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This article deals with the depth observability problem of a robot visual system with a
moving camera. In the visual system, the unknown depth of a feature point is
estimated from the input of the camera velocity and the output of the image of the
feature point. Although it is well known that the linear velocity of the camera must
satisfy some constraints for successful depth estimation, this proposes a criterion to
measure the performance of the depth estimation, which is a heuristic extension from
an estimation result of a linear system. This performance criterion depends on both
the image position and the linear velocity of the camera. Some simulation and
experiment examples demonstrate and verify the proposed performance criterion.
Furthermore, this criterion is used to develop a new visual servo control scheme that
has good performance in both the depth estimation and the visual control. This control
scheme is also verified by a simulation example. � 2001 John Wiley & Sons, Inc.

1. INTRODUCTION

Depth estimation is a very important problem for
Ž .three-dimensional 3-D vision application, e.g., in

object tracking,1 � 3 motion estimation,4 � 7 and obsta-
cle detection. Unfortunately, the value of depth can-
not be directly measured. In the machine vision
field, the stereo vision system extracts the 3-D space
data from multiview images by matching the fea-
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tures in different images.9 �11 Some works research
the stereo visual system.12 However, the stereo vi-
sion system is more expensive and the feature-cor-
responding problem needs to be solved. Many
hand-eye robot systems still employ simple active
vision systems that estimate the depth from a se-
quence of images through the motion of the
camera.13 A typical estimator in this system is the

Ž . 14extended Kalman filter EKF .
Nowadays, visual sensors are widely used in

the motion control of the robot manipulator. Visual
servo robot control overcomes the difficulties of
uncertain models and unknown environments and
broadens the domain of application of current
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robots. In the literature, there are two types of
visual servo controllers: one is the feature-based
method10,15� 20; the other is the position-based
method.21,22 The main distinction is the input. The
former uses the image features as an input com-
mand, while the latter takes the position in space
calculated from the images as an input. The
feature-based control has the input command de-
scribed directly in the feature space; it is then easy
to generate the input trajectory by video-aid, com-
puter-aided design, or virtual reality techniques.
Therefore, most of visual servo controllers are fea-
ture-based.

Jang and Bien18 investigated the mathematical
descriptions of various image features and intro-
duced the redundant features to improve the con-
trol performance for noise. Corke and Paul19 de-
signed a Single-Input Single-Output featured-based
controller for each degree of freedom of the camera
motion to track some particular objects. Weiss et
al.16 first proposed the feature Jacobian matrix that
establishes the relationship between the differential
change in the feature vector and that in the relative
pose of the camera. However, the singularity of the
feature Jacobian matrix is an inherit problem in the
feature-based control.

To alleviate the singularity problem, some au-
thors use the singular value decomposition method
to determine the input of the camera velocity.23

Feddema et al.24 deal with selection and weighting
of features for the condition and the sensitivity of
the feature Jacobian matrix. Furthermore, a trade-off
of measure of lens focus, field of view, robot config-
uration, and resolvability is also introduced into the
visual control object for special tasks.25 In these
works, good performance in several visual servo
control schemes was reported. Until now, the un-
known depths were in the feature Jacobian matrix
of the feature-based control; the depth estimation is
needed in visual servo control. In some cases, the
exact value of depth may not be necessary for the
stability of the visual servo control scheme.3 The
depth is still important information for handling the
object. The depth observability is the vital problem
in the depth estimation, which determines the suc-
cess of the estimation. Although there have been
several methods proposed for the depth estima-
tion,24,26 the popular one is the EKF.13,22,27 However,
little attention has been paid to the effect of the
velocity of the camera on the depth observability.
The depth estimation incorporated in visual servo
control has not been deeply investigated.

