
Discrete Mathematics 240 (2001) 21–43
www.elsevier.com/locate/disc

Additive multiplicative increasing functions on nonnegative
square matrices and multidigraphs�

Chung-Haw Changa, Yen-Chu Chuangb, Lih-Hsing Hsub; ∗
aMing-Hsin Institute of Technology, Hsinchu, Taiwan, ROC

bDepartment of Information and Computer Science, National Chiao-Tung University,
Hsinchu, Taiwan 30049, ROC

Received 12 January 1999; revised 31 July 2000; accepted 14 August 2000

Abstract

It is known that if f is a multiplicative increasing function on N, then either f(n) = 0 for
all n∈N or f(n) = n� for some �¿0. It is very natural to ask if there are similar results
in other algebraic systems. In this paper, we 1rst study the multiplicative increasing functions
over nonnegative square matrices with respect to tensor product and then restrict our result to
multidigraphs and loopless multidigraphs. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A function f from the set of natural number N into the set of real number R is
additive if f(m+ n) =f(m) +f(n) for all m; n∈N, f is multiplicative if f(m · n) =
f(m) ·f(n) for all m; n∈N, and f is increasing if f(m)6f(n) whenever m6n. The
following theorem can easily be obtained.

Theorem 1.1. If f is a multiplicative increasing on N; then either f(n) = 0 for all
n∈N or f(n) = n� for some �¿0.

From mathematical point of view, the above theorem is very good. It classi1es
all multiplicative increasing function on N. We also observe that all multiplicative
increasing functions are generated by additive multiplicative functions. It is very natural
to study similar results on other algebraic systems.
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On the set of all undirected graphs, we can consider the relation ‘subgraphs’ as the
partial order. The ‘disjoint union’ of two graphs as the addition of two graphs. As
for the product of graphs, there are two important products, weak product and strong
product, de1ned on graphs. Thus, we can study the (additive) multiplicative increasing
graph functions with respect these two products. Some interesting (additive) multi-
plicative increasing graph functions with respect to these two products are discussed
in literature [4,5,7–11]. Yet the classi1cation of all (additive) multiplicative increas-
ing graph functions with respect to these two products is still open. It is observed
that each graph is represented by its adjacency matrix. The adjacency matrix of an
(undirected simple) graph is a symmetric (0; 1)-square matrix with diagonal 0. The
adjacency matrix of the weak product of two graphs is actually the tensor product of
the two corresponding adjacency matrices. However, the adjacency matrix of the strong
product of two graphs can also be viewed as the tensor product of the two correspond-
ing adjacency matrices if we set to 1 for each diagonal entry of the adjacency matrix.
In this paper, we 1rst extend our previous result to multiplicative increasing functions
on nonnegative square matrices and then restrict it to multidigraphs and loopless multi-
digraphs. Therefore, we will review previous results on multiplicative increasing graph
functions on weak product in Section 2 and on strong product in Section 3. All graphs
are assumed to be undirected simple graphs in these sections. In Section 4, we point
out the relationship among weak product, strong product, and tensor product. Then
we discuss the multiplicative increasing functions over nonnegative square matrices in
Section 5. Finally, we discuss the multiplicative increasing functions on multidigraphs
and loopless multidigraphs in Sections 6 and 7.

2. MI functions for weak product

Most of the graph de1nitions used in this paper are standard (see, e.g., [1]). An
(undirected simple) graph G = (V; E) consists of a 1nite set (vertices) V and a subset
(edges) E of {[u; v] | u �= v; [u; v] is an unordered pair of elements of V}. Let G be the
set of all graphs. For S ⊆V , we use G|S for the subgraph of G induces by S. We use
Pn to denote the path graph with n vertices, and Cn to denote the cycle graph with n
vertices. A clique in a graph G is a complete subgraph of G. The size of the largest
clique in G is the clique number of G, denoted by !(G).

Let G=(X; E) and H =(Y; F) be two graphs. The sum of G and H is de1ned as the
disjoint union of G and H . Varying from [1], the weak product of G and H is de1ned
as the graph G × H = (Z; K), where vertex set Z = X × Y , the Cartesian product of
X and Y , and edge set K = {[(x1; y1); (x2; y2)] | [x1; x2]∈E and [y1; y2]∈F}. Let [k]G
denote G + G + · · · + G (k times) and G[k] denote G × G × · · · × G (k times). For
example, K [2]

1;2 = K2;2 + K1;4.
Let G = (X; E) and H = (Y; F) be two graphs. A function � from X into Y is a

homomorphism from G into H if [u; v]∈E implies [�(u); �(v)]∈F . A graph Ĝ is a
homomorphic image of another graph G if there exists a homomorphism � :G → Ĝ



C.-H. Chang et al. / Discrete Mathematics 240 (2001) 21–43 23

which is onto and for every [û 1; û 2]∈E(Ĝ) there exists [u1; u2]∈E(G) such that
�(ui) = û i, i = 1; 2. The chromatic number of G, �(G), is the smallest integer m such
that Km is a homomorphic image of G. A graph G is primary if for every homomorphic

image Ĝ of G there exists a positive integer k such that G is a subgraph of Ĝ
[k]

.
Let f be a real-valued function de1ned on G. The function f is additive if

f(G +H) =f(G) +f(H) for any G;H ∈G, and f is pseudo-additive if f(G +H) =
f(G) + f(H) for any G;H ∈G such that f(G) �= 0 and f(H) �= 0. The func-
tion f is multiplicative if f(G × H) = f(G) · f(H) for any G;H ∈G, and f is
pseudo-multiplicative if f(G×H)=f(G) ·f(H) for any G;H ∈G such that f(G) �= 0
and f(H) �= 0. The function f is increasing if f(G)6f(H) when G is a subgraph of
H . A graph function f is MI if it is multiplicative and increasing. A graph function f
is AMI if it is additive, multiplicative, and increasing. A graph function f is PAMI if
it is pseudo-additive, pseudo-multiplicative, and increasing. Obviously, if a graph func-
tion f is AMI then f is PAMI. Note that MI is closed under taking the nonnegative
power, 1nite product, and pointwise convergence. Let S ⊆MI. We use 〈S〉 to denote
the set of functions obtained by taking nonnegative power, 1nite product, and pointwise
convergence from elements of S. In other words, the following functions are elements
in 〈S〉:
1. f�, �¿0 and f∈ S.
2.
∏k

i=1 f
�i
i , �i¿0 and fi ∈ S.

3. limm→∞ fm, where fm is of type (1) or (2).

2.1. Homomorphism functions

For a 1xed graph G, we can de1ne a function hG from G into R by setting hG(H)
to be the number of homomorphisms from G into H . The following theorem is proved
in [4,5].

Theorem 2.1. hG is MI for any graph G. Moreover; hG is AMI if G is connected.

For example, let f1(G) be de1ned as the number of vertices of G. Obviously,
f1=hK1 . Moreover, it is proved in [4] that f=h�K1

for some �¿0 if f is an MI function
with f(K1) �= 0. Let f2(G) be de1ned as 2|E(G)|. It can be checked that f2 =hK2 . Let
f3(G) be de1ned as max{deg(v) | v∈G}. It is proved in [4] that f3 = limm→∞ h1=m

K1; m
.

Let f4(G) be de1ned as max{|#| |# is an eigenvalue of A(G)}. It is proved in [4] that
f4 = limm→∞h1=m

Pm
.

2.2. Generalized homomorphism functions

For any graph H and integer m∈N, let Hm be the induced subgraph of H such
that x∈V (Hm) if and only if x is in an m-clique of H . For any graph function f, we
can de1ne another graph function fm by fm(H) = f(Hm) for any graph H . It can be
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observed that (H +K)m =Hm +Km and (H ×K)m =Hm ×Km. The following theorem
is proved in [4,5]:

Theorem 2.2. For any positive integer m; fm is additive (multiplicative; increasing)
if f is additive (multiplicative; increasing).

Obviously, 〈{hG |G ∈G}〉⊆〈{(hG)m |G ∈G; m¿1}〉. It is proved in [4,5] that (hK1 )2 �∈
〈{hG |G ∈G}〉.

2.3. The �G;S functions

Let G = (V; E) be a graph and ∅ �= S = {s1; s2; : : : ; sk}⊆V . We de1ne �G;S :G → R

by �G;S(H) = |{(f(s1); f(s2); : : : ; f(sk))|f is a homomorphism from G into H}|. The
following theorem is proved in [7].

Theorem 2.3. �G;S is MI for every graph G = (V; E) and ∅ �= S ⊆V . Moreover; �G;S

is AMI if G is connected.

