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Abstract

Assortment optimization problems intend to seek the best way of placing a given set of rectangles within
a minimum-area rectangle. Such problems are often formulated as a quadratic mixed 0}1 program. Many
current methods for assortment problems are either unable to "nd an optimal solution or being computa-
tionally ine$cient for reaching an optimal solution. This paper proposes a new method which "nds the
optimum of assortment problem by solving few linear mixed 0}1 programs. Numerical examples show that
the proposed method is more computationally e$cient than current methods.

Scope and purpose

Assortment optimization problems aim at cutting given rectangular pieces from a larger rectangle where
the wasteful area is minimized. Current assortment optimization methods (Chen et al., European Journal of
Operational Research 1993; 63: 362}67; Li and Chang, European Journal of Operational Research 1998; 105:
604}12) are either unable to "nd optimal solution or being computationally ine$cient for reaching the
optimal solution. This paper proposes a fast algorithm which only requires to solve three linear programs.
Numerical examples demonstrate that the proposed algorithm is much faster than current methods. By
utilizing this algorithm, many practical cutting programs in industries could be solved e$ciently. � 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Assortment problems occur when a number of small rectangular pieces need to be cut from
a large rectangle to get minimum area. Assortment optimization techniques have been widely
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applied in industries such as in solving cutting problems of rectangle steel bars [1] and in solving
a guillotine cutting problem [2]. Chen et al. [3] presented a mixed integer programming for
assortment problems. Their method however can only "nd a feasible solution instead of an optimal
solution. Recently, Li and Chang [4] developed a method for "nding the optimal solution of the
assortment problem. However, Li and Chang's method requires to use numerous 0}1 variables to
linearize the polynomial objective function in their models, which would cause heavy computa-
tional burden.
This paper proposes another method for "nding the optimum of an assortment problem. The

major advantage of this method is that it obtains the optimal solution by solving a linear 0}1
problem without adding any extra variables. The computational e$ciency in the proposed model
can therefore be improved signi"cantly. The numerical examples demonstrate that the proposed
method can "nd the optimal solution. In addition, the computational time of the proposed method
is much less than that in current methods.

2. Problem formulation

Given n rectangles with "xed lengths and widths. An assortment optimization problem is to
allocate all of these rectangles within an enveloping rectangle, which has minimum area. Denote
x and y as the width and the length of the enveloping rectangle (x'0, y'0), the assortment
optimization problem is stated brie#y as follows:

Minimize xy

subject to 1. All of n rectangles are non-overlapping.

2. All of n rectangles are within the range of x and y.

3. 0(x
�
)x)x� and 0(y

�
)y)y� (x

�
, x� , y

�
and y� are constants).

The related terminologies used in assortment models, referring to Li and Chang [4], are
described below (Fig. 1).

(p
�
, q

�
): Dimension of rectangle i, p

�
is the long side and q

�
is the short side, p

�
and q

�
are

constants, i3J, J is the set of given rectangles.
(x, y): The top right corner coordinates of the enveloping rectangle, x and y are variables.
x�
�
: Distance between center of rectangle i and original point along the x-axis.

y�
�
: Distance between center of rectangle i and original point along the y-axis.

s
�
: An orientation indicator for rectangle i, i3J. s

�
"1 if p

�
(the longer dimension of

rectangle i) is parallel to the x-axis; s
�
"0 if p

�
is parallel to the y-axis. Take Fig. 1 for

example, s
�
"0 and s

�
"1.

The conditions of non-overlapping between rectangles i and k can be reformulated by introducing
two binary variables u

��
and v

��
as follows (Fig. 2).

Condition 1: u
��

"0 and v
��

"0 if and only if rectangle i is at the right of rectangle k.
Condition 2: u

��
"1 and v

��
"0 if and only if rectangle i is at the left of rectangle k.

Condition 3: u
��

"0 and v
��

"1 if and only if rectangle i is above the rectangle k.
Condition 4: u

��
"1 and v

��
"1 if and only if rectangle i is below the rectangle k.
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Fig. 1. Graphical illustration of assortment problem.

Fig. 2. Graphical illustration of non-overlapping conditions.