Recently, the observability problem of the 3-D
structure from motion of a visual system was dis-
cussed.28 Two different initial states may be undis-
tinguishable by the scale ambiguity or by a special
kind of translational velocity. The effects of the
velocity of the camera on the observability are in-
vestigated. Dayawansa et al.29 proposed a necessary
and sufficient condition for the perspective observ-
ability problem. This condition is derived from the
generalized Popov�Belevitch�Hautus test for the
camera with a constant velocity. Sharma and Hutch-
inson23,30 proposed a measure of motion percepti-
bility and some cost functions to determine the

Ž .optimal camera placement or trajectory for the
observability of robot motion.

This article considers a hand-eye robot system.
The feature-based visual servo control is used to
move the end-effector to the desired position rela-
tive to an object by inputting the image features of
the object. In contrast to earlier works, this article
tries to improve the depth estimation incorporated
in visual servo control. According to previous re-
search on the observability of 3-D structure from
visual motion,28 a necessary and sufficient condition
of depth observability for a moving camera is found,
which states what types of camera velocities can
make the trajectory of the depth different for differ-
ent initial depths. Although this condition can make
the depth estimation successful, it provides no in-
formation about the convergence rate of the depth
estimation. If the nonlinear depth estimator could
be virtually seen as a linear unbiased estimator, the
variance of the reciprocal of the depth estimate
could be explicitly found. We then suggest use of
this variance as an index for the performance of the
depth estimation. This index is also verified by
simulations and experiments as a rule of thumb for
the performance evaluation of the EKF, especially
for slow camera velocity. We then try to develop a
new visual servo control scheme by making the
index as small as possible while having little effect
on the control performance, so that the depth esti-
mation is improved. Finally, a simulation example
shows that the resulting control scheme reaches this
goal.

This article is organized as follows. Section 2
introduces the camera model and discusses the ob-
servability of the nonlinear optic flow model. The
result of Section 2 is used to develop a new visual
servo control scheme in Section 3, which tries to
improve the depth estimation during control. Fi-
nally, we conclude our results in Section 4.



�Fang and Lin: Depth Estimation Applied to Robot Visual Servo Control 611

2. DEPTH ESTIMATION

Consider a pinhole camera model and assign a
body-fixed coordinate frame E on it. The originX YZ

of the camera frame E is at the center of theX YZ

camera lens and the Z-axis of E is in alignmentX YZ

with the optical axis of the lens. Another frame is
fixed on the image plane and denoted by Ex y z
whose x- and y-axes are parallel to the X- and
Y-axes of E and whose origin is at the intersec-X YZ

tion point of the image plane and the optical axis.
The distance between the origin of E and that ofX YZ

origin of E and that of E is named theX YZ x y z

effective focal length and is denoted by f .e
ŽConsider a point P e.g., a corner of a 3-D

. Ž .object with coordinates X,Y, Z with respect to
the camera frame E . The value of Z is referredX YZ

to as the depth of point P to the camera lens. The
image of point P projected onto the image plane is

Ž .denoted by p with coordinates x, y, 0 with respect
to E . The projection relationships statex y z

X Y
Ž .x�� , y�� 1x yZ Z

where � � f �S and � � f �S , in which S , S ,x e x y e y x y

are, respectively, the horizontal and vertical lengths
Ž .per pixel on the camera sensing array. Equation 1

is the so-called perspective projection equation.31

In an active vision system, the camera is capable
of moving. Assume that the linear velocity and the
angular velocity of the camera are v and �, respec-
tively, with respect to E . For a stationary pointX YZ
P, the relative velocity of point P with respect to
the camera is

Ẋ X
Ž . Ž . Ž .��� t � �v t 2˙ YY

ZŻ

� �T � T T �TLet �� x, y, Z and u� v , � . Differentiating
Ž . Ž .1 and using 2 yields the so-called optic flow-mo-
tion equation31:

ẋ Ž . Ž .�J � u 3ẏ

where

2 2� x xy � �x �x x x� 0 � y
Z Z � � �y x y

Ž . Ž .J � � 4
2 2� y � �y xy �y y y

0 � � � x
Z Z � � �y x x

Ž .Since the unknown depth Z is involved in 3 , the
Ž .dynamic equation of Z in 2 needs to be considered

Ž .together. Note that 3 is physically valid only when
Z�0.

