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Abstract—This paper presents a quite comprehensive proce-
dure covering both the stress-induced leakage current (SILC) and
oxide breakdown, achieved by balancing systematically the mod-
eling and experimental works. The underlying model as quoted in
the literature features three key parameters: the tunneling relax-
ation time , the neutral electron trap density , and the trap en-
ergy level . First of all, 7-nm thick oxide MOS devices with wide
range oxide areas are thoroughly characterized in terms of the op-
tically induced trap filling, the charge-to-breakdown statistics, the
gate voltage developments with the time, and the SILC – . The
former three are involved together with a percolation oxide break-
down model to build explicitly as function of the stress electron
fluence. Then the overall tunneling probability is calculated, with
which a best fitting to SILC – furnishes of 4 0 10

13 s
and of 3.4 eV. The extracted is found to match exactly that ex-
trapolated from existing data. Such striking consistencies thereby
provide evidence that inelastic trap-assisted tunneling (ITAT) is
indeed the SILC mechanism. Differences and similarities of the
involved physical parameters between different studies are com-
pared as well.

Index Terms—Flash, gated-diode, inelastic tunneling, MOSFET,
oxide breakdown, percolation, SILC, stress-induced leakage cur-
rent, trap-assisted tunneling.

I. INTRODUCTION

STRESS-induced leakage current (SILC) is one of the
biggest reliability issues in MOS devices, especially the

nonvolatile flash memory [1]. In nonvolatile flash memory,
high-field or Fowler–Nordheim (F–N) tunneling during the
erase cycle can produce a variety of defects within tunnel
oxides, among which the most concerned for SILC are the
neutral electron traps. The principal reasons are that these
generated traps can serve as a stepping stone to effectively
shorten the tunneling distance, causing more electrons leaking
out of the floating gate. Such knowledge of the impact of
SILC stems from an early series of studies [2]–[5]. Recent
experimental demonstrations in terms of carrier separation
technique [6] and oxide thickness dependent measurement [7]
both witness the inelastic behavior of trap-assisted tunneling.
That is, the tunneling electrons from the cathode side lose part
of their energy via inelastic scattering and fall down to the
underlying trap site from which they are instantly de-trapped
out to the anode side. Despite few literature efforts made
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to address the scattering/capturing process microscopically,
inelastic trap-assisted tunneling (ITAT) proposed as the origin
of SILC is currently largely accepted. By analogy to the most
efficient generation/recombination center in the mid-gap of a
semiconductor p-n junction, there should exist a certain trap
position featuring that a local tunneling probability from
cathode to that site equals another probability from it to
anode. Under such situation, a maximum overall tunneling
probability is created through [8].
Such a picture of the maximum likelihood had led to the
following analytic model for the SILC current–voltage (– )
[8]:

(1)

where
oxide thickness;
oxide field;
( [9]) effective electron mass in the oxide;
tunneling relaxation time, ( nm calculated [8]
for 7-nm thick oxide, for example) lies at the most fa-
vorable position, and the trap properties at this specific
location are usually described by the neutral electron
trap density and the trap energy level .

This unique model had exhibited the comparable ability of tack-
ling SILC – [8] as the complicated version [6], [7]; strictly
speaking, however, reported agreement with singly SILC–
unnecessarily means that the current understandings of under-
lying physical aspects (i.e., the maximum likelihood of tun-
neling to and from the traps located at the most favorable po-
sition, etc.) would have gotten clarification in the way. Part of
the reasons is that the tunneling relaxation timewas not fully
explored in [8]. Here is better viewed a fundamental param-
eter and can be defined the tunneling time extrapolated at a zero
oxide thickness [9].

This paper presents a quite comprehensive procedure of
balancing systematically both the modeling and experimental
works from SILC to oxide breakdown. Equation (1) is favored
here due to its uniqueness as mentioned above. In contrast
to the pioneering work [8] where was treated as a fitting
parameter, however, this work manages it explicitly in advance,
achieved by extending to experimental Weibull distributions
of charge-to-breakdown as well as with the aid of some
percolation oxide breakdown models [10]–[15]. As a result,
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Fig. 1. Experimental setup and energy-band diagram for the optically induced
trap filling method.

the number of the unknown parameters in (1) reduces to two,
namely, and , whose values can further be accessed by
fitting SILC – while simultaneously accounting for the
maximum overall tunneling probability. Fortunately, there
appears in the open literature [9] the experimental tunnel time
versus oxide thickness, making possible direct verification on
the extracted . Should an expected coincidence turn out, it can
be acknowledged that current understandings involved in SILC
mechanism indeed stand on the ground. Also addressed are
differences and similarities of physical parameters as compared
with the quotation [5] and [8].