For any xi ∈V (G) and any m∈N, we de1ne a new set T (xi)={zi; j | 26j6m} such
that T (xi) ∩ T (xj) = ∅ if xi �= xj. Then, we construct a graph G(m) to be the smallest
graph such that (1) V (G(m))=V (G)∪ (

⋃
xi∈V (G)

T (xi)), (2) G(m)|V (G) is isomorphic to
G, and (3) G(m)|T (xi)∪{xi} is isomorphic to Km for every xi ∈V (G). It is proved in [7]
that any (hG)m can be written as �G(m);V (G). Hence, 〈{(hG)m |G ∈G; m∈N}〉⊆〈{�G;S |
G ∈G; ∅ �= S ⊆V (G)}〉. Moreover, it is proved in [7] that �W5 ;{o} �∈ 〈{(hG)m|G ∈G;
m∈N}〉 where W5 is the 5-wheel graph with {o} as its center vertex.

2.4. The + function

Let G be a bipartite graph with bipartition (A; B). If G is connected bipartite, such
a partition is unique, we say G is of (r; s) type if |A|= r and |B|= s. For an arbitrary
bipartite graph G with connected components C1; C2; : : : ; Cm, we say G is of

∑n
i=1(ri; si)

type if Ci is of (ri; si) type for every i. Let - be the function de1ned on the set of
bipartite graphs by setting -(G) = 2(

∑m
i=1(ri × si)1=2) where G is of

∑m
i=1(ri; si) type.

For any graph G, it can be checked that G × K1;1 is bipartite. We de1ne + :G → R

by +(G) = 1
2-(G × K1;1). It is proved in [4,5] that + is an AMI function which is not

generated by functions in Section 2.3.

2.5. The graph capacity functions

For a 1xed graph G, the G-matching function, .G, assigns any graph H ∈G to the
maximum integer k such that [k]G is a subgraph of H . The graph capacity function
for G, PG :G → R, is de1ned as PG(H) = limm→∞[.G(H [m])]1=m. DiMerent graphs G
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may have diMerent graph capacity functions. In [8], capacity functions of all graphs
are classi1ed into AMI, PAMI but not AMI, and none of the above cases.

A digraph G = (V; E) consists of a 1nite set V and a subset of {(u; v) | (u; v) is an
ordered pair of element of V}. The homomorphism digraph, G∗ = (V ∗; E∗) of G is
the directed graph with V ∗ = V and (a; b)∈E∗ if there is a homomorphism � from
G into itself such that �(a) = b. Obviously, (v; v)∈E∗ for every v∈V . Let S be any
subset of V . The out-neighborhood of S is the set 0(S) = {y | (x; y)∈E∗ with x∈ S}.
Thus, S ⊆0(S) for every S ⊆V . A nonempty subset S of V is called a closed set of
G if (1) 0(S)⊆ S and (2) there is no proper subset S ′ of S such that 0(S ′)⊆ S ′. It is
easy to see that there exists a closed set for every graph. It is proved in [8] that PG

is PAMI if and only if G contains exactly one closed set.
Let G be a graph with exactly one closed set S. A nonempty subset C of S is called

a core if (1) there exists a homomorphism � :G → G satis1es �(S) = C; and (2)
there is no proper subset C′ of C such that there exists a homomorphism �′ : G → G
satisfying �′(S) = C′. Obviously, such a core C exists. It is proved in [8] that PG

is AMI if (1) PG = PG|C , where C is a core in the unique closed set in G; and (2)
G|C is primary. Complete graphs, odd cycles, and the Petersen graph are examples of
graphs whose capacity functions are AMI. Again, some AMI capacity functions are
not generated by functions in previous subsections.

2.6. The fG;S functions

We can combine the concept behind Theorem 2.2 and the �G;S functions to build a
new family of (additive) multiplicative increasing functions. Let G be a graph and S
be a nonempty subset of V (G). For any graph H , we de1ne HG;S to be the induced
subgraph of H such that any y∈V (HG;S) if and only if there exists a homomorphism
� from G into H such that �(x)=y for some x∈ S. For any graph function f, we can
de1ne another graph function fG;S by fG;S(H) =f(HG;S) for any graph H . It follows
from Theorem 2.3 that HG;S +KG;S =(H +K)G;S and HG;S ×KG;S =(H ×K)G;S . Thus,
we have the following theorem.

Theorem 2.4. For any graph G and any nonempty subset S of V (G); fG;S is additive
(multiplicative; increasing) if f is additive (multiplicative; increasing).

2.7. Hedetniemi conjecture and MI functions

A family of graphs, I , is called a hereditary ideal if (1) the subgraph H of any
graph G ∈ I belongs to I , and (2) G × H ∈ I for any G ∈ I and H ∈G. For ex-
ample, 2n = {G |!(G)6n} is a hereditary ideal for any positive integer n. Given
a hereditary ideal I , a positive integer k, and a graph G, an I-coloring of G is
a function 3 :V (G) → {1; 2; : : : ; k} such that the induced subgraph G|〈3−1(i)〉 of G
is in I for every i. The I -chromatic number of G, �(G : I) is the least k for
which G has an I -coloring. Note that �(G) = �(G :21). It is proved in [3] that
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�(G × H : I)6min{�(G : I); �(H : I)} for any hereditary ideal I and any G;H ∈G. In
particular, �(G × H :2n) = min{�(G :2n); �(H :2n)} holds if n¿2. The statement
�(G × H :21) = min{�(G :21); �(H :21)} holds for all G and H is equivalent to the
famous Hedetniemi conjecture [3]. Harary and Hsu [2] generalize the Hedetniemi
conjecture into the statement �(G × H : I) = min{�(G : I); �(H : I)} for any I , G
and H .

Let n be a positive integer and I be a hereditary ideal. For any graph G=(V; E), we
de1ne G[I;n] to be the graph G if �(G : I)¿n, and G[I;n] to be the empty graph if oth-
erwise. Then for any graph function f, we de1ne f[I;n] by setting f[I;n](G)=f(G[I;n]).
Let y be a vertex in G. We use C(y :G) denote the connected component of G
containing y. Let V (G′

[I;n]) = {y | �(C(y :G) : I)¿n}. Then we use G′
[I;n] to denote

the induced subgraph G|V (G′
[I; n])

. Given any graph function f, we de1ne f′
[I;n] by set-

ting f′
[I;n](G) = f(G′

[I;n]). For example, let f5 be de1ned as the size of the largest
nonbipartite connected component. Then f5 can be both expressed as (hK1 )

′
[21 ;3] and

limn→∞ �C2n+1 ;{x2n+1} where x2n+1 is any vertex in the odd cycle C2n+1. It is easy to
obtain the following theorem.

Theorem 2.5. The following statements are equivalent:

(1) �((G × H) : I) = min{�(G : I); �(H : I)} for any G;H and I .
(2) G[I;n] × H[I;n] = (G × H)[I;n] for any integer n and any hereditary ideal I .
(3) G′

[I;n] +H ′
[I;n] = (G+H)′[I;n] and G′

[I;n] ×H ′
[I;n] = (G×H)′[I;n] for any integer n and

any hereditary ideal I .
(4) For any integer n and any hereditary ideal I; f[I;n] is MI if f is MI.
(5) For any integer n and any hereditary ideal I; f′

[I;n] is AMI if f is AMI.
(6) (hK1 )[I : n] is MI for any integer n and any hereditary ideal I .
(7) (hK1 )

′
[I : n] is AMI for any integer n and any hereditary ideal I .

With the above theorem, we notice that to classify MI functions is at least as diOcult
as to solve the Hedetniemi conjecture.

3. MI functions for strong product

Let G = (X; E), H = (Y; F) be two graphs. The strong product of G and H is
the graph G · H = (Z; K) where Z = X × Y and K = {[(x1; y1); (x2; y2)] | ([x1; x2]∈E
and [y1; y2]∈F) or (x1 = x2 and [y1; y2]∈F) or ([x1; x2]∈E and y1 = y2)}. With
this strong product, the terminology of strong multiplicative increasing graph function
(SMI) and strong additive multiplicative increasing graph function (SAMI) can be
similarly de1ned.

Let G = (X; E), H = (Y; F) be two graphs. A map 4 :X → Y is called a strong
homomorphism from G into H if [x1; x2]∈E implies [4(x1); 4(x2)]∈F or 4(x1) =
4(x2). For a 1xed graph G, we can de1ne ˜G as a function from G into R such that
˜G(H) equals the number of strong homomorphisms from G into H . Again ˜G is SMI
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for any graph G and ˜G is SAMI if G is connected. The clique number of G, !(G),
can be proved to be limn→∞(˜Kn)

1=n(G).
Let G be a graph and S = {s1; s2; : : : ; sk} be a nonempty subset of V (G). Similarly,

we can de1ne 4G;S :G → R by 4G;S(H) = |{(f(s1); f(s2); : : : ; f(sk))|f is a strong
homomorphism from G into H}|. Again, 4G;S is MI for any G=(V; E) and ∅ �= S ⊆V
and 4G;S is AMI if G is connected. Let T(n) be the graph obtained from the star graph
Sn (∼= K1; n) by replacing each edge with a path of length n. Let P(n) be the pendant
vertices of T(n). It is proved in [6,10] that f6 = limn→∞41=n

T(n) ;P(n)
where f6(G) is the

number of vertices in the largest connected component of G. Moreover, f6 is not in
〈{˜G |G ∈G}〉.