The assortment optimization problem can then be formulated as follows, referring to Li and
Chang [4].
Assortment problem

P1: Minimize xy

subject to
(1)

(x�
�
!x�

�
)#u

��
x� #v

��
x� *�

�
[p

�
s
�
#q

�
(1!s

�
)#p

�
s
�
#q

�
(1!s

�
)], ∀i, k3J, (2)

(x�
�
!x�

�
)#(1!u

��
)x� #v

��
x� *�

�
[p

�
s
�
#q

�
(1!s

�
)#p

�
s
�
#q

�
(1!s

�
)], ∀i, k3J, (3)

(y�
�
!y�

�
)#u

��
y� #(1!v

��
)y� *�

�
[p

�
(1!s

�
)#q

�
s
�
#p

�
(1!s

�
)#q

�
s
�
], ∀i, k3J, (4)

(y�
�
!y�

�
)#(1!u

��
)y� #(1!v

��
)y� *�

�
[p

�
(1!s

�
)#q

�
s
�
#p

�
(1!s

�
)#q

�
s
�
], ∀i, k3J, (5)

x� *x*x�
�
#�

�
[p

�
s
�
#q

�
(1!s

�
)], ∀i3J, (6)

y� *y*y�
�
#�

�
[p

�
(1!s

�
)#q

�
s
�
], ∀i3J, (7)

x�
�
!�

�
[p

�
s
�
#q

�
(1!s

�
)]*0, ∀i3J, (8)

y�
�
!�

�
[p

�
(1!s

�
)#q

�
s
�
]*0, ∀i3J, (9)

where u
��
, v

��
, s

�
, s

�
are 0}1 variables, and x, y,x�

�
, x�

�
, y�

�
and y�

�
are bounded continuous variables.
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Constraints (2)}(5) are non-overlapping conditions and constraints (6)}(9) ensure that all rec-
tangles are within the enveloping rectangle.
Problem (1)}(9) is a mixed 0}1 program with a quadratic objective function, which is di$cult to

solve to "nd an optimal solution by the method discussed in Chen et al. [3]. For treating the
quadratic term xy in (1), Chen et al. [3] "rst "x x variable as a constant, then solve the linear mixed
0}1 program to obtain the solution. The solution they "nd however is only a feasible solution
instead of an optimal solution. Li and Chang [4] proposed an approach for solving the problem to
obtain an optimum. The basic idea of their method is to approximately substitute x and y continu-
ous variables in (1) by a set of 0}1 variables thus to linearize the product term xy. Problem (1)}(9)
can then be reformulated as a linear mixed 0}1 problem which can be solved to reach an optimum
within a tolerable error. Li and Chang's model is introduced brie#y as follows.

3. Li and Chang approach

Li and Chang [4] substitutes x and y in (1) as follows:

x"��
�

�
�
���

2����
�
#�

�
, y"��

�

�
�
���

2����
�
#�

�
,

where �
�
and �

�
are small positive variables. ��

�
and ��

�
are the pre-speci"ed constants which are the

upper bounds of �
�
and �

�
, respectively. �

�
and �

�
are 0}1 variables, andG andH are integers which

denote the number of required 0}1 variables for representing x or y. The polynomial term xy in (1)
is then represented as

xy"��
�

�
�
���

2����
�
y#��

�

�
�
���

2����
�
�
�
#�

�
�
�
. (10)

A full Li and Chang model is reformulated as a linear mixed 0}1 program below.
Model 1:

Minimize ��
�

�
�
���

2���z
�
#��

�

�
�
���

2���u
�

subject to
(11)

z
�
*y#y� (�

�
!1), g"1, 2,2,G, (12)

u
�
*�

�
#��

�
(�

�
!1), h"1, 2,2,H, (13)

(2)}(9)

z
�
*0, u

�
*0, �

�
, �

�
3�0, 1�.

The major di$culty of Model 1 is that it involves G#H additional 0}1 variables. The smaller the
tolerable errors (i.e., �

�
and �

�
), the larger the size of G and H and the longer the CPU time for

solving the problem.
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Fig. 3.

4. Proposed method

Denote F as a feasible set of Problem P1, F"�(2), (3), (4),2, (9)�.
De"ne a local optimum of Problem P1 below.

De5nition 1. A point (xH, yH), (xH, yH)3F, is a local optimum of Problem P1 if
xHyH)(xH$�)(yH$�) for all (xH$�, yH$�)3F, where � is a noticeable small positive value.