Ž .According to 3 , we describe the present sys-
tem by the nonlinear system of equations

˙ Ž . Ž . Ž .��f � ,u �G � u 5

1 0 0Ž . Ž .��h � � � 6
0 1 0

where

Ž .J �

yZ xZŽ . Ž .G � � 70 0 �1 � 0
� �y x

Ž . Ž .Equations 5 and 6 are the state and output equa-
tions, respectively. In the state vector � , x, and y
are the visual measurements, so the only unknown
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is the depth Z. Therefore, the state estimation of the
Ž . Ž .system of 5 and 6 is equivalent to the depth

estimation for the given camera velocity.
Let the linear velocity of the camera be decom-

posed into

Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .v t �� t v � �� t v � �� t v � 81 1 2 2 3 3

Ž . Ž . Ž .where � t , � t , and � t are bounded functions1 2 3
of t, and

0
��x ��Ž . Ž .v � � , v � � ,y1 2x y

x
Ž .9�x

yŽ .v � �3

�y

1

Note that the dimension of the distribution
� Ž . Ž . Ž .4span v � , v � , v � is always 3. It is well known1 2 3

that the unknown depth of the point cannot be
estimated when its image is on the focus of expan-
sion,28 i.e., the camera always moves along the

Ž . Ž . Ž .direction of v � . The system 5 and 6 is locally3
2Ž . 2Ž .observable for Z�0, if and only if � t �� t1 2

� Ž .is nonzero for some time interval i.e., v t �
Ž . Ž .� .� t v � , for some time interval . This restriction3 3

on the input is a necessary and sufficient condition
for the success of the depth estimation. However,
there is no information about the convergent rate of
the depth estimation error. It is then interesting to
know if there is a relationship of v and v to the1 2
convergence of the depth estimation.

In this article, the nonlinear time-varying sys-
Ž . Ž .tem of 5 and 6 is estimated by the extended

Kalman filter. Since the image data x and y are
available, their estimation errors could be ignored.
If the variation rate of the depth Z is also small
enough to be negligible, then the extended Kalman

Ž .filter it is a nonlinear filter can be reduced to the
linear least-squares estimator. Thus, the perfor-
mance of the linear least-squares estimate can be
determined by the corresponding index function if
only Gaussian noises are considered.

2.1. Performance Index for Depth Estimation

Consider the linear stochastic system

Ž .y ����� 10o

where y �RRm is composed of the measurable sig-o
nals, ��RRm�n is known, ��RRn is a parameter
vector to be estimated, and ��RRm is a zero-mean
random vector with variance matrix S. The best

ˆ�Ž .unbiased linear estimator for � in 10 is � �
�1 Ž T �1 .�1 32S � � S � y . The corresponding covari-o

ˆ�ance of � is then

�1� T �1ˆŽ . Ž . Ž .Cov � � � S � 11

ˆ ˆ T ˆ� Ž .� �Ž . Ž .� Ž .Since Tr Cov � �E ��� ��� , where Tr � is
ˆ� Ž .�a trace operator, Tr Cov � is often used as an

accuracy index of the parameter estimation.
Ž .Now consider 3 and reform it in the form of

Ž .10 as

Ž .x�a � , � 1˙ v �v �x 1 1 Ž .� � 12v �v �Ž .y�a � , � Z˙ 2 2y

Ž . Ž . �Ž 2 2 . �where a � , � � xy�� � � � �x �� � �x y x x x y

Ž . Ž . �Ž 2 2 . � Ž� y�� � , a � , � � � � y �� � � xy�x y z y y y x

. Ž .� � � � x�� � , and � and � are two zero-x y y x z 1 2
mean Gaussian noise terms. The variance matrix S