4. Tensor product

Let A= (ai; j)m×m, B = (bk;l)n×n be two matrices. The direct sum of A and B is the
(m+ n)× (m+ n) matrix A⊕B= (cr; s) where cr; s = ar;s if 16r, s6m; cr; s = br−m;s−m

if m¡r, s6m + n; and cr; s = 0 if otherwise. The tensor product of A and B is the
mn× mn matrix A⊗ B = (d(i; k); ( j; l)) where d(i; k); ( j; l) = ai; j · bk;l.

Let G be a graph with its adjacency matrix A(G) and H be a graph with its adjacency
matrix A(H). It is easy to see that A(G+H) is actually A(G)⊕A(H) and A(G×H) is
actually A(G) ⊗ A(H). Let MU denote the set {(ai; j)n×n | n is a nonnegative integer,
ai; j ∈{0; 1}, ai; j=aj; i for 16i, j6n, and ai; i=0 for 16i6n}. Note that any undirected
simple graph is uniquely determined, up to isomorphism, by its adjacency matrix. We
may assign a partial ordering ‘6’ on MU by assigning M16M2 if and only if the
corresponding graph for M1 is a subgraph of that for M2. Then (MU;⊕;⊗;6) forms
an algebraic system. Obviously, the study of (A)MI functions for weak product is
equivalent to study of (A)MI functions on MU.

However, the strong product can also be viewed as the tensor product. Let A′(G)
is obtained from A(G) be reassigning 1 to every diagonal entry. It is easy to see that
A′(G+H) is A′(G)⊕A′(H) and A′(G ·H) is A′(G)⊗A′(H). Again the study of (A)MI
functions for strong product is equivalent to the study of (A)MI functions on the set
of square matrices, symmetric (0; 1)-matrices with all diagonal entries to be 1. In other
words, for any (undirected simple) graph G we construct a new (nonsimple) graph
G′ by assign a selPoop at each vertex of G. Then we de1ne the adjacency matrix of
G′, A(G′), to be A′(G). Thus, the strong product on {G |G ∈G} is translated into the
tensor product on {A′(G) |G ∈G}.

In the following sections, we are going to investigate the (A)MI functions on non-
negative square matrices and multidigraphs.

5. MI functions on nonnegative square matrices

A square matrix M = (mij)u×u is nonnegative if mij¿0 for 16i, j6u. For any
�¿0, we use (�) to denote the 1 × 1 matrix with � at its only entry. Let M denote
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the set of all nonnegative square matrices. In the following, all the matrices we discuss
are matrices in M. A network W is a digraph G = (V; A) together with a nonnegative
weight function w de1ned on A. We can associate a matrix M=(mij)u×u with a directed
graph G[M ] and a network W [M ]. G[M ] is the digraph with the vertex set {1; 2; : : : ; u}
and an arc joining from i to j if and only if mi;j ¿ 0. Hence G[M ] has a loop at vertex
i if mii ¿ 0. W [M ] is the digraph G[M ] together with a weight function that assigns
mij to the arc (i; j) of G[M ] if mij ¿ 0; i.e., w(i; j) = mij. A digraph G[M ] is said to
be strongly connected if for each vertex u of G[M ] there exists a directed path from u
to any other vertex of G[M ]. We say that digraph G[M ] is weakly connected if, when
we remove the orientation from the arcs of G[M ], a connected graph or multigraph
remains.

Let R=(rij)m×m and T=(tkl)n×n be two matrices. We say that R is a submatrix of T ,
denote by R⊆T , if there is a one to one function f from {1; 2; : : : ; m} to {1; 2; : : : ; n}
such that rij6tf(i)f( j) for every rij ∈R. Two n× n matrices R and T are isomorphic,
denoted by R ∼= T , if there is a one to one mapping f from {1; 2; : : : ; n} to itself
such that rij = tf(i)f( j). In other words, R ∼= T if and only if W (R) is isomorphic to
W (T ). Hence, we use matrix and network interchangeably. For M ∈M, [k]M denote
M ⊕M ⊕· · ·⊕M (k times) and M [k] denote M ⊗M ⊗· · ·⊗M (k times), where ⊕ and
⊗ are direct sum and tensor product, respectively. We use kM for the scalar matrix
multiplication. With these direct sum and tensor product, the terminology of additive,
pseudo-additive, multiplicative, pseudo-multiplicative and increasing can be similarly
de1ned. Obviously, the set of MI functions on nonnegative square matrices is closed
under taking the nonnegative power, 1nite product, and pointwise convergence.

5.1. Homomorphism functions

Let M = (mij)u×u be a matrix and W (M) be the corresponding network with the
vertex set V (M) = {1; 2; : : : ; u}. Let N = (nij)v×v be another matrix and W (N ) be the
corresponding network with V (N ) = {1; 2; : : : ; v}. A function � from {1; 2; : : : ; u} to
{1; 2; : : : ; v} is a homomorphism from M to N if � is an arc preserving function from
G[M ] to G[N ]. A matrix M̂ is a homomorphic image of another matrix M if there
exists a homomorphism � :M → M̂ which is onto and if for every [û 1; û 2]∈E(G[M̂ ])
there exists [u1; u2]∈E(G[M ]) such that �(ui) = û i, i = 1; 2. The weight of a homo-
morphism � is de1ned as !(�) =

∏
(i; j)∈E(G[M ])(n�(i)�( j))mij . For a 1xed matrix M , we

can de1ne the function hM from M to R by

hM (N ) =
∑

� is a homomorphism
from M to N

!(�):

Similarly, we have the following theorem.

Theorem 5.1. hM is MI for any M ∈M. Moreover; hM is AMI if G[M ] is weakly
connected.
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Let f7 :M → R be de1ned as f7((aij)n×n) =
∑

i; j aij. It can be shown that f7 = hM
where

M =
(

0 1
0 0

)
:

Let f8 :M → R be de1ned as f8((aij)n×n) = max
{∑n

j=1 aij | 16i6n
}

. It can be

shown that f8 = limk→∞(hMk )
1=k where Mk = (mk

ij)k×k with mk
ij = 1 if i = 1 and j¿2

and mk
ij = 0 if otherwise.

Let f9 :M → R be de1ned as f9((aij)n×n) = max{|#| | # is an eigenvalue of (aij)}.
It can be shown that f9 =limk→∞(hMk )

1=k where Mk =(mk
ij)k×k with mk

ij =1 if j= i+1
and mk

ij = 0 if otherwise. Obviously, f7 (f8 and f9, respectively) are generalizations
of f2 (f3 and f4, respectively) in Section 2.1.

5.2. The + function

A matrix M is called directed bipartite matrix if G[M ] is a bipartite digraph with
bipartition A and B such that any arc of G[M ] is directed from A to B. If G[M ]
is weakly connected, such a partition is unique. We say that M is of (r; s) type if
|A|= r and |B|= s. For a directed bipartite matrix with weakly connected components
C1; C2; : : : ; Cm for G[M ], we say M is of

∑m
i=1(ri; si) type where Ci is of (ri; si) type

for every i. Let DB denote the set of all directed bipartite matrices. We can de1ne
- ∗ :DB → R by assigning - ∗(M)=

∑m
i=1(ri× si)1=2, where M is of

∑m
i=1(ri; si) type.

For any matrix M , it can be checked that

M ⊗
(

0 1
0 0

)

is directed bipartite matrix. Thus, we can de1ne +∗ :M → R by

+∗(M) = - ∗
(
M ⊗

(
0 1
0 0

))
:

It is not hard to verify that +∗ is an AMI function. Obviously, +∗ is a generalization
of the function + in Section 2.4.

5.3. The matrix capacity functions

For any matrices M and N , let .M (N ) denote the maximum integer k such that
[k]M ⊆N . As before, we would like to know the behavior of limm→∞[.M (N [m])]1=m.
However, let

M =
(

0 1
1 0

)

and

N =
(

0 2
0:5 0

)
:
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It can be checked that .M (N [m]) = 0 if m is odd and .M (N [m]) = 2m−1 if m is even.
Hence limm→∞[.M (N [m])]1=m may not exist. Since 06.M (N [m])6vm where N is an
v×v matrices, limm→∞[.G(Hm)]1=m exists. Thus we can de1ne matrix capacity function
PM (N ) as PM (N )= limm→∞[.M (N [m])]1=m. Obviously, P(0)(N )= v where N is an v× v
matrix and PN¿PM if N is a submatrix of M .

5.3.1. Basic properties of matrix capacity functions

Theorem 5.2. If PM is (pseudo-)additive; then PM is (pseudo-)multiplicative.