Remark 1. By referring to De"nition 1, there are eight neighborhood points for a given reference
(x�,y�) as shown in Fig. 3:

(x�#�, y�#�), (x�#�, y�), (x�#�, y�!�), (x�, y�#�), (x�,y�!�),

(x�!�, y�#�), (x�!�, y�) and (x�!�, y�!�).

Consider a linear mixed 0}1 program below.

P2: Minimize z"x#y

subject to (x, y)3F, x*y.

where the constraint x*y is to denote x as the larger side of the rectangle.

Let the obtained objective value of solving P2 be z�.
P2 may have multiple optimal solutions (x�, y�). What we are interested in is to "nd one of these

solutions, which has minimal xy value.
Consider the following proposition.

Proposition 1. Let S be a set of solutions of P1. S"�(x, y) � x#y"z�,(x,y)3F, x*y�. If there is
a point (x�, y�)3F in which x�*x� for all (x�, y�)3F, then x�y�)x�y�.

Proof. Since x�*x�, there exist a �*0 such that x�"x�!� and y�"y�#�. Because
x�!�*y�#�, it is clear that x�!y�!2�*0. We then have

x�y�"(x�!�)(y�#�)"x�y�#(x�!y�!�)*x�y�. �
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Table 1
Computational comparison of two models

Problem No. No. of
rectangles

p
�

q
�

CPU time (hh :mm : ss) Objective value

Model 1 Proposed
method

Model 1 Proposed
method

1 4 24 20
18 16

00 : 05 : 12 00 : 00 : 03 1178 1178

16 14
21 7

2 5 33 10 '10 : 00 : 00 00 : 01 : 18 NA 1518
30 11
25 15
18 14
18 10

A point (x�, y�) satisfying Proposition 1 can be obtained by solving following linear mixed 0}1
program.

P3: Maximize x

subject to (x, y)3F, x*y, x#y"z�.

Let the solution be (x�, y�).
We then deduce the following theorem.

Theorem 1. The optimal solution (x�, y�) of P3 is also a local optimum of P1.

Proof. Examining the eight neighborhood points of (x�, y�) in Remark 1 as follows.

(i) Some of these points may not be the feasible points of P1. Since the minimal value of x#y for
(x, y)3F is x�#y�"z�, it is clear that three points (x�, y�!�),(x�!�, y�) and (x�!�, y�!�)
are not feasible points of P1.

(ii) Since x�"�Maxx � (x, y)3F, x*y, x#y"z��, point (x�#�, y�!�) is also an infeasible
point of P1 (�x�#�'x�).

(iii) It is unclear that whether these points (x�#�, y�#�), (x�#�, y�) and (x�, y�#�) are feasible
or not for P1. However, since (x�#�, y�#�)'x�y�, (x�#�)y�'x�y� and
x�(y�#�)'x�y�, (x�, y�) is better than these three points.

(iv) By referring to Proposition 1, we have, (x�!�)(y�#�)'x�y�.

Since each neighborhood point of (x�, y�) is either infeasible or inferior to (x�, y�). Therefore, (x�, y�)
is a local optimum of P1 following De"nition 1. �
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Fig. 5. Result for "ve rectangles.

Fig. 4. Result for four rectangles.

5. Numerical examples

Consider the following assortment optimization problem adopted from Chen et al. [3]: Some
given rectangles are required to be placed within a rectangle which has minimum area. The sizes of
pieces of rectangles are given in Table 1 and Figs. 4 and 5. Here we solve the same problem using
Chen et al. [3] model, Model 1 and the proposed model by LINGO 5.0 (LINDO SYSTEMS INC.,
1998, a common-used optimization package) [5,6] running in a personal computer.
Chen et al.'s model treats Problem 1 by "xing the value of y as y"36, then they solved

a nonlinear mixed 0}1 program to obtain a local optimal solution with an objective value that
equals 1224. Model 1 solves the problem by specifying ��

�
"��

�
"0.1, and obtains the optimal

solution which has the objective value 1178. Proposed method solves the problem and obtains the
same solution as found by Model 1. Table 1 shows that for the cases with four and "ve rectangles,
the proposed method spends much less time than Model 1 for "nding the optimal solution.
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6. Conclusions

This paper proposes a new method to solve the assortment problem. The proposed method
reformulates the original problem as a linear mixed 0}1 program. Numerical examples demon-
strate that the proposed method uses much less CPU time than that in Model 1 for reaching the
optimal solution.
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