Ž .is then diag q , q , where q is the variance of � ,11 22 i i i
ˆ ˆ �i�1, 2. In this case, m�2, n�1, ��1�Z, y � x�˙o

Ž . Ž .�T � �Ta � , � , y�a � , � , �� v �v , v �v , and ��˙x y 1 2

� �T Ž .� , � . It then follows from 11 that1 2

�1Tˆ � Ž . � Ž .Cov 1�Z � v A � v 13Ž .

where

Ž . T Ž . Ž . T Ž .v � v � v � v �1 1 2 2Ž . Ž .A � � � 14
q q11 22

ˆ ˆ ˆŽ . Ž .Although Cov 1�Z �Cov Z , the accuracy of 1�Z
ˆ ˆŽ .also reflects that of Z. Since a smaller Cov 1�Z

ˆmeans a more accurate estimate 1�Z, we could then
guess that this index function could still be a perfor-
mance criterion of the extended Kalman filter for

Ž .estimating the states of the nonlinear system of 5
Ž .and 6 , when the variation rate Z is very small.

Ž . Ž .Proposition 1: Consider the system of 5 and 6 with
� T T �Tinput u� v , � . Suppose that the variation rate of

the depth is small enough that the nonlinear depth esti-
Ž .mator such as the extended Kalman filter can be

approximated as a linear least-squares estimator. When
� Ž .�the norm of the linear velocity of the camera v t is
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Ž .fixed, a larger TT � , v guarantees a faster convergento
rate of the depth estimation, where

Ž . T Ž . Ž .TT � , v �v A � v 15o

Ž . Ž .in which A � is defined in 14 . Since v is orthogonal3
Ž .to v and v , v is then in the null space of A � .1 2 3

The two examples in the next subsection will
show that it is acceptable for slow camera velocity.

2.2. Simulations and Experiments

Ž . Ž . Ž .According to the form of v � , v � , and v � in1 2 3
Ž .9 , we establish a distribution spanned by the or-

� 4Ž . � �thonormal basis b , . . . ,b � , where b �b � b1 6 i i i
and

��x
0
xb � ,1 0
0
0

xy

�y
2 2Ž .� � �xxŽ . Ž .v � �v �3 1
�x0 Ž .b � � , 162 �x0 y

�0 y

0
0
0

x

�x
y

�yb � ,3

1
0
0
0

0 0 0
0 0 0
0 0 0 Ž .b � , b � , b � 174 5 61 0 0
0 1 0
0 0 1

Although the basis varies, it is independent of the
unknown depth Z. With the basis, we can express
the camera velocity as

6

Ž . Ž . Ž . � Ž .� Ž .u t � c t b � � b , . . . ,b � u t 18bÝ i i 1 6
i�1

� Ž .� � Ž . Ž .�Twhere u t � c t , . . . , c t is the representa-b 1 6
Ž . � 4Ž .tion of u t with respect to the basis b , . . . ,b � .1 6

2Ž . 2Ž .It is apparent that c t �c t �0 is equivalent to1 2
Ž . Ž .TT � , v �0, which occurs when v is parallel to v � .o 3

2.2.1. Simulations

The model used in the first example is the visual
Ž . Ž .system 5 and 6 with the effective focal length

f �16.53 mm, the horizontal length per pixel S �e x
0.0161 mm�pixel, and the vertical length per pixel
S �0.0189 mm�pixel. The image sampling periody
is 200 ms, the measurement noise covariance matrix

Ž 2 2 .R�diag 2.25 pixel , 2.25 pixel , and the system
Ž 2noise covariance matrix Q�diag 2.25 pixel , 2.25

2 2 .pixel , 16 mm . The states are estimated by the
Ž .extended Kalman filter. The differential Eqs. 5

Ž .and 6 are numerically solved by the 4th order
Adams�Bashforth method. Note that the velocities

Ž .are expressed as 18 . The units of the first three
Ž .components of u t are mm�s and those of the

others are rad�s.
Suppose that an interesting feature point on the

Ž .screen is initially located at 100, 100 . The guessed
value of the initial depth of the point is 400 mm,
while its true depth is 450 mm; i.e., the initial depth
estimation error is 50 mm.