Proof. Since PM (N [2]) = limn→∞[.M (N [2n])]1=n = limn→∞([.M (N [2n])]1=2n)2 = P2
M (N ),

we have PM ((A⊕ B)[2]) = P2
M (A⊕ B) for any A; B∈M. Then

PM ((A⊕ B)[2]) = P2
M (A⊕ B)

= (PM (A) + PM (B))2

= P2
M (A) + 2PM (A)PM (B) + P2

M (B): (1)

However

PM ((A⊕ B)[2]) = PM (A[2]) + 2PM (A⊗ B) + PM (B[2])

= P2
M (A) + 2PM (A⊗ B) + P2

M (B): (2)

Comparing (1) and (2), we obtain PM (A ⊗ B) = PM (A)PM (B). The theorem is
proved.

Let N be a matrix with V (N ) = {y1; y2; : : : ; yv} and let z = (z1; z2; : : : ; zm) be a ver-
tex in N [m] for some positive integer m. For 16i6v, we set ai(z) = |{zj | zj = yi;
16j6m}|=m. The distribution of z, d(z), is de1ned to be (a1(z); a2(z); : : : ; av(z)). Let
D(N ) =

{
(a1; a2; : : : ; av) | ai¿0;

∑v
i=1 ai = 1

}
. Obviously, d(z)∈D(N ) for any vertex

z∈V (N [m]). Let S(m; d(z)) = {y | y∈V (N [m]); d(y) = d(z)}.
Let M be a matrix with V (M) = {x1; x2; : : : ; xu} and N be another matrix. We use

Ind[M :N;m] to denote the set of [z1; z2; : : : ; zu] such that the subnetwork induced by
{z1; z2; : : : ; zu} in N [m] contains a copy of M with zi corresponding to xi for every i.

Assume that [z1; z2; : : : ; zu]∈ Ind[M :N;m] and zi=(zi1; zi2; : : : ; zim) with zij ∈V (N ) for
16i6u. For 16k1; k2; : : : ; ku6v, let .m;Mk1 ; k2 ;:::; ku(z1; z2; : : : ; zu) denote |{j | zij=yki ; 16i6u;

16j6m}|=m. Thus, at(zi) =
∑ki=t

16k1 ; k2 ;:::; ku6v .
m;M
k1 ; k2 ;:::; ku(z1; z2; : : : ; zu) for 16i6u and

16t6v. We de1ne k : Ind[M :N;m] → R by assigning

k([z1; z2; : : : ; zu]) = min
16i6u

{(
m

ai1m; ai2m; : : : ; aivm

)1=m

|d(zi) = (ai1 ; ai2 ; : : : ; aiv)

}
:

Since Ind[M :N;m] is 1nite, we can set gmM (N ) to be max{k([z1,z2,: : :, zu])|
[z1; z2; : : : ; zu]∈ Ind[M :N;m]} if Ind[M :N;m] �= ∅ and 0 if otherwise.
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Theorem 5.3. PM (N ) = limm→∞gmM (N )

Proof. There are at most C(m+v−1; m) diMerent distributions in V (N [m]). Hence there
are at most muv diMerent (d(z1); d(z2); : : : ; d(zu)) with [z1; z2; : : : ; zu]∈ Ind[M :N;m].
Let W be a set of disjoint copies of M in V (N [m]) such that |W| = .M (N [m]). W

can be written as W = {[z1; z2; : : : ; zu]|[z1; z2; : : : ; zu]∈ Ind[M :N;m]}. We de1ned an
equivalence relation on W as [z1; z2; : : : ; zu] ∼ [y1; y2; : : : ; yu] if and only if d(zi)=d(yi)
for 16i6u. By the Pigeonhole Principle, there exists [x1; x2; : : : ; xu]∈ Ind[M :N;m]
such that K = {[z1; z2, : : : ; zu]| d(zi) = d(xi) for 16i6u} with

|K|¿ 1
C(m + v− 1; m)

|W| = 1
C(m + v− 1; m)

.M (N [m]):

Therefore

1
C(m + v− 1; m)

.M (N [m])6|K|6 min
16i6u

{|S(m; ai)| | ai = d(xi)}:

Hence

.M (N [m])6C(m + v− 1; m) min
16i6u

{|S(m; ai)| | ai = d(xi)}

= C(m + v− 1; m) min
16i6u

{(
m

ai1m; ai2m; : : : ; aivm

)∣∣∣∣ ai = d(xi)
}
:

Thus

[.M (N [m])]1=m6 [C(m+v−1; m)]1=m min
16i6u

{(
m

ai1m; ai2m; : : : ; aivm

)1=m
∣∣∣∣∣ ai = d(xi)

}

6 [C(m + v− 1; m)]1=mgmM (N ):

Hence

PM (N ) = lim
m→∞ [.M (N [m])]1=m

6 lim
m→∞([C(m + v− 1; m)]1=mgmM (N ))

= lim
m→∞ gmM (N ): (3)

Assume that [z1; z2; : : : ; zu]∈ Ind[M :N;m]. Let d(zi)=(ai1; ai2; : : : ; aiv) for 16i6u and
j be the index such that(

m
aj1m; aj2m; : : : ; ajvm

)
6
(

m
ai1m; ai2m; : : : ; aivm

)

for every 16i6u. For any y∈ S(m; d(zj)), there exists a permutation 3y ∈ Sm, the
symmetric group on m letters, such that 3y(zj) = y. Thus [3y(z1); 3y(z2); : : : ; 3y(zu)]∈
Ind[M :N;m]. Let Ay denote the copy of M induced by {3y(z1); 3y(z2); : : : ; 3y(zu)} and
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let A denote the union of {Ay | y∈ S(m; d(zj))}. Then we repeatedly 1nd an Ay in A

and delete those Ay′ which are adjacent to Ay until A is empty. We get at least

1
u(u− 1) + 1

|S(m; d(zj))|

disjoint Ay in A. Thus

.M (N [m])¿ .M (A)¿
1

u(u− 1) + 1
|S(m; d(zj))|

=
1

u2 − u + 1

(
m

aj1m; aj2m; : : : ; ajvm

)

=
1

u2 − u + 1
min

16i6u

{(
m

ai1m; ai2m; : : : ; aivm

)
|d(zi) = (ai1 ; ai2 ; : : : ; aiv)

}
:

Therefore

PM (N ) = lim
m→∞ [.M (N [m])]1=m¿ lim

m→∞ gmM (N ): (4)

Combining (3) and (4), PM (N ) = limm→∞gmM (N ).

5.3.2. Properties of digraph capacity functions
For further discussion on PM (N ), we assume that M is a (0; 1)-matrix. In other

words, M =A(G) for some digraph G. Since A(G) is uniquely determined by G up to
isomorphism, we write G for A(G).

Theorem 5.4. (1) PG(G)¿1. Moreover, PG[k] = PG for any positive integer k.
(2) PG = PH if and only if there exist some n; t; m∈N such that H [n] ⊆G[t] ⊆H [m].

Proof. (1) Assume that V (G) = {x1; x2; : : : ; xu}. Let xki = (xi; : : : ; xi) with xi repeated
k times. Obviously, [xk1 ; x

k
2 ; : : : ; x

k
u]∈ Ind[G :G; k]. Hence .G(G[k])¿1 and PG(G)¿1.

Since G is a subdigraph of G[k], PG[k]6PG. However, [.G(H [n])]G⊆H [n] for any di-
graph H and integer n. Thus, [.kG(H [n])]G[k] ⊆H [kn]. Therefore, [.kG(H [m=k])]G[k] ⊆H [m]

and we get

PG[k] (H) = lim
m→∞ [.G[k] (H [m])]1=m¿ lim

m→∞ [.G[k] ([.kG(H [m=k])]G[k])]1=m

= lim
m→∞ [.kG(H [m=k])]1=m = lim

m=k→∞
[.G(H [m=k])]k=m

= PG(H):

Thus PG[k] = PG.
(2) Statement (2) is a direct consequence of statement (1).

Theorem 5.5. PG¿PH if and only if for any two distinct u and v of G there exists
a homomorphism � :G → H such that �(u) �= �(v).
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Proof. Let V (G) = {x1; x2; : : : ; xu} and V (H) = {y1; y2; : : : ; yv}. Since PH (H)¿ 0, we
have PG(H)¿ 0. There exists some [x1; x2; : : : ; xu]∈ Ind[G :H; t]. Let xi =(yi1; yi2; : : : ;
yit) for 16i6u. We de1ne ’k by ’k(xi) = yik for 16k6t. obviously, ’k is a homo-
morphism from G into H . Now, give any two distinct vertices xi and xj, there ex-
ists some s such that yis �= yjs. Therefore, ’s(xi) �= ’s(xj). On the other hand, let
{’1; ’2; : : : ; ’t} be the set of all homomorphisms from G into H . De1ne a function
� :G → H [t] by �(x) = (’1(x); ’2(x); : : : ; ’t(x)). It is easy to check that � is a homo-
morphism. Let x and y be any two distinct vertices of G, there exists a homomorphism
’k such that ’k(x) �= ’k(y). Hence � is one to one. We get G⊆H [t] and PG¿PH [t] .
By Theorem 5.4, PG¿PH .