II. EXPERIMENTAL PROCEDURE

A variety of MOS devices were fabricated in the same
process. The oxide film was thermally grown in dry oxygen
ambient to 7-nm thick. The oxide areas were drawn in a wide
range of four decade with aim to judge the present SILC theory
that, whatever the areas used are, the traps generated during
high field stress are spatially randomly allocated within the
whole oxide space. This is valid until a percolation path for
breakdown is formed locally. The first sample was n-channel
MOSFETs having gate width-to-length ratio of 20m/0.3 m
(oxide area of cm ) to build a linkage between the
trap generation density and the stress electron fluence. The
stress condition was gate voltage V with source,
drain, and substrate tied to ground, which was followed by
the optically induced trap filling. Fig. 1 schematically shows
this optical injection method involving two distinct processes:
the photo-generation process via a tungsten lamp to supply
electron seed in the substrate; and the carrier heating process
via a negative substrate bias of3 V to raise these electrons
up to the higher energy level enough to surmount the Si/SiO
barrier and fill the traps in oxide. Then operating in gated-diode
forward mode [16] (i.e., a forward bias of 0.2 V was applied
to the drain with source open and substrate grounded) can
sensitively detect the filled traps.

The secondary sample was n-poly/p-substrate MOS ca-
pacitors having two very large oxide areas of and

cm for charge-to-breakdown test. The stress

Fig. 2. Gate voltage shift versus illumination time. The inset shows the
estimated trap densityN versusQ from seven samples. A power-law
relation is drawn by best fitting data points. CVS is constant voltage stress.

condition was constant current of 400 mA/cmwith positive
gate voltage. The third sample was n-channel MOSFETs with
oxide area of cm for monitoring the time evolution
of gate voltage. The stress condition was constant current
of 38.5 mA/cm with positive gate voltage and with source,
drain, and substrate connected to ground. The stressing was
periodically interrupted to measure SILC– characteristics
until oxide wear-out occurred.

III. QUANTIFYING NEUTRAL TRAPS

From the measured drain current in forward gated-diode
mode versus gate voltage for the first sample, it is observed that
the gate-voltage shift associated with the current peak in
the depletion region increases with the filling or illumination
time and gradually tends to saturate as depicted in Fig. 2.
Assuming that the occupied traps are spatially distributed
uniformly within the oxide as adopted elsewhere [12], [17],
the saturation voltage shift from the optical filling
method can be directly linked to the occupied trap density
through where is the oxide
permittivity. The resulting in 1/cm for different in
C/cm is displayed in the inset of Fig. 2, showing a power-law
relation

(2)

A percolation oxide breakdown model [13] formulates ex-
plicitly the generated neutral electron trap densityas a func-
tion of three physical controlling factors: the possible minimum
trap number [14], the possible minimum area

[10], [11], [14] of the locally conductive path, and the
ultimate thickness limit of 2.5 nm for breakdown [18]. Here,

is the trap radius and ( 0.5 nm [13]–[15]) is the tran-
sition layer thickness. can be related directly to via
filling fraction : . The physical origin behind
is Coulomb repulsion [19]. can be quantified from a Weibull
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Fig. 3. Experimental charge-to-breakdown statistical distribution in Weibull
plot. Two fitting lines of equal slope are shown for finding the Weibull slope.
CCS is constant current stress.

plot of charge-to-breakdown statistical data as shown in
Fig. 3 from the secondary sample with two oxide areas. Here

is the at the onset of oxide breakdown. The Weibull
slope and the modal (63%) of the charge-to-break-
down distributions can be expressed as [13]

(3)

(4)

Here, , the modal of the distributions at a specific area
of 900 nm , reads [13]

(5)

is the oxide area in nm. Extracting the values of(through
two fitting lines of equal slope) and from Fig. 3 and
substituting into the above expressions, a unique solution for
two different areas yields % for nm. Note
that such a very low occupancy fraction of the total neutral trap
density is essential in addressing ITAT. Therefore, we achieve
the goal of quantifying in advance the amount of generated neu-
tral electron traps for given stress electron fluence.

IV. PARAMETER EXTRACTION AND COMPARISONS

Fig. 4 shows the evolution of gate voltage for the third sample
subject to constant F–N tunneling stressing. It can be seen that
gate voltage gradually increases with time until at around 1400
s a large drop down to 2 V occurs, indicating a hard breakdown
event. The built power-law relationship betweenand re-
produces excellently such breakdown event, regardless of areas
used. This is achieved by substituting the stress current density
of 38.5 mA/cm and area of cm into (4) and (5). The

Fig. 4. Measured variation of the gate voltage versus stress time under the
constant current stress condition. The evolution prior to breakdown is magnified
in the inset, where a power-law line is shown.

resulting time to breakdown is 1332 sec, quite close to the spon-
taneous point in Fig. 4, as expected by Poisson area scaling [20].
The increment of gate voltage with respect to the initial value is
magnified in the inset of Fig. 4 for stress time prior to break-
down, validating the power-law expression of . Ob-
viously, the traps generated are spatially randomly distributed
within the whole oxide film, indicating that SILC magnitude
obeys a linear relation with oxide area.