According to Proposition 1, it is recommended
Ž .that v be chosen such that TT � , v is as large aso

Ž .possible. Clearly, the value of the index 15 de-
pends on the magnitude and the direction of v, the

Ž .image coordinates x, y , and the property of the
system noise. For the convenience of comparison,

� �we only consider v to be constant.
Consider the input in the form of

˜� � � � Ž .u� v � C C b �S b �S b � � , 19bž /� � 1 � 2 � 3

Ž . Ž . Ž .where S �sin � , C �cos � , S �sin � , C �� � � �

Ž . � � � T �Tcos � , � and ��RR, and � � 0, 0, 0, � . Whenb
� �v is constant, it is known that any unit vector in

3 � �TRR can be represented by C C ,C S , S with� � � � �

appropriate � and � , where � and � are the az-
imuth and elevation angles with respect to the basis
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Ž .vectors b , b , and b . It follows from 15 that1 2 3

2 2Ž . Ž .C C C S� � � �Ž . � � Ž .TT � , v � v � 20o q q11 22

Ž . 2TT � , v is then proportional to C when C . Ino � �

� � � �Example 1, the ratio of C to S will be changed� �

to investigate the relationship between the index
Ž .function TT � , v and the convergent rate of theo

depth estimation error. On the other hand, Example
2 will provide an experimental result.

Example 1: We consider the velocities of the cam-
� Ž .�era with v t �10 mm�s for all cases. In this
2 2 Ž .example, c �c varies with C and then TT � , v1 2 � o

� �increases with C increasing. Figure 1 shows the�

'simulation results for C �1� 2 and C �1, 0.8,� �

�0.5, 0.3, 0.1, 0, �0.4, and �0.7, while ��0.01 2, 1,
�T3 rad�s. It should be remarked that � is arbitrar-
ily assigned and does not affect the property of the
simulations. It can be seen from the depth estima-

Ž .tion errors in Figure 1a and the cost functions TT � , vo
in Figure 1b that the depth estimation error con-

Ž .verges more quickly when TT � , v is larger. Weo 0
�also show the simulation results of v��10v in

�Figure 1, where v is the solution for the optimal
problem:

Ž . � � Ž .max TT � , v subject to v �1 mm�s 21o
v

�Ž .Figure 1b shows that the curves of TT � ,�10v areo
above all the others with the exception that the

�Ž .curve of TT � , v for v�10v and that with C �1o �

intersect about t�8.5 s. This exception occurs be-
cause the image states for both are different for

Ž .t�0, and the optimization problem 21 is under
Ž .the assumption that the image position x, y is

given. Figure 1c shows that the image trajectories
for different velocities are entirely different except

Ž . Ž .that the initial image x , y � 100, 100 in pixels.0 0
However, Proposition 1 still holds true, although

Ž .the optimal solutions of 21 are different for differ-
ent image states. The simulations in Figure 1 indi-

Ž .cate that TT � , v is a good index for the convergento
rate of the depth estimation.

We also changed the value of the fixed C in the�

� �range �1, 1 and found that the simulations have
the same property of the depth estimation perfor-
mance as that in Figure 1.

