn| tests suffice.

Theorem 2. If G is a cycle and n < 3!, then t tests suffice. If n=73", then ¢+ 1 tests

suffice.
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In this paper we consider the case that G consists of any number of cycles and
paths. We give the minimum number of tests required for such G.

2. Optimal testing
We first prove an upper bound.
Theorem 3. Suppose G consists of cycles and paths. Then 1+ [logyn| tests suffice.

Proof. If G contain no cycles, then Theorem 3 follows from Theorem 1. If G has m
cycles Cy,Cs,...,Cp, test S = {vy,0,...,0,}, where v; is an arbitrary vertex on C;.
Suppose f(S)=0. Then the two edges incident to v; on C; cannot be special for each
i=1,2,...,m. Therefore C; is reduced to a path. By Theorem 1, [log;n]| more tests
suffice. Suppose f(S) =1, then the special edge must be an edge incident to one of
the v;. Again, each C; is reduced to a path of two edges and Theorem 1 applies. The
proof is completed by noting that f(S) cannot be 2 since no edge can be incident to
two vertices in S. [

Consider a test S on a graph G. An edge (u,v) will be called an S;-edge, i =0,1,2
if [{u,0} N S| =0,1,2, respectively. Let Gy, Gy, G, be the partition of G according to
the three feedbacks of S. Then G; = {S;-edge} for i =0,1,2. A cycle (path) will be
called a mixed cycle (path) if it contain an S)-edge. Otherwise it is called a pure
cycle (path), or an S; (S;)-cycle if we want to be more specific. We also refer to an
edge as pure if it is either Sy or S;.

Lemma 4. Let i and j satisfy the conditions i = 0, j = 0 and i +2j < k, except
when j =0, then i is 0 or k. Then there exists a test S on a k-cycle C such that
[Sol =1, |S1| =2j and |S,| =k — i — 2j.

Proof. If j=0, then either SNC=C or SNC=0. Otherwise, assign arbitrary k—i—2;+1
consecutive vertices to S, and assign the next i 4+ 1 consecutive vertices to S (not in
S). The remaining vertices are assigned S or S such that S and S alternate. [J

Lemma 5. Consider a set P of paths with k total edges. Let i and j satisfy the
conditions i = 0, j > 1 and i + ] < k. Then there exists a test S on P such that
|S0|=i, ‘S||:] and |S2|:k—i—j.

Proof. We order the paths such that the & edges (hence all vertices) are linearly
ordered. Assign the first £ — i — j edges to S,, meaning their vertices are all in S.
Assign the next j edges to Sy, if j is odd or i =0. If j is even and i > 0, assign the
next j — 1 edges to S;. Furthermore, if there is a change of path during this process,
then the vertex starting the new path is in the same set, S or S, as its preceding
vertex. These rules assure that this process ends in an S-vertex which will start the
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final assignment of i edges in Sy, meaning all their vertices are in S. For j even and
i > 0, there is one edge left which will be assigned to S;, meaning the last vertex is
inS. O

Corollary 6. A partition (i,0,k — i) is possible if and only if there exists a subset of
paths with a total of i edges.

Let M(G) denote the minimum number of tests required for G.

Theorem 7. Let G consist only of cycles and paths with n edges in total, where
31 <n < 3. Then M(G)=t except
(i) G consists of cycles only and n=13',
(ii) t =2 and G contains two cycles,
(iii) t =3 and G contains seven cycles,
(iv) t =4 and G contains 26 cycles,
and M(G)=1t+ 1 in the four exception cases.

Proof. Sufficiency: The t < 2 case is easily verified. We prove the general ¢ > 3 by
induction. It suffices to prove that if G is not one of the exception cases, then there
exists a test S where the three feedbacks partition G into Gy, G,G, with ng, n;, ny
edges, where n < 3*=! and G, is not an exception case for i =0,1,2.

Suppose G contains ¢ cycles where ¢ < 3/~! — 1. We consider two cases:

(1) ¢ < (3"~! —1)/2. Assign Sj-edges such that the ¢ cycles are all mixed. Suppose
the ¢ cycles contain n’ edges. By Lemma 4 we can obtain at least 2[(n’ — ¢)/2]
Si-edges. Assign min{2[(n’ —¢)/2],3""! —1} =3/~ —j edges to S}, where j > 1
is odd . Again by Lemma 4, the pure edges in the ¢ cycles can be divided evenly
into Sp and S,. Since 3! —j > |n’/3], so 3'~! —j < |n/3] implies the existence
of paths with a total of more than j edges. By Lemma 5, we can obtain j S;-edges
and divide the other edges evenly into Sy and S,. Note that in the case 3! —j >
|n/3], even though no Sj-edge is needed on the paths, some S)-edges may be
forced in the process of dividing the path edges evenly into Sy and S,. By Lemma
5, at most 1 S;-edge needs to be forced. This is alright since 3'~! —j +1 < 3/~!,

(2) ¢ = (371 —1)/2. We will assign the (3'~! —1)/2 largest cycles to be mixed each
with two Sj-edges. Let p denote the largest size of the pure cycles. Then p < 5
for otherwise the mixed cycles would have consumed 3(3'~' — 1) =3’ — 3 edges
and there are not enough edges left for a pure p-cycle with p > 6. Let (eg,ez)
be a division of edges into the Sy and S, type through assigning the pure cycles
into Gy or Gy. Then there is a division with |eg —e;| < 5. For ¢ > 3, there are at
least four mixed cycles with 12 pure edges on them. By Lemmas 4 and 5, we can
divide these pure edges as well as the pure edges on paths (if any) arbitrarily, i.e.
the n — 3'~! (n — (3~ — 1) if no paths exist) pure edges can be divided evenly
into Gy and G,. Therefore n; < 3'~' for i =0, 1,2. Furthermore, the number of
cycles in Gy or G, is at most
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(3-1_1-@3=1-1)2
; )/W<3f2—1 for t > 5,
e (3
2
(6 —(32—-1)/2
6(32)/-‘:1 for t = 3.

Hence they are not exception cases.

That ¢ + 1 tests suffice for the exception cases follow from Theorem 3.

Necessity: That ¢ tests are necessary for the nonexception case follows from the
information lower bound. We now prove that the exception cases cannot be done in ¢
tests.

(1) Since the number of S;-edges on a cycle must be even, there is no way to partition

3! edges on cycles into 3!, 3'~! and 3'~!.

(ii) Suppose G contains two cycles. Then the number of S;-edges on these two cycles

must be 2 (it must be even). That means one of the two cycles, of size £, is pure.
If £ > 3, then one more test cannot do it by information lower bound. If £ = 3,
then again one more test cannot do it since it is the exception case (i).

(iii) Suppose G contains seven cycles. Since at most (3°~' — 1)/2 =4 cycles can be

mixed, there are at least three pure cycles. Without loss of generality, assume
there are two Sy-cycles. Then Gy contains two cycles and is the exception case
(i1), hence it cannot be done in two more tests.

(iv) Suppose G contains 26 cycles. Since at most (34! — 1)/2 = 13 cycles can be

mixed, there are at least thirteen pure cycles. Without loss of generality, assume
there are seven Sy-cycles. Then Gy contains seven cycles and is the exception
case (iii), hence it cannot be done in three more tests. [J
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