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SUMMARY

This paper proposes an accurate integral-based scheme for solving the advection–di0usion equation. In
the proposed scheme the advection–di0usion equation is integrated over a computational element using
the quadratic polynomial interpolation function. Then elements are connected by the continuity of 7rst
derivative at boundary points of adjacent elements. The proposed scheme is unconditionally stable and
results in a tridiagonal system of equations which can be solved e:ciently by the Thomas algorithm.
Using the method of fractional steps, the proposed scheme can be extended straightforwardly from one-
dimensional to multi-dimensional problems without much di:culty and complication. To investigate
the computational performances of the proposed scheme 7ve numerical examples are considered: (i)
dispersion of Gaussian concentration distribution in one-dimensional uniform <ow; (ii) one-dimensional
viscous Burgers equation; (iii) pure advection of Gaussian concentration distribution in two-dimensional
uniform <ow; (iv) pure advection of Gaussian concentration distribution in two-dimensional rigid-body
rotating <ow; and (v) three-dimensional di0usion in a shear <ow. In comparison not only with the
QUICKEST scheme, the fully time-centred implicit QUICK scheme and the fully time-centred implicit
TCSD scheme for one-dimensional problem but also with the ADI-QUICK scheme, the ADI-TCSD
scheme and the MOSQUITO scheme for two-dimensional problems, the proposed scheme shows con-
vincing computational performances. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The advection–di0usion equation is one of the governing equations used for modelling so-
lute transport processes and water quality in rivers, lakes, oceans and groundwater. Among
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various numerical methods available for the solution of the advection–di0usion equation, the
conventional Crank–Nicolson second-order central di0erence scheme [1] is a relatively sim-
ple and convenient way. However, due to central discretization of advection processes, it
su0ers from severe numerical oscillation under large Peclet number (cell Reynolds num-
ber). This numerical oscillation can be vanished by using a 7rst-order upwind-type 7nite
di0erence scheme, but it induces excessive numerical damping. Thus, in order to tackle
the numerical oscillation problem and reduce excessive numerical damping, several high-
order upwind-type 7nite di0erence methods have been proposed, such as the quadratic up-
stream interpolation for convective kinematics (QUICK) scheme [2], the QUICK with esti-
mated stream terms (QUICKEST) scheme [2] and the third-order convection second-order
di0usion (TCSD) scheme [3]. These numerical schemes are all explicit formulations orig-
inally. Later on, some implicit forms of modi7ed QUICK [4; 5] and TCSD [6] schemes
were proposed. These high-order upwind-type 7nite di0erence schemes have been attrac-
tive for practical engineering applications. For example, the explicit QUICK scheme has
been used for hydraulic and water quality studies in coastal and inland waters [7–9] and
the implicit QUICK-based formulation has been applied to the investigations of unsteady
<ow [10].

In addition, the Eulerian–Lagrangian split operator approach in which advection and
di0usion processes are computed independently for each step has been pursued by many
numerical modellers. The split operator approach has the advantage of using di0erent accurate
schemes for each physical process. However, since the advection and di0usion
processes are computed separately, the split operator approach is more complicated and expen-
sive when applied to multi-dimensional problems, especially for the problems with complex
<ow pattern. Thus, as far as simplicity and e:ciency is concerned, the numerical schemes
without split operator approach are still very attractive for solving the advection–di0usion
problems.