2.2.2. Experiments

Example 2: In this example, a 3-DOF XYZ-type
manipulator is used to drive the camera moving
along three orthogonal directions. The images used
in the experiment are 640�480 pixels in size. The

Ž .parameters needed in 5 are � �1663.4 pixels andx
� �1679.0 pixels. The states are estimated by they

EKF with the measurement noise covariance matrix
Ž 2 2 .R�diag 0.25 pixel , 0.25 pixel , the system noise

Ž 2 2covariance matrix Q�diag 0.25 pixel , 0.25 pixel ,
2 .100 mm , and the image sampling period is 500

ms. The image coordinates are obtained from the
center of the image of a black circle with diameter
6.4 mm. The initial image coordinates are located at
Ž .4.90,�22.56 in pixels. The real initial depth is
about 550 mm, while the estimate of the initial
depth is 700 mm. The relationship between the
camera frame and the base frame of the manipula-
tor has been obtained after the camera calibration.
Then the velocities can be described with respect to

� �the camera frame. The camera velocities with v �
� Ž .�10 mm�s are listed as follows cf. 18 :

T� Ž .� � �u � �10 1, 0, 0, 0, 0, 01 b

T� Ž .� � �u � �10 0, 1, 0, 0, 0, 02 b

T� Ž .� � �u � �10 0, 0, 1, 0, 0, 03 b

T� Ž .� Ž . � �u � � 10�3 �2, 1, 2, 0, 0, 04 b

T'� Ž .� Ž . � �u � � 10� 14 1, 2, 3, 0, 0, 05 b

T'� Ž .� Ž . � �u � � 10� 10 �1, 0, 3, 0, 0, 06 b

T'� Ž .� Ž . � �u � � 10� 15 0, 1,�4, 0, 0, 07 b

T'� Ž .� Ž . � �u � � 10� 27 �1, 1, 5, 0, 0, 08 b

Note that u and u have zero components along1 2
v , while u has zero components along v and v .3 3 1 2
The angular velocities are zero for these eight in-
puts. Figure 2a shows that the depth estimation
errors for these eight inputs, except for u , have a3

Ž .tendency to converge to zero. TT � , v curves ino
Figure 2b emphasize again that Proposition 1 is
practical and useful.

Results of both examples support Proposition 1.
However, the component ratio of v is determined
by a camera motion controller, not by a depth esti-

Ž .mator. In next section, we attempt to increase TT � , vo
by a modified camera velocity controller for given
feature points.
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Ž . Ž . Ž .Figure 1. a Depth estimation errors. b The cost function TT � , v .o

3. APPLICATION TO VISUAL SERVO CONTROL

The results of Section 2 will be used to design a
visual servo control scheme. The concept is to cor-
rect the linear velocity v of the camera by increasing
Ž .TT � , v as possible.o

3.1. Control Scheme

First, we introduce the visual servo control scheme
Ž .with the damped least-squares method DLSM .
Ž .Suppose that there are n feature points x , y .i i

Ž .Applying 3 to n feature points, we obtain

˙ Ž .f�Ju 22

where the feature vector f and the visual Jacobian
matrix J are

x1
Ž .J �y 11 .. . Ž ..f� , J� 23..
Ž .x J �n n

yn
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Ž . Ž . � �Figure 1. continued c The image trajectories for different inputs u with v �10
mm�s for Example 1.

Note that J�RR2n�6. The control purpose is to de-
sign the velocity of the camera u, so that the rate of
change of the feature points in the image of the
camera follows the desired one.

The damped least-squares control scheme is to
˙� 2 2 2 �� � � �minimize Ju�f �� u , where f is the fea-s

ture velocity command and � �RR is the dampings
� � 2factor which represents the weighting of u with

˙ ˙�� �respect to the feature velocity error f�f . The
control command u� is the optimal solution

�1� �T 2 T˙Ž . Ž .u � J J�� I J f 24s

where I is the identity matrix. A nonzero � makess
Ž T 2 . TJ J�� I positive definite, even if J J is singular.s

Although this control scheme can alleviate the sin-
gularity problem, the input velocity u� may not
help the performance of the depth estimation Z ,i

Ž .which is required by 4 . To compensate for this
drawback, Proposition 1 motivates us to minimize