Theorem 5.6. Assume that M ∈M and Ĝ is any digraph which is a homomorphic
image of G[M ] with PĜ¿PM . Then PM (N ) = PĜ(N ) if N is any matrix such that
PM (N ) �= 0. Furthermore PM is PAMI if PĜ is PAMI.

Proof. Let V (G[M ]) = {x1; x2; : : : ; xu}, V (Ĝ) = {y1; y2; : : : ; yv}, and let � be a ho-
momorphism from G[M ] onto Ĝ. Obviously, there are .Ĝ(N [m]) disjoint Ĝ’s in N [m]

for every m. Let Ĝ1; Ĝ2; : : : ; Ĝ.Ĝ(N [m]) be such disjoint Ĝ’s in N [m] and let V (Ĝi) =
{yi;y1 ; yi;y2 ; : : : ; yi;yv} with yi;yj corresponding to yj. We notice that w(yi;yj ; yi;yk )¿1 for
every (yj; yk)∈E(Ĝ), 16i6.Ĝ(N [m]). Since PM (N ) �= 0, there exists some
[x1; x2; : : : ; xu]∈ Ind[M :N; t]. We set zij as (xi ; yj;�(xi)) for 16i6u and 16j6.Ĝ(N [m]).
Then w(zij ; zkj) =w(xi ; xk)w(yj;�(xi); yj;�(xk )) ¿w(xi ; xk)¿w(xi; xk) for every
(xi; xk)∈E(G[M ]). Thus, [z1j; z2j; : : : ; zuj]∈ Ind[M :N;m + t]. Let Mj denote the copy
of M induced by {z1j; z2j,: : : ; zuj} for 16j6.Ĝ(N [m]). Then M1; M2; : : : ; M.Ĝ(N [m]) are
mutually disjoint, because Ĝ1,Ĝ2,: : :,Ĝ.Ĝ(N [m]) are mutually disjoint. Thus .M (N [m+t])¿
.Ĝ(N [m]). Therefore,

PĜ(N ) = lim
m→∞ [.Ĝ(N [m])]1=m6 lim

m→∞ [.M (N [m+t])]1=m

= lim
m→∞ [.M (N [m+t])]1=(m+t) = PM (N ):

Since PĜ(N )¿PM (N ), we have PM (N ) = PĜ(N ).

Theorem 5.7. PM (N )6PG[M ](N ) for any matrices M;N ∈M. Moreover, PM (N ) =
PG[M ](N ) if PM (N )¿ 0.

Proof. Let V (G[M ])={x1; x2; : : : ; xu} and V (G[N ])={y1; y2; : : : ; yv}. By Theorem 5.3,
PM (N ) = limm→∞gmM (N ). Therefore, there exists an in1nite subsequence of integers
{mt |t ∈N} such that PM (N ) = limt→∞gmt

M (N ).
Suppose that PM (N )¿ 0. Then there exists [zt1; z

t
2; : : : ; z

t
u]∈ Ind[M :N;mt] such that

gmt
M (N ) = k([zt1, z

t
2; : : : ; z

t
u]) if t is suOciently large. Let zti = (yi1; yi2; : : : ; yimt ) with

yi; j ∈V (G[N ]) for 16i6u. We have w(zti ; z
t
j)¿w(xi; xj) for every (xi; xj)∈E(G[M ]).

We claim that w(zti ; z
t
j)¿1 for every (xi; xj)∈E(G[M ]) if t is suOciently large. First
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we observed that

w(zti ; z
t
j) =

mt∏
l=1

w(yil; yjl) =
∏

(yki ;ykj )∈X

[
(w(yki ; ykj))

.mt ;Mk1 ; k2 ; :::; ku
(z1 ;z2 ;:::;zu)

]mt

where X is the set, not multiset, {(yil; yjl)|16l6mt}.
Suppose that w(zti ; z

t
j) is not greater than 1 for every (xi; xj)∈E(G[M ]) if t is suf-

1ciently large. Then limt→∞
∏

(yki ;ykj )∈X

[
(w(yki ; ykj))

.mt ;Mk1 ; k2 ; :::; ku
(z1 ;z2 ;:::;zu)]mt either is 0 or

does not exist. Thus PM (N ) �= limt→∞gmt
M (N ) and we get a contradiction. Therefore,

w(zti ; z
t
j)¿1 for every (xi; xj)∈E(G[M ]) if t is suOciently large. Thus [zt1; z

t
2; : : : ; z

t
u]∈

Ind[G[M ] :N;mt] if t is suOciently large. We can conclude that PM (N )6PG[M ](N ). It
follows from Theorem 5.6 that PM (N ) = PG[M ](N ) if PM (N )¿ 0.

Corollary 5.1. PM (A⊕ B) �= 0 if PM (A) �= 0 and PM (B) �= 0.

Proof. Assume that V (G[M ])= {x1; x2; : : : ; xu}, PM (A) �= 0 and PM (B) �= 0. There ex-
ists an in1nite subsequence of integers {mt | t ∈N} with [xt1; x

t
2; : : : ; x

t
u]∈ Ind[M :A;mt].

From the proof of Theorem 5.7, we notice that w(xti ; x
t
j)¿1 for all (xi; xj)∈

E(G[M ]) if t is suOciently large. Similarly, there exists an in1nite subsequence
of integers {nt | t ∈N} with [yt1; y

t
2; : : : ; y

t
u]∈ Ind[M :B; nt]. Moreover, w(yti ; y

t
j)¿1

for all (xi; xj)∈E(G[M ]) if t is suOciently large. We set zti = (xti ; y
t
i) for 16i6u.

Obviously, [zt1; z
t
2; : : : ; z

t
u]∈ Ind[M :A ⊕ B;mt + nt] if t is suOciently large. Hence

PM (A⊕ B) �= 0. square

Lemma 5.1. Assume that G is a vertex transitive digraph and [z1; z2; : : : ; zu]∈
Ind[G :N;m]. Then there exists some integer k with [z′1, z

′
2, : : : ; z′u]∈ Ind[G :N; k]

such that d(z′i) =
∑u

j=1 d(zj)=u for every 16i6u.

Proof. Let V (G) = {x1; x2; : : : ; xu}. Let T (G) = {31; 32; : : : ; 3t} be the automorphism
group for G and Tij(G) be {3|3∈T (G) and 3(xi) = xj}. Since G is vertex transitive,
|Tij(G)|= |Trs(G)| for any 16i; j; r; s6u. Let zi = (zi1 ; zi2 ; : : : ; zim) for 16i6u. We set
3j(zi)=(3j(zi1 ); 3j(zi2 ); : : : ; 3j(zim)) for 16j6t. Then we set z′i=(31(zi); 32(zi); : : : ; 3t(zi))
for 16i6u. Obviously, [z′1; z

′
2; : : : ; z

′
u]∈ Ind[G :N; tm] and d(z′i) =

∑u
j=1 d(zj)=u. The

lemma is proved.

Let iG(N ) = {d(z)| there exists [z1; z2; : : : ; zu]∈ Ind[G :N;m] such that d(zi) = d(z)
for 16i6u}. We use IG(N ) to denote the closure of iG(N ); i.e., iG(N ) and its ac-
cumulation points. Let H :D(N ) → R be the function de1ned by H(a) =

∏v
i=1 a

−ai
i

where a=(a1; a2; : : : ; av). Note that logvH is the entropy function. Hence the function
H satis1es

(1) limm→∞
(

m
ai1m; ai2m;:::; aivm

)1=m
= H(a), where aim∈I for every i; and

(2) H(
∑u

i=1 ai=u)¿min{H(ai) | i = 1; 2; : : : ; u}.
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With Theorem 5.3, we have the following theorem.

Theorem 5.8. For any N ∈M, PG(N ) = maxa∈IG(N )H(a) if G is a vertex transitive
digraph.

Theorem 5.9. PG is PAMI if G is vertex transitive.

Proof. Let G be a vertex transitive digraph with V (G) = {x1; x2; : : : ; xu}. Con-
sider any two matrices A and B with |V (A)| = v and |V (B)| = w. By Theorem 5.8,
PG(A)=g=H(a) for some a=(a1; a2; : : : ; av)∈ IG(A) and PG(B)=h=H(b) for some
b= (b1; b2; : : : ; bw)∈ IG(B).