In this paper an accurate integral-based numerical scheme for solving the advection–di0usion
equation is proposed. In the proposed scheme, the advection–di0usion equation is integrated
over a computational element using the quadratic polynomial interpolation function. Then
elements are connected by the continuity of 7rst derivative between boundary points of
adjacent elements. Using the method of fractional steps and the technique of linearization,
the proposed scheme, originally developed for one-dimensional linear problems, can be ex-
tended straightforwardly to multi-dimensional and non-linear problems. Five numerical ex-
amples, including: (i) dispersion of Gaussian concentration distribution in one-dimensional
uniform <ow; (ii) one-dimensional viscous Burgers equation; (iii) pure advection of Gaussian
concentration distribution in two-dimensional uniform <ow; (iv) pure advection of Gaus-
sian concentration distribution in two-dimensional rigid-body rotating <ow; and (v) three-
dimensional di0usion in a shear <ow, are used to investigate the computational performances
of the proposed scheme. The proposed scheme is compared not only with the QUICK-
EST scheme, the fully time-centred implicit QUICK scheme and the fully time-centred im-
plicit TCSD scheme for one-dimensional problem but also with the ADI-QUICK scheme,
the ADI-TCSD scheme and the modi7ed second-order QUICKEST scheme (MOSQUITO)
[11] for two-dimensional problems in terms of numerical damping and numerical
oscillation.
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2. DEVELOPMENT OF INTEGRAL-BASED SCHEME

2.1. Discretization

The transient one-dimensional advection–di0usion equation can be written as

@N
@t

+
@(uN)
@x

=
@
@x

(
�
@N
@x

)
(1)

where the scalar function N(x; t) may represent, for example, temperature or concentration at
position x and time t in a <uid moving with a speed u(x; t) and di0usion coe:cient �(x; t).

First, Equation (1) is integrated over an interval from position xi to position xi+1 and is
expressed as
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By de7ning QNi+1=2, i.e. the average quantity over a computational element, as

QNi+1=2 =
1

Rx

∫ xi+1

xi
Ndx (3)

and adopting the quadratic polynomial interpolation function in the interval [xi; xi+1], the 7rst
derivatives at point xi and xi+1 can be expressed as
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(4Ni+1 + 2Ni − 6 QNi+1=2) (4)

@N
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Rx
(−2Ni+1 − 4Ni + 6 QNi+1=2) (5)

with a uniform grid space, i.e. Rx= xi+1 − xi, as shown in Figure 1. The detailed derivations
of Equations (4) and (5) are given in the Appendix.

Figure 1. Sketch of grid representation of the proposed scheme.
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Substituting Equations (3)–(5) into Equation (2) produces
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Using the Crank–Nicholson method to Equation (6), one obtains
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where Rt is the time step. Rearranging Equation (7), the average quantity over the interval
[xi; xi+1] at n+ 1 time step, i.e. QN

n+1
i+1=2, can be expressed as
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where the Courant numbers, Cr ni = uni Rx=Rt and Cr
n+1
i = un+1

i Rx=Rt and di0usion numbers,
Dn
i = �ni Rt=Rx

2 and Dn+1
i = �n+1

i Rt=Rx2, have been introduced. It must be noticed that in

Equation (8) QN
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i+1=2 is explicitly related to Nn+1

i ; Nn+1
i+1 ; Nn

i ; Nn
i+1 and QN

n
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Assuming the 7rst derivative of the scalar tracer distribution is continuous at any grid point,
the continuity of the solution at point xi and n + 1 time step is imposed by satisfying the
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following condition:
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By substituting Equation (8) into Equation (9), the discretization form of the advection–
di0usion equation becomes
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where
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If the di0usion coe:cient �(x; t)= � is constant, Equation (10) can be reduced to
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where
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with the di0usion number being D= �Rt=Rx2.

2.2. Solution procedure

From Equation (10) the proposed scheme would result in a tridiagonal system of algebraic
equations which can be solved e:ciently by the Thomas algorithm [12]. The boundary con-
dition of Dirichlet type can be applied to the proposed scheme directly, whereas for the
Neumann boundary condition the discretization technique of 7nite di0erence method may be
introduced to keep the tridiagonal structure of the system unchanged.
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If the di0usion coe:cient is constant, one can directly apply Equation (11) to solve the
advection–di0usion equation without computing the average quantity of every element. For the
non-constant di0usion coe:cient the solution procedure of the proposed scheme is depicted
as follows:

1. Specify initial value, N0
i ; at every grid point and compute initial average value, QN0

i+1=2, for
every interval from the initial condition.