The measured SILC– before and after stress is displayed
in Fig. 5. This figure reveals that the SILC– curves pre-
vailing in the low voltage regime are raised up for increasing
electron stress fluence, whereas in the high voltage region the
– is intact, an indicative of F–N tunneling dominating. The

latter property facilitates transformation from gate voltage to
oxide field . F–N tunneling fitting [21] was applied to fresh
– in Fig. 5 to access oxide field . The resulting

is depicted in Fig. 6. Prior to dealing with SILC– , a calcula-
tion work was carried out to furnish a set ofand to meet the
condition of for the maximum overall tunneling proba-
bility. Fig. 7 shows such calculation results using formula in [8].
From Fig. 7, a specific set of s and
eV is rigorously selected since they are able to offer a best re-
production of SILC – or equivalently in Fig. 6. Note
that the main role of and is to adjust the slope and magni-
tude of SILC – , respectively. The same power-law relation
between and is also involved in the way. This explains
why we call the procedure of balancing systematically both the
modeling and experimental works. This procedure comprises
the quantification process for the trap density, the verification
process for gate voltage evolution and time-to-breakdown, and
the parameter extraction process. Finally, a fundamental param-
eter of interest is examined. Fig. 8 re-plots experimental tunnel
time versus oxide thickness from [9], where a straight line drawn
through all data points is extrapolated far to zero oxide thickness
(the authors in [9] suggested that the most right side data would
be adjusted upward for measurement reasons). As we place our
extracted in the figure corresponding to zero oxide thickness,
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Fig. 5. Measured gate current versus gate voltage with electron fluence as a
parameter. An F–N fitting line is plotted together.

Fig. 6. Comparison of experimental and calculated SILC component versus
oxide field corresponding to Fig. 5. The illustrated oxide field strength values
were obtained by means of a fitting to F–N portion in Fig. 5.

strikingly it matches exactly the line. Therefore, the expected
coincidence turns out and it can be acknowledged unambigu-
ously that current understandings involved in SILC mechanism
indeed stand on the ground; for example, ITAT does favor the
maximum likelihood of tunneling to and from the traps at the
specific position; and the occupancy fraction of is very low,
ensuring the possibility of ITAT.

Several physical parameters involved in SILC– are also
available in the open literature [5], [8], and are quoted here to
explore differences and similarities of the involved parameters.
Firstly, in the original work [8] pioneering the SILC model (1),
was set at s without particular reasons, far away from
ours by about two orders of magnitude. However, our extracted

does not show such huge difference with that (3.64.0 eV)

Fig. 7. Calculated set of the relaxation time and trap energy level at the trap
sitex of 3.6 nm to meet the maximum overall tunneling probability.

Fig. 8. Plot of tunnel time versus oxide thickness using literature data from
[9]. Our extracted relaxation time is also shown and is found to fall on the same
straight line with these data.

in [8]. This is not strange as one can recognize from (1) that the
exponent factor and the pre-exponent factor are essentially inde-
pendent of each other, and only in the pre-exponent factor,and

are merged together and are thereby affected each other if
extracted simultaneously. Secondly, a sophisticated modeling of
SILC – curves in [5] reported the trap energy level2.3 2.4
eV and the trap cross section10 10 cm . The latter
is somewhat comparable with the trap sphere area () of

cm in our work. Only the trap energy level is quite
spread, which is likely attributed to different process technolo-
gies used. That is, the trap energy level would be considered
a measure of the inelastic scattering property and different ox-
ides from different process technologies reflect different scat-
tering behaviors. Such arguments involved in inelastic scattering
process certainly need further research.
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V. CONCLUSION

A procedure of balancing systematically both the modeling
and experimental works covering SILC and oxide breakdown
has been comprehensively carried. Involved in this procedure
are the quantification process for the trap density, the verifica-
tion process for gate voltage evolution and time-to-breakdown,
and the parameter extraction process for SILC– . Eventually
the tunneling relaxation time viewed as a fundamental param-
eter has been exactly confirmed by existing data, thus clarifying
unambiguously current physical aspects of SILC mechanism:

1) ITAT does favor the maximum likelihood of tunneling to
and from the traps at the specific position;

2) the occupancy fraction of the total generated neutral den-
sity is very low ensuring the possibility of ITAT.

Differences and similarities of physical parameters between dif-
ferent studies have been compared as well, suggesting that the
trap energy level would be considered a measure of the inelastic
scattering property and is process technology dependent.
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