Obviously, there exits a sequence {ai}∞i=1 in iG(A) and a sequence {bi}∞i=1 in iG(B)
such that limi→∞ai = a and limi→∞bi = b. Hence, there exists some [x1; x2; : : : ; xu]∈
Ind[G :A;m] with d(xj) = ai for 16j6u and some [y1; y2; : : : ; yu]∈ Ind[G :B; l] with
d(yj) = bi for 16j6u. Since g and h are real numbers, there exists a sequence of
rational numbers {gi}∞i=1 and {hi}∞i=1 such that limi→∞gi = g and limi→∞ hi = h. Thus
for every i we can choose an integer t such that p=tgi=(gi+hi) and q=thi=(gi+hi) are
integers. Let zj = (xj; xj; : : : ; xj; yj; yj; : : : ; yj), each xj repeats pl times and yj repeats
qm times, for 16j6u. We can easily check that [z1; z2; : : : ; zu]∈ Ind[G :A ⊕ B; tlm]
and

d(zj) =
(

gi
gi + hi

ai ;
hi

gi + hi
bi

)
for 16j6u:

Thus (
gi

gi + hi
ai ;

hi
gi + hi

bi

)
∈ iG(A⊕ B):

Hence(
g

g + h
a;

h
g + h

b
)
∈ IG(A⊕ B):

Therefore

PG(A⊕ B)

¿H

(
g

g + h
a;

h
g + h

b
)

=
v∏

i=1

(
g

g + h
ai

)(−g=(g+h))ai

×
w∏
j=1

(
h

g + h
bj

)(−h=(g+h))bj

=
(

g
g + h

)(−g=(g+h))
∑v

i=1
ai
(

v∏
i=1

a−ai
i

)g=(g+h)(
h

g + h

)−h=(g+h)
w∑
j=1

bj



36 C.-H. Chang et al. / Discrete Mathematics 240 (2001) 21–43

×

 w∏

j=1

b−bj
j




h=(g+h)

=
(

g
g + h

)−g=(g+h)

(g)g=(g+h)
(

h
g + h

)−h=(g+h)

(h)h=(g+h)

= g + h

=PG(A) + PG(B): (5)

On the other hand, let c=(a; b)=(a1; a2; : : : ; av; b1; b2; : : : ; bw) be a vector in IG(A⊕B)
such that PG(A⊕ B) =H(c). Let p=

∑v
i=1 ai and q=

∑w
j=1 bj. Obviously, p+ q= 1

and there exists a sequence in iG(A⊕B), {(ai ; bi)}∞i=1, such that limi→∞(ai ; bi)=(a; b).
Assume that ai = (ai;1; ai;2; : : : ; ai; v) and bi = (bi;1; bi;2; : : : ; bi;w). Let pi =

∑v
j=1 ai; j for

every i. Then limi→∞pi=limi→∞
∑v

j=1 ai; j=
∑v

j=1 limi→∞ai; j=
∑v

j=1 aj=p. Similarly,
let qi =

∑w
j=1 bi; j for every i, we have limi→∞qi = q.

Since (ai ; bi)∈ iG(A ⊕ B), there exists some [z1; z2; : : : ; zu]∈ Ind[G :A ⊕ B;m] with
d(zj)=(ai ; bi) for 16j6u. Without loss of generality, we may assume zj=(zj;1; zj;2; : : : ;
zj;n, zj;n+1; : : : ; zj;m) with zj;k ∈V (A) if and only if 16k6n.

Let xj = (zj;1; zj;2; : : : ; zj;n). Then d(xj) = ai=pi for 16j6u. If [x1; x2; : : : ; xu]∈
Ind[G :A; n], then ai=pi ∈ iG(A). Otherwise, {x1; x2; : : : ; xu} form a homomorphic image
of G. Since PG(A) �= 0, there exists some [w1;w2; : : : ;wu]∈ Ind[G :A; r] and d(wj) = d
for some distribution d . Let s be an integer. We de1ne yj = (wj; xj; : : : ; xj) with each
xj repeated s times. Then [y1; y2; : : : ; yu]∈ Ind[G :A; r + sn] and d(yj) = (d + (sai)=
pi)=(s+1). Since lims→∞(d+(sai)=pi)=(s+1)=ai=pi; ai=pi ∈ IG(A). Thus a=p∈ IG(A).
Similarly, b=q∈ IG(B). Let k = H(a=p) and l = H(b=q). Then

PG(A⊕ B) =H(c) =
v∏

i=1

a−ai
i

w∏
j=1

b−bj
j

=
v∏

i=1

(
p
(
ai
p

))−p(ai=p) w∏
j=1

(
q
(
bj
q

))−q(bj=q)

=p−p

[
v∏

i=1

(
ai
p

)−(ai=p)
]p

q−q


 w∏

j=1

(
bj
q

)−(bj=q)


q

=p−pkpq−qlq

=p−pkp(1 − p)−(1−p)l(1−p):

Consider f(x) = x−xkx(1 − x)−(1−x)l(1−x). Then

f′(x) = f(x)ln
(
k(1 − x)

lx

)
:
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Since f′(x)=0 if and only if x= k=(k + l) and f′(x)¿ 0 when x¡k=(k + l), f′(x)¡ 0
when x¿k=(k + l). Therefore f(x) has a maximum value at x = k=(k + 1). Thus

PG(A⊕ B)6
(

k
k + l

)−k=(k+l)

(k)k=(k+l)
(

l
k + l

)−l=(k+l)

(l)l=(k+l)

= k + l6PG(A) + PG(B): (6)

From (5) and (6), PG(A⊕B)=PG(A)+PG(B). Hence PG is pseudo-additive. Applying
Theorem 5.2, PG is pseudo-multiplicative. Thus PG is PAMI.

Let G = (V; E) be a digraph. The homomorphism digraph G∗ = (V ∗; E∗) of G is
the directed graph with V ∗ =V and (a; b)∈E∗ if there is a homomorphism � from G
into itself such that �(a)= b. Obviously, (v; v)∈E∗ for every v∈V . Let S be a subset
of V . The out-neighborhood of S is the set 0(S) = {y|(x; y)∈E∗ with x∈ S}. Thus,
S ⊆0(S) for every S ⊆V . A nonempty subset S of V is called a closed set of G if
(1) 0(S)⊆ S and (2) there is no nonempty proper subset S ′ of S such that 0(S ′)⊆ S ′.
Obviously, there exists a closed set for every digraph.

Lemma 5.2. Suppose that S is a closed set of G and D is a subset of S. The induced
directed graph G∗|D in G∗ is a complete digraph.

Proof. First, we prove that G∗|D is strongly connected. Suppose that G∗|D is not
strongly connected. Then there exists a nonempty proper subset D′ of D such that
0(D′) ∩ D⊆D′. Let X = {x|x∈ S − D and there exists a homomorphism f :G → G
such that f(x)∈D − D′}.

Suppose that there exists a homomorphism g :G → G for which g(y)∈X for
some y∈D′. Since g(y) is in X , there exists a homomorphism h :G → G such that
h(g(y))∈D− D′. Then h ◦ g is a homomorphism mapping the element y in D′ to an
element in D−D′. This contradicts 0(D′)∩D⊆D′. Thus, there is no homomorphism
g from G into itself such that g(y)∈X for some y∈D′.

It follows from the above discussion that the set Y =((S −D)−X )∪D′ is a proper
subset of S such that 0(Y )⊆Y . This contradicts the fact that S is a closed set. Thus,
G∗|D is strongly connected.

Since the composite of homomorphism functions is again a homomorphism function,
G∗|D forms a complete digraph.

Corollary 5.2. For any two di>erent closed sets S1 and S2 of digraph G, S1 ∩ S2 = ∅.

Proof. The proof follows from the fact that G∗|S is a complete digraph for every
closed set of S.

Lemma 5.3. Let S be a closed set of the digraph G and f be any homomorphism
from G into itself. There is exactly one closed set B of f(G) contained in S ∩f(G).
Moreover, f(S) is a subset of B.
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Proof. We prove this lemma through the following steps.
(1) Let s be any element in S ∩f(G) and g be any homomorphism from f(G) into

itself. Since S is a closed set, g(s)∈ S∩f(G). Thus, the out-neighborhood of S∩f(G)
in f(G)∗ is a subset of S ∩ f(G). Thus, there exists at least one closed subset B of
f(G) in S ∩ f(G).

(2) Let B be any closed set of f(G) in S ∩ f(G) and x be any element of B.
Obviously, f|f(G) is a homomorphism from f(G) into itself. Since B is a closed set,
f(x)∈B⊆ S. Thus, the set f(S) ∩ B contains at least the element y(=f(x)).

(3) Let z = f(w) with w∈ S be any element of f(S). By Lemma 5.2, there exists
a homomorphism h :G → G such that h(y) = w. Then f ◦ h|f(G) is a homomorphism
from f(G) into itself such that f ◦ h|f(G)(y) =f(w) = z. Since B is a closed set, z is
an element of B. Thus, f(S)⊆B.

(4) It follows from Corollary 5.2 that there is exactly one closed set B of f(G)
contained in S ∩ f(G).