Ž .the following objective function TT u ,

2 n�s2 2� 2 2˙Ž . � � � � Ž .TT u � Ju�f �� u � � TT x , y ,uÝs o i o i in i�1

Ž .25

where

TŽ . Ž .TT x , y ,u �u A u 26o i i i

Ž .A � 0 6�6i Ž .A � �RR 27i 0 0

Ž . Ž .in which A � is a matrix function defined in 14i
for the ith point. The first two terms on the right-

Ž .hand side of 25 are those in the damped least-
Ž . Ž .squares method. The term TT � , v in 25 is foro

improving the depth estimation. The factor � is ao i
weighting factor to compromise the control error
and the performance of the depth estimation.

Ž .Since matrix A � is symmetric, A is ortho-i i
Tgonally diagonalizable: A �U � U , where � �i i i i i

Ž . 6�6diag � , � , 0, 0, 0, 0 �RR , � and � positivei1 i2 i1 i2
Ž .eigenvalues of A � , and U is an orthogonal ma-i i

Ž .trix. Thus, 26 is rewritten as

Ž . T Ž T . Ž .TT x , y ,u �u U � U u 28o i i i i i

Ž .By calculus, we set 	TT u �	u�0 to obtain the
� Ž .optimal solution u to 25 as

� �1 T˙� Ž .u �W J f 29
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Ž . Ž . Ž .Figure 2. a Depth estimation errors. b The cost function TT � , v for different inputs uo
� �with v �10 mm�s for Example 2.

where

n1
T 2 2 TŽ . Ž .W�J J�� I� � U � U 30Ýs o i i i in i�1

which is a positive definite symmetrical matrix if
2 � 4� max � , � 	1, 
 i�1, . . . , n. We shall call theo i i1 i2

Ž .control law 29 the observabilized damped least-

Ž .squares method abbreviated as ODLSM . When
2 � 4� �1�max � , � , 
 i�1, . . . , n, it follows fromo i i1 i2

Ž . Ž .25 that TT u is always positive.
Suppose that the true values of depths can be

obtained by a depth estimator like the extended
Ž .Kalman filter in a few seconds. Thereafter, J in 23

is approximately calculated by the estimated values
of depths. We can then expect that the overall sys-
tem is asymptotically convergent according to Theo-
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rem Al in the Appendix. It is verified by the simula-
tion described in the following.

3.2. Simulation Example

The simulation example considers three image
points of the corners of a triangle pattern. The initial
image coordinates of three corners are located at
Ž . Ž . Ž .10, 63 , 90, 51 , and 29, 153 in pixels and their real
initial depths are all 550 mm but are unknown in
this simulation. The desired image has three corner

Ž . Ž . Ž .images at �50,�68 , 50,�68 , and �50, 43 in
pixels. Note that the final depths are all 450 mm
corresponding to the desired image feature. Sup-
pose that the estimates of the initial depths are
ˆ ˆ ˆZ �595 mm, Z �599 mm, and Z �596 mm; i.e.,1 2 3
the initial estimation errors are about 50 mm. The
intrinsic parameters of the camera are the same as
those in Example 1 in Section 2.2. The noise covari-

Ž 2ance matrices in EKF are R�diag 0.25 pixel , 0.25
2 . Ž 2 2 2pixel and Q�diag 0.25 pixel , 0.25 pixel , 25

2 . � Ž .mm . Both DLSM and ODLSM controllers see 24
Ž .�and 29 have the same following data: the sam-

pling period T �200 ms, the proportional gains
K �0.65, the damping factor � �0.003, and thep s

� 4weighting factor � �0.9�max � , � , i�1, 2, 3,o i i1 i2
for each corner.