2. Use Equation (10) along with the boundary conditions to solve for the unknown, Nn+1
i , at

every grid point in space at next time step.
3. Use Equation (8) to explicitly compute the unknown, QN

n+1
i+1=2, at every space interval at

next time step.
4. Repeat steps 3 and 4 to the end of time of simulation.

2.3. Stability analysis

The stability of any numerical schemes is one of the main properties 7rst needing to be
investigated before those can be favourably considered for application. The matrix and von
Neumann methods are two commonly used ways for analysing the stability of any numerical
scheme. In this study the von Neumann stability analysis is conducted by assuming that the
velocity and di0usion coe:cient are constant and positive. The von Neumann stability analysis
shows that the proposed scheme is unconditionally stable.

2.4. Extension to multi-dimensional problems

The proposed scheme is originally developed for one-dimensional linear advection–di0usion
equation. Using the method of fractional steps [13], the proposed scheme can be extended
straightforwardly to multi–dimensional advection–di0usion problems without much complica-
tion and di:culty. The two-dimensional advection–di0usion equation can be written as

Nt +UNx + VNy=DxNxx +DyNyy (12)

where U; V; Dx and Dy represent the <ow velocity and di0usion coe:cient in x and y
directions, respectively. Dividing the two-dimensional advection and di0usion processes into
two successive steps in x and y directions, respectively, Equation (12) can be approximated
with a series of one-dimensional advection–di0usion equation as

Nt +UNx=DxNxx (13)

and
Nt + VNy=DyNyy (14)

Equations (13) and (14) can be solved by the proposed scheme as shown in Figure 2.
The three-dimensional problems can also be formulated and solved in the same manner by
adding z directional advection and di0usion as the third processes. In addition, the non-
linear problems can also be solved iteractively by the proposed scheme with the technique of
linearization.

Copyright ? 2001 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2001; 17:701–713
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Figure 2. Sketch of two-dimensional integral-based scheme.

3. NUMERICAL EXAMPLES

3.1. One-dimensional problems

3.1.1. Calculation of advection and di.usion. To investigate the computational performances
of the proposed scheme, the advection and di0usion of a Gaussian concentration distribution
with the peak value 16.71 and a standard deviation of 280 m is considered with constant
velocity u=0:3 m s−1 and di0usion coe:cient �=1:0 m2 s−1. In this example, with time

Copyright ? 2001 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2001; 17:701–713
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Figure 3. Comparison of various schemes for dispersion of Gaussian concentration
distribution (Cr=0:3; D=0:01).

step size Rt=100 s and grid space Rx=100 m, the Courant number, Cr, and the di0usion
number, D, are 0.3 and 0.01, respectively. The computed results are shown in Figure 3 for
the simulation time of 20 000s. From Figure 3, one can 7nd that the proposed scheme induces
the least numerical oscillation and di0usion in comparison with the QUICKEST scheme, the
fully time-centred implicit QUICK scheme and the fully time-centred implicit TCSD scheme.

3.1.2. Calculation of viscous Burgers equation. To further investigate the capability of the
proposed scheme for solving non-linear problems, a viscous Burgers equation is considered.
The viscous Burgers equation can be expressed as

ut + uux= �uxx (15)

with the initial and boundary conditions

u(x; 0) = 1; x60

= 0; x¿0 (16)

u(−∞; t) = 1; u(∞; t)=0; t¿0

The exact solution for the above problem is

u(x; t)=
[
1 + exp

[
1
2�

(
x − 1

2
t
)]

erfc(−x=2√�t)
erfc[(x − t)=2√�t]

]−1

(17)

where erfc is the complementary error function. Using the technique of linearization, the
viscous Burgers equation can be solved iteractively by the proposed scheme. The numerical
solution of the proposed scheme at time t=2 s is depicted in Figure 4 with the grid space
of 0:01 m, time step of 0:01 s and di0usion coe:cient of 0:01 m2 s−1. The range of Courant
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Figure 4. Computational results of the proposed scheme for Burges equation.

Table I. Performances of various schemes in two-dimensional pure
advection test (Cr=0:5).