Let G=(V; E) be a digraph. A nonempty subset C of a closed set S is called a core
if (1) there exists a homomorphism � :G → G satisfying �(S)=C and (2) there is no
proper subset C′ of C such that there exists a homomorphism �′ :G → G satisfying
�′(S) = C′. Again there exists a core for every closed set.

A digraph G is called an n-core digraph if G has exactly n closed sets C1; C2; : : : ; Cn

with V (G) = C1 ∪ C2 ∪ · · · ∪ Cn such that Ci is a core for every i.

Lemma 5.4. Let G be a digraph with n closed sets. G contains an n-core subdigraph
Ĝ as a homomorphic image of G.

Proof. We construct a sequence of subdigraphs G0; G1; : : : ; Gk as follows:
Let G0 = G. If there is no homomorphism f :G0 → G0 such that f(G0)⊂G0,

the sequence terminates. If there exists a homomorphism f0 :G0 → G0 such that
f0(G0)⊂G0, then set G1=f0(G0). Let Gi be the newly constructed subdigraph. If there
is no homomorphism f :Gi → Gi such that f(Gi)⊂Gi, the sequence terminates. If
there exists a homomorphism fi :Gi → Gi such that fi(Gi)⊂Gi, then set Gi+1=fi(Gi).
Since G is a 1nite digraph, the sequence terminates at some Gk . Let f = fk−1 ◦
fk−2 ◦ · · · ◦ f0. Then, f is a homomorphism from G onto the subdigraph of G, Gk .
It follows from Lemma 5.3 that Gk is a subdigraph with n closed sets. Since there is
no homomorphism from Gk into a proper subdigraph of itself, Gk is an n-core sub-
digraph.

Lemma 5.5. Let C be a core of the digraph G for some closed set S. The induced
subdigraph G|C is vertex transitive.

Proof. We prove this lemma through the following steps.
(1) Let � by any homomorphism of G such that �(S) = C. We claim that the

restriction of � on C, �|C , is an isomorphism for C. First, we prove that �(C) = C.
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Suppose that �(C) �= C. �(C) is a proper subset of C. Since �(S)=C, �2(S)=�(C).
In other words, �(C) is a proper subset of C having a homomorphism �2 such that
�2(S) =�(C). This contradicts the fact that C is a core of S. Hence �(C) =C. Since
C is a 1nite set, � is also one to one from C onto C. Thus, �|C is an isomorphism
on C.

(2) From step 1, we know that �−1
C is an isomorphism from C onto itself. Let f be

any homomorphism from G into itself. Then f◦�|−1
C (C)⊆ S because S is a closed set.

Therefore �◦f ◦�|−1
C (C)⊆C. We claim that �◦f ◦�|−1

C is again an isomorphism on
C. Suppose that � ◦f ◦�|−1

C is not an isomorphism. Then � ◦f ◦�|−1
C (C) is a proper

subset of C. Since �|−1
C (C) =C, we have � ◦f(C) is a proper subset of C. Note that

� ◦ f ◦ �(S) = � ◦ f(C). Thus, � ◦ f(C) is a proper subset of C and �′ = � ◦ f ◦ �
is a homomorphism satisfying �′(S) = � ◦ f(C). This contradicts the fact that C is a
core. Thus, � ◦f ◦�|−1

C is an isomorphism on C for every homomorphism f :G → G.
(3) Let a and b be any two vertices of C, Since �|−1

C is an isomorphism on C,
we can 1nd a′ and b′ in C such that �(a′) = a and �(b′) = b. By Lemma 5.2, we
know that there exists a homomorphism f :G → G such that f(a′) = b′. Then
� ◦ f ◦ �|−1

C is an isomorphism on C such that � ◦ f ◦ �|−1
C (a) = b. Thus G|C is

vertex transitive.

Let G be a digraph with V (G)={x1; x2; : : : ; xu} and let r=(r1; r2; : : : ; ru) be a vector of
positive integers. We use Gr to denote the digraph with V (Gr)={xi; j | 16i6u; 16j6ri}
and (xi; j ; xk; l)∈E(Gr) if and only if (xi; xk)∈E(G). Assume that c1; c2; : : : ; cn are pos-
itive integers. We use Gc1 to denote the digraph Gr with ri = c1 for every i. Moreover,
if V (G) = C1 ∪ C2, we use Gc1c2 to denote the digraph Gr with c1 corresponding to
every vertex u in C1 and c2 corresponding to every vertex v in C2. Similarly, we can
de1ne Gc1c2 :::cn .

Lemma 5.6. PG¿PĜ2 for any homomorphic image Ĝ of G if G is a digraph.

Proof. Since both V (G) and V (Ĝ
2
) are 1nite, the number of homomorphisms from

G to Ĝ
2

is 1nite. Let {�1; �2; : : : ; �k} be the set of homomorphism from G to Ĝ
2
.

We de1ne a function � : G → (Ĝ
2
)[k] by setting �(x) = (�1(x); �2(x); : : : ; �k(x)).

Obviously, � is an isomorphism from G into (Ĝ
2
)[k]. Hence PG¿P(Ĝ2)[k] . By Theorem

5.4, PG¿PĜ2 .

5.3.3. Classi@cation of matrix capacity functions

Lemma 5.7. Let M be any matrix in M such that G[M ] has at least two closed
sets. Then PM is non-PAMI.

Proof. We only prove the lemma for the case G[M ] which has exactly two closed
sets through the following steps.
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(1) It follows from Lemma 5.4 that G[M ] contains a 2-core subdigraph Ĝ as a
homomorphic image. Since Ĝ is a subdigraph of G[M ], PG[M ]6PĜ. By Lemma 5.6,
we have PĜ26PG[M ]6PĜ.

(2) Let C1 and C2 be the two cores of Ĝ. Assume that |C1|= c1, |C2|= c2, r = 2c2,

and s = 2c1. Let G̃ = Ĝ
rs
. Since Ĝ

2
is a subdigraph of G̃, we have PĜ2¿PG̃. By

Theorem 5.5, PĜ26PG̃. We have PĜ2 = PG̃.
(3) Let H be any digraph such that PĜ2(H) �= 0. By step 1, PĜ26PĜ. Note that Ĝ

is a homomorphic image of Ĝ
2
. By Theorem 5.6, PĜ(H) = PĜ2(H).

(4) By steps 1, 2 and 3, PG[M ](H) = PĜ(H) = PĜ2(H) = PG̃(H) if PĜ2(H) �= 0.

(5) Let x and y be any two positive integers with 1¡x¡y. Obviously, Ĝ
2⊆ G̃

xy
.

We have PĜ2(G̃
xy

) �= 0. By step 4, PG[M ](G̃
xy

) = PĜ(G̃
xy

) = PĜ2(G̃
xy

) = PG̃(G̃
xy

). By

Theorem 5.3, PG[M ](G̃
xy

) = xrs=2, PG[M ](G̃
yx

) = xrs=2, and PG[M ](G̃
xy
G̃
yx

) = xyr2s2=4.
(6) Let M = (mij)u×u. We set � = max{mij|16i; j6u} + 1. For any digraph H

with |V (H)| = v, t�(H) denotes the matrix (tij)v×v where tij = � if (i; j)∈E(H) and
0 if otherwise. Obviously, PM (t�(G̃

xy
)) = PG[M ](t�(G̃

xy
)) = PG[M ](G̃

xy
) = xrs=2. Sim-

ilarly, PM (t�(G̃
yx

)) = xrs=2 and PM (t�(G̃
xy

) ⊗ t�(G̃
yx

)) = xyr2s2=4. Hence PM is not
pseudo-multiplicative. By Theorem 5.2, PM is non-PAMI.

Theorem 5.10. Let M = (mij)u×u be any matrix in M. PM is PAMI if and only if
G[M ] has exactly one nonempty closed set. Moreover; PM is AMI if and only if
M = (0).

Proof. From Lemma 5.7, PM is non-PAMI if G[M ] has at least two closed sets.
Assume that G[M ] has exactly one closed set. Let C be a core of G[M ] for the closed
set S of G[M ]. Then PG[M ]|C¿PG[M ]. Obviously, G[M ]|C is a homomorphic image of
G[M ]. By Theorem 5.6, PG[M ](N )=PG[M ]|C (N ) if PG[M ](N ) �= 0. Assume that N is any
matrix such that PM (N ) �= 0. By Theorem 5.7, PM (N ) = PG[M ](N ). Hence, PM (N ) =
PG[M ]|C (N ) if PM (N ) �= 0. Let A and B be matrices with PM (A) �= 0 and PM (B) �= 0.
By Corollary 5.1, PM (A⊕ B) �= 0. Thus PM (A) = PG[M ]|C (A) and PM (B) = PG[M ]|C (B).
Since G[M ]|C is vertex transitive, PG[M ]|C (A⊕B)=PG[M ]|C (A)+PG[M ]|C (B). However,
PM (A⊕B)=PG[M ]|C (A⊕B) because PM (A⊕B) �= 0. Hence PM (A⊕B)=PM (A)+PM (B).
Thus PM is pseudo-additive. By Theorem 5.2, PM is PAMI. Hence PM is PAMI if and
only if G[M ] has exactly one closed set.