The history of the error norm of the estimated
23 ˆ'depths, i.e., Ý Z �Z �3 , in Figure 3a re-Ž .i�1 i i

veals that the depth estimation in the ODLSM con-
troller is superior to that in the DLSM controller.
The steady-state error of the depth estimate in DLSM
is about 7 mm, while that in the ODLSM nearly
vanishes for the same EKF estimator. The feature
errors in both the ODLSM and DLSM are almost the
same and converge to zero as is shown in Figure 3b.
That means using a moderate small � in ODLSMo i
has little effect on the convergence performance of
the visual servo control.

Figures 4 and 5 show the linear and angular
velocities of the camera generated by the DLSM and
ODLSM, respectively. The velocities are expressed

Ž .with respect to the time-varying basis 16 by the
� �Tcomponent vector c , c , . . . , c . Comparing Figure1 2 6

4 with Figure 5, we find that c and c are enlarged1 2
Ž .while c is reduced by the ODLSM in the begin-3
ning of the control process. This velocity history in
the ODLSM then provides a better depth estimation
as was expected by Proposition 1. Consequently, the
advantage of the ODLSM is that a good depth
estimate can be achieved while the convergence
performance is retained.

4. CONCLUSION

This article presents a performance criterion for the
depth estimation problem of the visual servo sys-
tem of a robot visual system. The convergence rate
of the depth estimator increases with the value of
the performance criterion stated in Proposition 1.
Although this result is a heuristic extension of that
of a linear system, some simulations and experi-
ments verify the validation of this extension to the
nonlinear visual system, provided that the camera
velocity is not fast. Finally, we apply the perfor-
mance criterion of the depth estimation to the de-
sign of an estimator-based visual servo control
scheme for a manipulator, named the observabi-
lized damped least-squares method, to improve the
depth estimation. A simulation shows that the im-
provement of the depth estimation is achieved with-
out any sacrifice of the convergence performance.
Future work will be the extension of the control for
a moving object.

APPENDIX

Ž .Theorem A1: Consider the visual servo system 22
Ž .with the ODLSM controller 29 and

˙� Ž . Ž .f �K f �f A1p d

where K �0 is a constant proportional gain. Supposep
that the depth estimates of the feature points are bounded
and will converge to the real values. Let the feature
reference input f be a step input. Then the featured
vector f asymptotically converges to f or to some fd s

such that JTf �0, if the weighting factors � , i�s o i
Ž . 2 � 41, . . . , n, in 30 all satisfy � max � , � 	1.o i i1 i2

Proof: We consider only the time after t at which0
the depth estimates have converged to the true

Ž .values. f is the state of the system 22 . So define the
Lyapunov function candidate as

1 T˜ ˜ ˜Ž . Ž .V f � f f A22

˜ ˜Ž .where f�f�f . V f is positive definite and radi-d
˜Ž .ally unbounded. The time derivative of V f along

the solution trajectory of the closed-loop system

˙ �1 T Ž . Ž .f�K JW J f �f A3p d
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Ž . Ž .Figure 3. a The norm of the depth estimation errors. b The norm of the feature
feedback errors by DLSM and ODLSM.

is

˙ ˜ ˜T �1 T˜Ž . Ž .V f ��K f JW J f	0 A4p

since W is a positive definite matrix when

2 � 4� max � , � 	1.o i i1 i2

˙� Ž . 4Let SS� �f: t
0 such that V f�f �0 andd
Ž .let MM denote the largest invariant set of A3 con-

tained in SS . LaSalle’s invariance principle,33,34 states
Ž .that all solution trajectories of A3 globally asymp-

�totically converge to MM as t��. Apparently, SS� f:
T Ž .Ž . 4 Ž .f�f or J � f�f �0 . It follows from A3 thatd d

˙ T Ž .Ž .f�0 and then f is stationary when J � f�f �0.d

Thus, MM�SS . This completes the proof. Q.E.D.
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Ž . Ž .Figure 4. Camera velocity by DLSM a linear and b angular velocities.
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Ž . Ž .Figure 5. Camera velocity by ODLSM a linear and b angular velocities.
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