Scheme Max. Min. RMS error

Exact solution 10.00 0.0 0.0
Proposed scheme 9.51 −0:01 0.0057
MOSQUITO scheme 7.74 −0:56 0.0141
ADI-QUICK scheme 7.89 −0:57 0.0170
ADI-TCSD scheme 8.00 −1:04 0.0244

number used in this example is from zero to unity, whereas the constant di0usion number is
0.01. Figure 4 shows that the simulated results of the proposed scheme are very close to the
exact solution. This numerical example demonstrates that the proposed scheme also performs
well for the nonlinear problem.

3.2. Two-dimensional problems

3.2.1. Calculation of pure advection in uniform 1ow. The Gaussian concentration distribu-
tion with the peak value of 10 and a standard deviation of 220 m is advected for 5000 s
at constant velocity of U =0:5 m s−1 and V =0:5 m s−1. The grid size of 100 m× 100 m
and time step of 100 s are used. Thus, the Courant numbers in x and y directions are all
0.5. The computed results in terms of maximum, minimum values and RMS error by using
the proposed scheme, ADI-QUICK scheme, ADI-TCSD scheme and the MOSQUITO scheme
are displayed in Table I. From Table I, one can 7nd that the proposed scheme yields the
best results among those schemes considered, whereas the ADI-TCSD scheme induces the
largest numerical oscillation and RMS error. In this numerical example, the computational
time of the proposed scheme is about 4 times greater than that of the MOSQUITO scheme.

Copyright ? 2001 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2001; 17:701–713
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This is so happened because the latter scheme is an explicit-type scheme in which there
is no need to solve the system of equations simultaneously. On the other hand, based on
the method of fractional steps and the implicit-type schemes, the proposed scheme, the ADI
scheme and the ADI-TCSD scheme have competitive computational e:ciency. The com-
putational time of the MOSQUITO scheme is less than that of the proposed scheme, but
it must be noticed that the explicit-type scheme usually need smaller time step than that
of the implicit-type scheme to keep the stability. Thus, generally speaking, the implicit-
type scheme is more e:cient than the explicit-type scheme for the simulation of practical
problems.

3.2.2. Calculation of pure advection in rigid-body rotating 1ow. Another numerical example
of pure advection of Gaussian concentration distribution in rigid-body rotating <ow in an
in7nite two-dimensional domain is adopted to investigate the application of the proposed
scheme to the <ow 7eld with non-uniform velocity. The peak value and standard deviation
of Gaussian distribution are 10 and 250 m, respectively. In the simulation of this example,
a 7nite square computational domain of 80 000 m× 80 000 m is used. The rigid-body spends
80 000 s rotating around the center of the computational domain one turn. With the grid
size of 100 m× 100 m and time step of 50 s, the ranges of Courant numbers used in x and
y directions are all from −�=2 to �=2. In addition, the radius of circular trajectory of the
centroid of the Gaussian distribution is 2000 m. The maximum, minimum values and RMS
error of simulated results by using the proposed scheme, the ADI-QUICK scheme and the
ADI-TCSD scheme after one turn of rotation are (9:78;−0:02; 0:00035), (6:63;−0:57; 0:0054)
and (6:46;−0:18; 0:0045), respectively.

3.3. Three-dimensional problem

In order to investigate the capability of the proposed scheme for solving three-dimensional
problems with complex <ow 7eld, di0usion in the shear <ow is considered. The velocity
shear plays an important role in the di0usion of a patch of passive contaminant from an
instantaneous source in natural streams such as oceans, lakes and estuaries. The governing
equation for shear di0usion can be expressed by

@N
@t

+ (V0 + Tyy +Tzz)
@N
@x

= �x
@2N
@x2

+ �y
@2N
@y2 + �z

@2N
@z2

(18)

where x; y and z is the co-ordinate system; N represents the concentration of contaminant; V0
is the mean velocity in the x direction; Ty and Tz represent the horizontal and vertical shears.
In addition, �x; �y and �z are the eddy di0usivities in the x; y and z directions, respectively.
The analytical solution for an instantaneous point source of mass M released at x=y= z=0
was obtained by Carter and Okubo [14] as follows:

N=
M

8�3=2(�x�y�z)1=2t3=2(1 + �2t2)1=2
exp−

[
(x − V0t − 0:5(Tyy +Tzz)t)2

4�xt(1 + �2t2)
+
y2

4�yt
+

z2

4�zt

]

(19)
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Figure 5. Comparison of contour plots of di0usion in shear <ow on plane z=0 at time=3000 s
and 5000 s by using proposed scheme and exact solution.

where

�2 =
�(T2

y�y=�x) + (T2
z �z=�x)�

12
(20)

To allow numerical solution having an initial peak concentration of unity, calculation begins
at time t= t0. Thus, the point source of mass M can be speci7ed as

M =8�3=2(�x�y�z)1=2t3=2(1 + �2t20 )
1=2 (21)

The following parameters are used in this numerical example: t0 = 1000 s; V0 = 0:5 m s−1,
Ty=Tz=0:0003 s−1; �x= �y= �z=8:0 m2 s−1, time step size Rt=100 s and grid space
Rx=Ry=Rz=100 m. Thus, the Courant number in x direction is 0.5, whereas the ranges
of the equivalent Courant numbers in y and z directions, causing by the shear <ow, are all
from −0:3 to 0.3 for the computational domain used in this example. In addition, the di0usion
numbers in three directions are all 0.08. Figure 5 depicts the contour plots as simulated by
the proposed scheme and analytical solution at time t=3000 and 5000 s on the plan z=0,
respectively. It is apparent that the proposed scheme yields computational results which are
good in agreement with the exact solution.
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4. CONCLUSIONS

In this paper an accurate integral-based numerical scheme for solving the advection–di0usion
equation is proposed. The proposed scheme is unconditionally stable and results in a tridi-
agonal system of equations which can be solved e:ciently by the Thomas algorithm. By
using the method of fractional steps and the technique of linearization, the proposed scheme
that was originally developed for one-dimensional linear problem can be extended straightfor-
wardly to multi-dimensional and nonlinear problems. Some one-, two- and three-dimensional
numerical examples are used to investigate the computational performances of the proposed
scheme. In comparison with the QUICKEST scheme, the fully time-centred implicit QUICK
scheme, the fully time-centred implicit TCSD scheme, the ADI-QUICK scheme, the ADI-
TCSD scheme, the MOSQUITO scheme and the exact solutions, the proposed scheme yields
convincing simulated results.

APPENDIX. DERIVATION OF FIRST DERIVATIVES

The appendix shows the derivation of 7rst derivatives at boundary points in each computational
element.

By adopting the quadratic polynomial interpolation function in each computed element, N
in the interval [xi; xi+1] can be represented as

N(x)= a+ bx + cx2 (A1)

Using the two nodal values of N at the boundary points in a computed element, namely,

N(x=0)= a=Ni (A2)

N(x=Rx) = a+ bRx + cRx2 =Ni+1 (A3)

and the de7nition of QNi+1=2, i.e.,

1
Rx

∫ R x

0
(a+ bx + cx2) dx= QNi+1=2 (A4)

the coe:cients a; b, and c in Equation (A1) can be speci7ed as follows:

a=Ni (A5)

b=
1

Rx
(−2Ni+1 − 4Ni + 6 QNi+1=2) (A6)

c=
1

Rx2
(3Ni+1 + 3Ni − 6 QNi+1=2) (A7)
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where the node xi is taken as the origin and Rx= xi+1−xi. Thus, the 7rst derivatives at the
boundary points xi and xi+1 can be expressed as

@N
@x

∣∣∣∣
xi+1

=
1

Rx
(4Ni+1 + 2Ni − 6 QNi+1=2) (A8)

@N
@x

∣∣∣∣
xi

=
1

Rx
(−2Ni+1 − 4Ni + 6 QNi+1=2) (A9)
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