Let � = max{mij | 16i; j6u} + 1 and let B be min{mij |mij ¿ 0} if there exists
some mij ¿ 0 and 0 otherwise. Suppose that B¿1. Obviously, mij6(mij)k for every
16i; j6u and k ∈N. Hence PM (M) �= 0. Since PM is increasing, PM (�M) �= 0. Since
mij=�¡ 1 for every 16i, j6u, PM ((1=�)M)=0. Then PM ((1=�)M⊗�M)=PM (M [2])=
P2
M (M) �= PM ((1=�)M)PM (�M). Hence PM is not AMI. Suppose that 0¡B¡ 1. Ob-

viously, PM ((1=�)M) = 0 and PM ((�=B)M) �= 0. Hence PM ((�3=B2)M) �= 0. Then
PM ((�3=B2)M⊗(1=�)M)=PM ((�=B)2M [2])=P2

M ((�=B)M) �= PM ((�3=B2)M)PM ((1=�)M).
Hence PM is not AMI. Finally, suppose B = 0. Suppose that u = 1. Then M is (0).
Obviously, PM (N ) = v if N is an v × v matrix. Moreover, PM is AMI. Suppose that
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u¿ 1. It is obvious that PM ((1)) = 0 and PM (M) = u. However (1) ⊗M = M . Thus
PM ((1) ⊗M) �= PM ((1))PM (M). Therefore PM is not AMI. Hence PM is AMI if and
only if M = (0).

5.4. Other MI functions

From the above discussion, we notice that most of MI functions on M we discussed
are generalizations of those MI functions on G. Obviously, we will get other MI
functions for M. Furthermore, we can extend Hedetniemi conjecture on M.

6. MI functions on multidigraphs

There are a lot of algebraic subsystems of (M;⊕;⊗;6). We can study the MI
functions on each algebraic subsystem of M. In this paper, we are only interested
in two important algebraic subsystems of M, the set of multidigraphs and the set
of loopless multidigraphs. Similar technique can be used to discuss other algebraic
subsystems of M. In this section, we are going to study the MI functions on the set
of all multidigraphs. Note that the set of all multidigraphs corresponds to the subset
of all matrices of M with all nonnegative integer entries. We use M1 to denote the
set of all multidigraphs.

It seems that all the MI functions on M discussed above can easily transformed into
the MI functions on M1 by restricting its domain. For example, let

M =
(

0 0:5
0:8 0

)
and M ′ =

(
0 1
1 0

)
:

Obviously, M �∈ M1 and M ′ ∈M1. Yet hM |M1 = hM ′ |M1 . For simplicity, we will use
f for f|M1 for any function f de1ned on M in this section.

It is interesting to point out there is a diMerence as we study the MI functions on
M1. The diMerence is only on capacity functions. Let M = (mij)u×u be any matrix in
M. We can de1ne another matrix M∗ = (m∗

ij)u×u by setting m∗
ij = �mij�. Obviously,

PM (H)=PM∗(H) if H ∈M1. For this reason, we may assume that M is a multidigraph
as we study the MI functions on M1.

Theorem 6.1. limm→∞ [.G(H [m])]1=m exists for any G;H ∈M1. Thus; for any G and
H in M1; we have PG(H) = limm→∞ [.G(H [m])]1=m.

Proof. Let V (G)={x1; x2; : : : ; xu} and V (H)={y1; y2; : : : ; yv}. Assume that .G(H [k])¿1
for some integer k. Then there exists .G(H [k]) disjoint copies of G in H [k], say
G1; G2; : : : ; G.G(H [k]). Let V (Gi) = {xi1; xi2; : : : ; xiu} with xij corresponding to xj and
let xij = (yij1 ; yij2 ; : : : ; yijk ) with yijl ∈V (H) for 16i6.G(H [k]), 16j6u. We set
x′ij = (yij1 ; xij) = (yij1 ; yij1 ; yij2 ; : : : ; yijk ) for 16i6.G(H [k]) and 16j6u. Obviously,
each {x′i1; x′i2; : : : ; x′iu} induces a copy G′

i of G in H [k+1]. Moreover, G′
1; G

′
2; : : : ; G

′
.G(H [k])
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are disjoint. Thus .G(H [k+1])¿.G(H [k]). Therefore, .G(H [r])¿.G(H [s]) if r¿s.
Let ak = log[.G(H [k])]. Obviously, 06ak=k6log|V (H)| and limk→∞ ak=k exists,
say a∗. Therefore, for every C¿ 0 there exists a positive integer n¿k such that
a∗ − C6an=n. Hence n(a∗ − C)6an. Since am¿an for every m¿n, n(a∗ − C)6an6am.
Thus (n=m)(a∗ − C)6am=m and limm→∞ am=m = a∗ = limm→∞ (am=m). Therefore
limm→∞ [.G(H [m])]1=m = ea

∗
.

Theorem 6.2. Assume that G ∈M1. Then PG is PAMI if and only if G has exactly
one closed set. Moreover; PG is AMI if and only if A(G) = (0) or (1).

Proof. Using the same argument as on M, we can easily prove that PG is PAMI if
and only if G has exactly one closed set. Suppose that |V (G)|¿2 or A(G) = (�) with
�¿2. It is obvious that (1) ⊗ G = G, PG(G) �= 0, and PG((1)) = 0. Thus PG is not
AMI.

Now, A(G) can only be (0) or (1). It is easy to see that P(0)(H) is the number of
nodes in H and P(1)(H) is the number of nodes in H with a selPoop. Thus P(0) and
P(1) are AMI. The theorem is proved.

Corollary 6.1. PG is PAMI if G is a multidigraph with a loop.

7. MI functions on loopless multidigraphs

We use M2 to denote the set of loopless multidigraphs. Obviously M2 consists of
all matrices of M1 with 0 at all diagonal entries. Again, all the MI functions on M1

discussed above can easily be transformed into MI functions on M2. Again, we use f
for f|M2 in this section. Let G be any multidigraph in M1−M2. Obviously PG(H)=0
for any H in M2. Hence we concentrate on those G in M2.

Theorem 7.1. Assume that G ∈M2. Then PG is PAMI if and only if G has exactly
one closed set. Moreover; PG is AMI if and only if G has exactly one closed set such
that PG(H) �= 0 for any homomorphic image H ∈M2 of G.

Proof. Using the same argument as on M, we can easily conclude that PG is PAMI if
and only if G has exactly one closed set. Let H1 and H2 be two digraphs in M2. Let
k = |{i |Hi contains a homomorphic image of G}|. Suppose k = 2. Then Hi contains a
homomorphic image Ĥ i of G for i= 1; 2. By our assumption, PG(Ĥ i) �= 0 for i= 1; 2.
Since PG is increasing, PG(Hi) �= 0 for i = 1; 2. Since PG is PAMI, PG(H1 ⊕ H2) =
PG(H1) + PG(H2). Suppose k = 1. Without loss of generality, we may assume that H1

contain a homomorphic image of G. Hence PG(H1) �= 0 and PG(H2) = 0. Let n be
any positive integer. Obviously, .G(H [k]

1 ⊗ H [n−k]
2 ) = 0 for any 06k6n − 1. Hence

.G((H1 ⊕H2)[n]) = .G(H [n]
1 ) for any positive integer n. Thus PG(H1 ⊕H2) =PG(H1) =

PG(H1) + PG(H2). Suppose k = 0. Obviously PG(H1 ⊕ H2) = PG(H1) + PG(H2) = 0.
Hence PG is additive. By Theorem 5.2, PG is AMI.
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On the other hand, suppose that G has a homomorphic image H such that PG(H)=0.
It is obvious that PG(G) �= 0 and PG(G ⊗ H) �= 0. Thus PG is not AMI. Hence the
theorem is proved.

For example, PG is AMI in M2 if G is a directed odd cycle.

Corollary 7.1. Assume that G ∈M2 and PG is AMI. Then G has no parallel edges.

With Theorem 7.1, we can classify those loopless multidigraphs G such that PG is
AMI in M2. However, it is not easy to check all the homomorphic image H of G such
that PG(H) �= 0. It follows from the proof of Theorem 5.10 that we may assume that
G=G̃|C where C is a core of G̃. With this assumption, G is a connected vertex transitive
digraph. For this reason, we say a loopless digraph G is nice if it is a connected
vertex transitive digraph such that any homomorphism of G is an isomorphism. We
say a loopless digraph G is good if it is a connected vertex transitive digraph such that
PG(H) �= 0 for any homomorphic image H ∈M2. We have the following conjecture.

Conjecture 1. A digraph is nice if and only if it is good.
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